Курсовая на тему Посадки и допуски
Работа добавлена на сайт bukvasha.net: 2014-07-17Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Содержание
Вступление
Задача 1: Выбор посадки с натягом
Задача 2: Расчет переходной посадки на вероятность получения натягов и зазоров
Задача 3: Контроль размеров (расчет исполнительных размеров калибров и контркалибров)
Задача 4: Выбор посадки колец подшипника
Задача 5: Метод центрирования и выбор посадки шлицевого соединения
Задача 6: Степень точности и контролируемые параметры цилиндрической зубчатой передачи
Задача 7: Расчет размерной цепи для обеспечения заданного замыкающего звена
Задача 8: Основные размеры и предельные отклонения резьбовых соединений
Задача 9: Определение вида шпоночного соединения
Заключение
Список используемой литературы
Введение
Курсовой проект включает в себя решение задач по темам:
1. Посадки;
2. Шлицевые соединения;
3. Зубчатая передача;
4. Резьбовые соединения;
5. Шпоночные соединения;
6. Размерные цепи.
Целью решения задач является более глубокое усвоение основных теоретических положений и приобретение навыков по выбору посадок для различного соединения деталей в зависимости от их технического назначения (резьбовые, шпоночные и другие соединения), по составлению и решению размерных цепей, а также совершенствование навыков поиска и использования нормативных документов (ГОСТ, СТ СЭВ и т.д.) и табличных данных.
1. Рассчитать и выбрать посадку для соединения 2-3 при следующих исходных данных:
Крутящий момент Mкр = 0
Осевая сила Pос = 5300 Н
Номинальный диаметр d =56 мм
Длина контакта l =40 мм
Коэффициент трения-сцепления f = 0,13
Диаметр внутреннего отверстия d1 =50 мм
Диаметр втулки d2 =78 мм
Материал вала Сталь 45
Материал втулки БрО4Ц4С17
Вид запрессовки Механическая
Высота микронеровностей вала Rzd = 5 мкм
Высота микронеровностей втулки RzD = 10 мкм
Рабочая температура соединения t = 60ْ С
Условия работоспособности:
1. Отсутствие проскальзывания;
2. Отсутствие пластических деформаций в соединении.
При расчетах используются выводы задачи Ляме (определение напряжений и перемещений в толстостенных полых цилиндрах).
По известным значениям внешних нагрузок (Mкр; Pос) и размерам соединения (d; l) определяется требуемое минимальное удельное давление на контактных поверхностях соединения по формуле [1.1]:
, [1.1]
где Pос – продольная осевая сила, стремящаяся сдвинуть одну деталь относительно другой; Mкр – крутящий момент, стремящийся повернуть одну деталь относительно другой; l – длина контакта сопрягаемых поверхностей; f – коэффициент трения-сцепления.
По полученному значению p определяется необходимая величина наименьшего расчетного натяга N’min [1.2]
, [1.2]
где E1 и E2 – модули упругости материалов деталей; c1 и c2 – коэффициенты Ляме, определяемые по формулам [1.3] и [1.4]
, [1.3]
, [1.4]
где d1 – диаметр внутреннего отверстия; d2 – диаметр втулки; μ1 и μ2 – коэффициенты Пуассона.
Принимаются значения E1 = 1,96·105 Н/мм2, E2 = 0,84·105 Н/мм2, μ1 = 0,3, μ2 = 0,35 (табл. 1.106, стр. 335. Мягков том 1).
Определяются с учетом поправок к N’min величина минимального допустимого натяга [1.5]
, [1.5]
где γш – поправка, учитывающая смятие неровностей контактных поверхностей деталей при образовании соединения [1.6]
[1.6]
γt – поправка, учитывающая различие коэффициентов линейного расширения материалов деталей [1.7]
, [1.7]
где αD и αd – коэффициенты линейного расширения материалов; – разность между рабочей и нормальной температурой
Принимаются значения αD = 17,6·10-6 град-1, αd = 11,5·10-6 град-1 (табл. 1.62, стр. 187-188, Мягков том 1).
На основе теории наибольших касательных напряжений определяется максимальное допустимое удельное давление [pmax], при котором отсутствует пластическая деформация на контактных поверхностях деталей. В качестве [pmax] берется наименьшее из двух значений, определенных по формулам [1.8] и [1.9]
, [1.8]
, [1.9]
где σТ1 и σТ2 – предел текучести материалов деталей.
Принимаются значения σТ1 =355 МПа (табл. 3, стр. 97, Анурьев том 1), σТ2 = 147 МПа (табл. 68, стр. 198, Анурьев том 1).
Определяется величина наибольшего расчетного натяга N’max [1.10]
[1.10]
Определяется с учетом поправок к N’min величина максимального допустимого натяга [1.11]
, [1.11]
где γуд – коэффициент удельного давления у торцов охватывающей детали.
Принимается значение γуд = 0,93 (по графику рис. 1.68, стр. 336, Мягков том 1).
Выбирается посадка из таблиц системы допусков и посадок (табл.1.49, стр. 156, Мягков том 1)
,
для которого Nmax = 106 мкм < [Nmax], Nmin = 57 мкм > [Nmin].
рис.1.1
рис.1.2
рис.1.3
2. Для соединения 16-17 определить вероятностные характеристики заданной переходной посадки: .
рис.2.1
рис.2.2
Рассчитывается посадка, и определяются минимальный и максимальный натяг [2.1], [2.2], [2.3]
, [2.1]
, [2.2]
, [2.3]
поля допусков [2.4], [2.5]
, [2.4]
, [2.5]
где ВО – верхнее отклонение отверстия; во – верхнее отклонение вала; НО – нижнее отклонение отверстия; но – нижнее отклонение вала. (ВО=30 мкм , НО=-10 мкм , во=25 мкм , но=0 мкм)
Определяется среднее квадратичное отклонение натяга (зазора) по формуле [2.6]
[2.6]
Определяется предел интегрирования [2.7]
[2.7]
Принимается значение функции Ф(1.65) = 0.4505 (табл. 1.1, стр. 12, Мягков том 1).
Рассчитывается вероятность натягов [2.8] (или процент натягов [2.9]) и вероятность зазора [2.10] (или процент зазоров [2.11]):
[2.8]
[2.9]
[2.10]
[2.11]
вероятность натяга
процент натяга
вероятность зазора
процент зазора
рис.2.3
3. Рассчитать исполнительные размеры гладких предельных калибров (контркалибров) для контроля деталей соединения: 16-17.
Расчет исполнительных размеров калибра-скобы для вала h7
рис.3.1
Проходная сторона рассчитывается по формуле [3.1], граница износа – [3.2], непроходная сторона – [3.3]
, [3.1]
, [3.2]
, [3.3]
где d – номинальный диаметр вала; во – верхнее отклонение вала; но – нижнее отклонение вала; Z1 – отклонение середины поля допуска на изготовление проходного калибра для вала относительно наибольшего предельного размера изделия; Y1 – допустимый выход размера изношенного проходного калибра для вала за границу поля допуска изделия.
Принимаются значения Z1 = 4 мкм, Y1 = 3 мкм (табл. 2, стр. 8, ГОСТ 24853-81).
Допуска на изготовление калибров для вала (проходной и непроходной стороны) принимается H1 = 5 мкм (табл. 2, стр. 8, ГОСТ 24853-81).
Допуска на изготовление контркалибров для вала (проходной и непроходной стороны, границы износа) принимается Hр = 2 мкм (табл. 2, стр. 8, ГОСТ 24853-81).
Исполнительные размеры калибра-скобы:
проходная сторона ,
непроходная сторона .
Исполнительные размеры контркалибра-скобы:
проходная сторона ,
непроходная сторона ,
граница износа .
рис.3.2
Расчет исполнительных размеров калибра-пробки для отверстия Js8
рис.3.3
Проходная сторона рассчитывается по формуле [3.4], граница износа – [3.5], непроходная сторона – [3.6]
, [3.4]
, [3.5]
, [3.6]
где D – номинальный диаметр вала; ВО – верхнее отклонение отверстия; НО – нижнее отклонение отверстия; Z – отклонение середины поля допуска на изготовление проходного калибра для отверстия относительно наименьшего предельного размера изделия; Y – допустимый выход размера изношенного проходного калибра для отверстия за границу поля допуска изделия.
Принимаются значения Z = 7 мкм, Y = 5 мкм (табл. 2, стр. 8, ГОСТ 24853-81).
Допуска на изготовление калибров для отверстия (проходной и непроходной стороны) принимается H = 5 мкм (табл. 2, стр. 8, ГОСТ 24853-81).
Исполнительные размеры калибра-скобы:
проходная сторона ,
непроходная сторона .
рис.3.4
4. Выбрать посадки для колец 7 и 8 подшипника №421.
Класс точности 0
Радиальная реакция в опорах R = 45 кН
Перегрузка 100%
Характер нагружения: вращающийся вал
Диаметр внутреннего кольца d =105 мм
Диаметр внешнего кольца D =260 мм
Ширина подшипника B =60 мм
Ширина фаски кольца подшипника r =4 мм
При характере нагружения – вращающийся вал внутреннее кольцо испытывает циркуляционное нагружение, внешнее – местное. Интенсивность нагрузки подсчитывается по формуле [4]
, [4.1]
где R – радиальная реакция в опорах; B – ширина подшипника; r – ширина фаски кольца подшипника, kП – динамический коэффициент посадки, зависящий от характера нагрузки (при перегрузке до 150%, умеренных толчках и вибрации kП = 1); F – коэффициент, учитывающий степень ослабления посадочного натяга при полом вале или тонкостенном корпусе (при сплошном вале F = 1, табл. 4.90, стр. 286, Мягков том 2); FA – коэффициент неравномерности распределения радиальной нагрузки R между рядами роликов (FA = 1 для радиальных и радиально-упорных подшипников).
Выбирается посадка для вала (табл. 4.92, стр. 287, Мягков том 2), для корпуса (табл. 4.93, стр. 289, Мягков том 2).
В соответствии с классом точности подшипника выбираются посадки колец:
внутреннее L0-20 (табл. 4.82, стр. 273, Мягков том 2),
внешнее l0-35 (табл. 4.83, стр. 276, Мягков том 2).
рис.4.1
рис.4.2
5. Определить метод центрирования и выбрать посадку шлицевого соединения 13-14.
Число шлицев z = 16
Внешний диаметр D =82 мм
Материал вала Сталь 45
Материал втулки БрО4Ц4С17
В связи с тем, что твердость материала вала (HBвал = 255 по ГОСТ 1051-88) больше твердости материала втулки (HBвтулка = 60 по табл. 68, стр. 198, Анурьев том 1) и механизм не реверсивный, выбирается метод центрирования по внешнему диаметру. Принимаем число зубьев z = 16, внутренний диаметр d =72 мм , внешний диаметр D = 82 мм , боковая поверхность зуба b = 7 мм (табл. 4.71, стр. 251, Мягков том 2).
Выбирается посадка (табл. 4.72, 4.75, стр. 252 – 253, Мягков том 2).
рис.5.1
рис.5.2
рис.5.3
рис.5.4
рис.5.5
6. Установить степень точности и контролируемые параметры зубчатой пары 10-11.
Модуль m =10 мм
Число зубьев z = 25
Скорость v = 5 м/с
Вид сопряжения Д
По формулам [6.1] и [6.2] определяются делительный окружной шаг и делительный диаметр
[6.1]
[6.2]
Зубчатые колеса – общего машиностроения, не требующие особой точности. По значению окружной скорости принимается степень точности – 8 (средняя точность) (табл. 5.12, стр. 330, Мягков том 2).
Диаметр вершин зубьев рассчитывается по формуле [6.3]
, [6.3]
где коэффициент высоты головки h*a = 1 для стандартного исходного контура по ГОСТ 13755-81 и ГОСТ 9587-81.
Нормы кинематической точности
Принимается допуск на радиальное биение зубчатого венца Fr = 80 мкм (табл. 5.7,стр. 317, Мягков том 2), допуск на накопленную погрешность шага зубчатого колеса Fp = 125 мкм (табл. 5.8, стр. 319, Мягков том 2).
Нормы плавности работы
Принимается допуск на местную кинематическую погрешность f’i = 60 мкм, предельное отклонение шага fpt = ±32 мкм, погрешность профиля ff = 28 мкм (табл. 5.9, стр. 321, Мягков том 2).
Т.к. ширина зубчатого венца b =50 мм , то принимается суммарное пятно контакта по высоте зуба – 40%, по длине зуба – 50%; допуски на не параллельность fx = 25 мкм, перекос fy = 12 мкм, направление зуба Fβ = 25 мкм (табл. 5.10, стр. 323-324, Мягков том 2).
Вид сопряжения – Д, допуска бокового зазора – d, класс отклонений межосевого расстояния – III (табл. 5.15, стр. 335, Мягков том 2).
Межосевое расстояние рассчитывается по формуле [6.4]
, [6.4]
где числа зубьев колес z1 = z2 = 25.
|
Вступление
Задача 1: Выбор посадки с натягом
Задача 2: Расчет переходной посадки на вероятность получения натягов и зазоров
Задача 3: Контроль размеров (расчет исполнительных размеров калибров и контркалибров)
Задача 4: Выбор посадки колец подшипника
Задача 5: Метод центрирования и выбор посадки шлицевого соединения
Задача 6: Степень точности и контролируемые параметры цилиндрической зубчатой передачи
Задача 7: Расчет размерной цепи для обеспечения заданного замыкающего звена
Задача 8: Основные размеры и предельные отклонения резьбовых соединений
Задача 9: Определение вида шпоночного соединения
Заключение
Список используемой литературы
Введение
Курсовой проект включает в себя решение задач по темам:
1. Посадки;
2. Шлицевые соединения;
3. Зубчатая передача;
4. Резьбовые соединения;
5. Шпоночные соединения;
6. Размерные цепи.
Целью решения задач является более глубокое усвоение основных теоретических положений и приобретение навыков по выбору посадок для различного соединения деталей в зависимости от их технического назначения (резьбовые, шпоночные и другие соединения), по составлению и решению размерных цепей, а также совершенствование навыков поиска и использования нормативных документов (ГОСТ, СТ СЭВ и т.д.) и табличных данных.
1. Рассчитать и выбрать посадку для соединения 2-3 при следующих исходных данных:
Крутящий момент Mкр = 0
Осевая сила Pос = 5300 Н
Номинальный диаметр d =
Длина контакта l =
Коэффициент трения-сцепления f = 0,13
Диаметр внутреннего отверстия d1 =
Диаметр втулки d2 =
Материал вала Сталь 45
Материал втулки БрО4Ц4С17
Вид запрессовки Механическая
Высота микронеровностей вала Rzd = 5 мкм
Высота микронеровностей втулки RzD = 10 мкм
Рабочая температура соединения t = 60ْ С
Условия работоспособности:
1. Отсутствие проскальзывания;
2. Отсутствие пластических деформаций в соединении.
При расчетах используются выводы задачи Ляме (определение напряжений и перемещений в толстостенных полых цилиндрах).
По известным значениям внешних нагрузок (Mкр; Pос) и размерам соединения (d; l) определяется требуемое минимальное удельное давление на контактных поверхностях соединения по формуле [1.1]:
где Pос – продольная осевая сила, стремящаяся сдвинуть одну деталь относительно другой; Mкр – крутящий момент, стремящийся повернуть одну деталь относительно другой; l – длина контакта сопрягаемых поверхностей; f – коэффициент трения-сцепления.
По полученному значению p определяется необходимая величина наименьшего расчетного натяга N’min [1.2]
где E1 и E2 – модули упругости материалов деталей; c1 и c2 – коэффициенты Ляме, определяемые по формулам [1.3] и [1.4]
где d1 – диаметр внутреннего отверстия; d2 – диаметр втулки; μ1 и μ2 – коэффициенты Пуассона.
Принимаются значения E1 = 1,96·105 Н/мм2, E2 = 0,84·105 Н/мм2, μ1 = 0,3, μ2 = 0,35 (табл. 1.106, стр. 335. Мягков том 1).
Определяются с учетом поправок к N’min величина минимального допустимого натяга [1.5]
где γш – поправка, учитывающая смятие неровностей контактных поверхностей деталей при образовании соединения [1.6]
γt – поправка, учитывающая различие коэффициентов линейного расширения материалов деталей [1.7]
где αD и αd – коэффициенты линейного расширения материалов;
Принимаются значения αD = 17,6·10-6 град-1, αd = 11,5·10-6 град-1 (табл. 1.62, стр. 187-188, Мягков том 1).
На основе теории наибольших касательных напряжений определяется максимальное допустимое удельное давление [pmax], при котором отсутствует пластическая деформация на контактных поверхностях деталей. В качестве [pmax] берется наименьшее из двух значений, определенных по формулам [1.8] и [1.9]
где σТ1 и σТ2 – предел текучести материалов деталей.
Принимаются значения σТ1 =355 МПа (табл. 3, стр. 97, Анурьев том 1), σТ2 = 147 МПа (табл. 68, стр. 198, Анурьев том 1).
Определяется величина наибольшего расчетного натяга N’max [1.10]
Определяется с учетом поправок к N’min величина максимального допустимого натяга [1.11]
где γуд – коэффициент удельного давления у торцов охватывающей детали.
Принимается значение γуд = 0,93 (по графику рис. 1.68, стр. 336, Мягков том 1).
Выбирается посадка из таблиц системы допусков и посадок (табл.1.49, стр. 156, Мягков том 1)
для которого Nmax = 106 мкм < [Nmax], Nmin = 57 мкм > [Nmin].
рис.1.1
рис.1.2
рис.1.3
2. Для соединения 16-17 определить вероятностные характеристики заданной переходной посадки:
рис.2.1
рис.2.2
Рассчитывается посадка, и определяются минимальный и максимальный натяг [2.1], [2.2], [2.3]
поля допусков [2.4], [2.5]
где ВО – верхнее отклонение отверстия; во – верхнее отклонение вала; НО – нижнее отклонение отверстия; но – нижнее отклонение вала. (ВО=30 мкм , НО=-10 мкм , во=25 мкм , но=0 мкм)
Определяется среднее квадратичное отклонение натяга (зазора) по формуле [2.6]
Определяется предел интегрирования [2.7]
Принимается значение функции Ф(1.65) = 0.4505 (табл. 1.1, стр. 12, Мягков том 1).
Рассчитывается вероятность натягов [2.8] (или процент натягов [2.9]) и вероятность зазора [2.10] (или процент зазоров [2.11]):
вероятность натяга
процент натяга
вероятность зазора
процент зазора
рис.2.3
3. Рассчитать исполнительные размеры гладких предельных калибров (контркалибров) для контроля деталей соединения: 16-17.
Расчет исполнительных размеров калибра-скобы для вала h7
рис.3.1
Проходная сторона рассчитывается по формуле [3.1], граница износа – [3.2], непроходная сторона – [3.3]
где d – номинальный диаметр вала; во – верхнее отклонение вала; но – нижнее отклонение вала; Z1 – отклонение середины поля допуска на изготовление проходного калибра для вала относительно наибольшего предельного размера изделия; Y1 – допустимый выход размера изношенного проходного калибра для вала за границу поля допуска изделия.
Принимаются значения Z1 = 4 мкм, Y1 = 3 мкм (табл. 2, стр. 8, ГОСТ 24853-81).
Допуска на изготовление калибров для вала (проходной и непроходной стороны) принимается H1 = 5 мкм (табл. 2, стр. 8, ГОСТ 24853-81).
Допуска на изготовление контркалибров для вала (проходной и непроходной стороны, границы износа) принимается Hр = 2 мкм (табл. 2, стр. 8, ГОСТ 24853-81).
Исполнительные размеры калибра-скобы:
проходная сторона
непроходная сторона
Исполнительные размеры контркалибра-скобы:
проходная сторона
непроходная сторона
граница износа
рис.3.2
Расчет исполнительных размеров калибра-пробки для отверстия Js8
рис.3.3
Проходная сторона рассчитывается по формуле [3.4], граница износа – [3.5], непроходная сторона – [3.6]
где D – номинальный диаметр вала; ВО – верхнее отклонение отверстия; НО – нижнее отклонение отверстия; Z – отклонение середины поля допуска на изготовление проходного калибра для отверстия относительно наименьшего предельного размера изделия; Y – допустимый выход размера изношенного проходного калибра для отверстия за границу поля допуска изделия.
Принимаются значения Z = 7 мкм, Y = 5 мкм (табл. 2, стр. 8, ГОСТ 24853-81).
Допуска на изготовление калибров для отверстия (проходной и непроходной стороны) принимается H = 5 мкм (табл. 2, стр. 8, ГОСТ 24853-81).
Исполнительные размеры калибра-скобы:
проходная сторона
непроходная сторона
рис.3.4
4. Выбрать посадки для колец 7 и 8 подшипника №421.
Класс точности 0
Радиальная реакция в опорах R = 45 кН
Перегрузка 100%
Характер нагружения: вращающийся вал
Диаметр внутреннего кольца d =
Диаметр внешнего кольца D =
Ширина подшипника B =
Ширина фаски кольца подшипника r =
При характере нагружения – вращающийся вал внутреннее кольцо испытывает циркуляционное нагружение, внешнее – местное. Интенсивность нагрузки подсчитывается по формуле [4]
где R – радиальная реакция в опорах; B – ширина подшипника; r – ширина фаски кольца подшипника, kП – динамический коэффициент посадки, зависящий от характера нагрузки (при перегрузке до 150%, умеренных толчках и вибрации kП = 1); F – коэффициент, учитывающий степень ослабления посадочного натяга при полом вале или тонкостенном корпусе (при сплошном вале F = 1, табл. 4.90, стр. 286, Мягков том 2); FA – коэффициент неравномерности распределения радиальной нагрузки R между рядами роликов (FA = 1 для радиальных и радиально-упорных подшипников).
Выбирается посадка
В соответствии с классом точности подшипника выбираются посадки колец:
внутреннее L0-20 (табл. 4.82, стр. 273, Мягков том 2),
внешнее l0-35 (табл. 4.83, стр. 276, Мягков том 2).
рис.4.1
рис.4.2
5. Определить метод центрирования и выбрать посадку шлицевого соединения 13-14.
Число шлицев z = 16
Внешний диаметр D =
Материал вала Сталь 45
Материал втулки БрО4Ц4С17
В связи с тем, что твердость материала вала (HBвал = 255 по ГОСТ 1051-88) больше твердости материала втулки (HBвтулка = 60 по табл. 68, стр. 198, Анурьев том 1) и механизм не реверсивный, выбирается метод центрирования по внешнему диаметру. Принимаем число зубьев z = 16, внутренний диаметр d =
Выбирается посадка
рис.5.1
рис.5.2
рис.5.3
рис.5.4
рис.5.5
6. Установить степень точности и контролируемые параметры зубчатой пары 10-11.
Модуль m =
Число зубьев z = 25
Скорость v = 5 м/с
Вид сопряжения Д
По формулам [6.1] и [6.2] определяются делительный окружной шаг и делительный диаметр
Зубчатые колеса – общего машиностроения, не требующие особой точности. По значению окружной скорости принимается степень точности – 8 (средняя точность) (табл. 5.12, стр. 330, Мягков том 2).
Диаметр вершин зубьев рассчитывается по формуле [6.3]
где коэффициент высоты головки h*a = 1 для стандартного исходного контура по ГОСТ 13755-81 и ГОСТ 9587-81.
Нормы кинематической точности
Принимается допуск на радиальное биение зубчатого венца Fr = 80 мкм (табл. 5.7,стр. 317, Мягков том 2), допуск на накопленную погрешность шага зубчатого колеса Fp = 125 мкм (табл. 5.8, стр. 319, Мягков том 2).
Нормы плавности работы
Принимается допуск на местную кинематическую погрешность f’i = 60 мкм, предельное отклонение шага fpt = ±32 мкм, погрешность профиля ff = 28 мкм (табл. 5.9, стр. 321, Мягков том 2).
Т.к. ширина зубчатого венца b =
Вид сопряжения – Д, допуска бокового зазора – d, класс отклонений межосевого расстояния – III (табл. 5.15, стр. 335, Мягков том 2).
Межосевое расстояние рассчитывается по формуле [6.4]
где числа зубьев колес z1 = z2 = 25.
Принимается гарантированный боковой зазор jnmin = 72 мкм, предельное отклонение межосевого расстояния fa = ±35 мкм (табл. 5.17, стр. 336, Мягков том 2).
Степень точности по ГОСТ 1643-81 8-8-8-Дd
Степень точности по ГОСТ 1643-81 8-8-8-Дd
Модуль | m, мм | 10 |
Число зубьев | z | 25 |
Нормальный исходный контур | - | ГОСТ 13755-81 |
Коэффициент смешения | х | 0 |
Степень точности по ГОСТ 1643-81 | - | 8-8-8-Дd |
Допуск на биение зубчатого венца | Fr, мкм | 80 |
Допуск на предельное отклонение шага | fpt, мкм | ±32 |
Гарантированный боковой зазор | jnmin, мкм | 72 |
Делительный диаметр | d, мм | 250 |
Делительный окружной шаг | P ,мм | 31.4 |
7. Построить и рассчитать размерную цепь для обеспечения размера заданного замыкающего звена
рис.7.1
рис.7.2
Метод полной взаимозаменяемости
В данной задаче исходным звеном является зазор А∑. Тогда
максимальное значение замыкающего звена [A∑max] =
минимальное значение замыкающего звена [A∑min] =
верхнее отклонение замыкающего звена [ВО∑] =
нижнее отклонение замыкающего звена [НО∑] =
значение среднего отклонения [Δc∑] = 0;
поле допуска [Т∑] =
Составляется уравнение размерной цепи по формуле [7.1] (линейная размерная цепь):
С учетом этого уравнения и принятого значения A∑ =
Рассчитываются допуски составляющих звеньев по способу одной степени точности по формуле [7.2]
где [Т∑] – значение поля допуска звена А∑, i – значение единицы поля допуска. Принимаются i1 = 2.17, i2 = 0.9, i3 = 2.17 (табл. 3.3, стр. 20, Мягков том 2).
Такое значение единиц допуска соответствует примерно 10-му квалитету в ЕСДП (табл. 1.8, стр. 44, Мягков том 1).
Таким образом, допуски составляющих размеров с учетом степени сложности изготовления принимаются: Т1 =
Назначаются допускаемые отклонения на все составляющие размеры исходя из экономической точности изготовления по возможной финишной операции. Для звена А1 назначается отклонение типа h, а для звена А3 – отклонение типа H, т.е. Δc1 = -Т1/2 =
Предельные отклонения корректирующего звена А2 определяются по формулам [7.6] и [7.7]
Правильность вычисления предельных отклонений проверяем по формуле [7.8]
А∑
А1
А2
А3
Теоретико-вероятный метод
В данной задаче исходным звеном является зазор А∑. Тогда
максимальное значение замыкающего звена [A∑max] =
минимальное значение замыкающего звена [A∑min] =
верхнее отклонение замыкающего звена [ВО∑] =
нижнее отклонение замыкающего звена [НО∑] =
значение среднего отклонения [Δc∑] = 0;
поле допуска [Т∑] =
Составляется уравнение размерной цепи по формуле [7.1] (линейная размерная цепь):
С учетом этого уравнения и принятого значения A∑ =
Принимаются i1 = 2.17, i2 = 0.9, i3 = 2.17 (табл. 3.3, стр. 20, Мягков том 2).
Такое значение единиц допуска соответствует примерно 11-му квалитету в ЕСДП (табл. 1.8, стр. 44, Мягков том 1).
Таким образом, допуски составляющих размеров с учетом степени сложности изготовления принимаются: Т1 =
Назначаются допускаемые отклонения на все составляющие размеры исходя из экономической точности изготовления по возможной финишной операции. Для звена А1 назначается отклонение типа h,а для звена А3 – отклонение типа H, т.е. Δc1 = -Т1/2 =
Предельные отклонения корректирующего звена А2 определяются по формулам [7.6] и [7.7]
А∑
А1
А2
8. Назначить основные размеры и предельные отклонения резьбового соединения.
Длина свинчивания l =
Болт М27
Гайка М27
М27 – резьба метрическая с крупным шагом P =
Длина свинчивания l =
Предельные диаметры болта (по табл. 4.29, стр. 155, Мягков том 2):
d2max =
d2min = 25.051-0.200 =
dmax =
dmin = 27-0.375 =
d1max = 23.752;
d1min не нормируется.
Предельные диаметры гайки (по табл. 4.29, стр. 165, Мягков том 2):
D2max = 25.051+0.313 =
D2mix = 25.051+0.048 =
Dmax не нормируется;
Dmin = 27+0.048 =
D1max = 23.752+0.548 =
D1mix = 23.752+0.048 =
рис.8.1
рис.8.2
рис.8.3
9. Определить вид шпоночного соединения (ГОСТ 23360-78). Указать значения зазоров и натягов.
Ширина шпонки b =
Глубина паза вала t1 =
Высота шпонки h =
Поле допуска шпонки по b h9
Поле допуска паза втулки Js9
Поле допуска паза вала N9
Поле допуска шпонки h9, поле допуска паза втулки Js9, поле допуска паза вала N9 характерны для нормального соединения с призматической шпонкой, назначение посадок – серийное и массовое производство (табл. 4.65, стр. 237, Мягков том 2).
рис.9.1
Принимаются основные размеры соединения с призматическими шпонками (по ГОСТ 23360-78):
Диаметр вала d =
Номинальные размеры шпонок
Ширина шпонки b =
Высота шпонки h =
Фаска s =
Длина шпонки l =
Номинальные размеры паза
Глубина на валу t1 =
Глубина во втулке t2 =
Радиус закругления r =
(табл. 4.64, стр. 236, Мягков том 2).
рис.9.2
рис.9.3
рис.9.4
Заключение
В ходе решения задач курсового проекта были подкреплены практическими расчетами теоретические знания по курсу метрологии: изучены основные виды посадок и область их использования; получены навыки составления и решения расчетных цепей различными методами. А также – разобраны и уяснены основные цели и задачи дисциплины – метрология.
Список используемой литературы:
1. Допуски и посадки. Справочник. В 2-х ч./В. Д. Мягков, М. А. Палей, А. Б. Романов, В. А. Брагинский. – 6-е изд. – Л.: Машиностроение, Ленингр. отд-ние, 1983.
2. Справочник конструктора-машиностроителя. В 3-х т./В. И. Анурьев – 7-е изд. – М.: Машиностроение, 1992.