Курсовая

Курсовая на тему Расчет двигателя типа 6ЧН 2634

Работа добавлена на сайт bukvasha.net: 2015-07-02

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024


Расчет двигателя типа 6ЧН 26/34

Описание двигателя

Дизели устанавливаются на судах - перегружателях речного флота и на земснарядах в качестве приводов грунтовых насосов, а также поставляются для замены изношенных в дизельгенераторах.

Главный судовой дизель 6ЧН 26/34 с понижающим редуктором и пневматической системой дистанционного автоматизированного управления предназначен для установки на буксирах - кантовщиках и транспортно-крановых судах ограниченного района плавания для работы на винт регулируемого шага.

Параметры

6ЧН 26/34

1

Мощность, кВт

320-500

2

Количество цилиндров

6

3

Диаметр цилиндра / ход поршня, мм

260 / 340

4

Рабочий объем цилиндров, л

100,08

5

Степень сжатия

12,5

6

Среднее эффективное давление, кг/см2

3,5-14,1

7

Максимальное давление сгорания, кг/см2

75-100

8

Частота вращения, об/мин

500-600

9

Средняя скорость поршня, м/с

5,67

10

Направление вращения, если смотреть на дизель со стороны маховика

правое

11

Удельный расход топлива, г/кВт ч

211

12

Удельный расход масла на угар, г/кВт ч

1,35

13

Срок службы масла, ч

1500-3000

14

Объем масла в системе смазки, л

340-500

15

Объем воды в системе охлаждения, л

250-350

16

Ресурсы, ч:

- непрерывной работы

-до переборки

-до капитального ремонта

1000-1200

10000-18000

60000-70000

17

Габариты,мм: -длина

- шрина

- высота

3930

1760

2650

18

Масса, сухая, кг

12000

Общее устройство систем

Дизели четырехтактные, нереверсивные, с вертикальным однорядным расположением цилиндров, с непосредственным впрыском топлива, с газотурбинным наддувом и охлаждением наддувочного воздуха.

Дизель 6ЧНП 26/34 с понижающим редуктором устанавливается на судовой фундамент и жестко крепится к нему. Дизель оборудован местным постом управления и дистанционным автоматизированным управлением режимами.

Остов дизелей состоит из блок-картера и фундаментной рамы, скрепленных анкерными связями, образующих жесткую конструкцию, на которой смонтированы все остальные детали и узлы.

На переднем торце дизеля размещены: турбокомпрессор, охладитель наддувочного воздуха, фильтр топлива, насосы воды, масла, топливоподкачивающий и маслопрокачивающий насосы.

Со стороны заднего торца размещены: щит приборов, главный пусковой клапан, распределитель воздуха, механизм безопасности, регулятор скорости, привод распредвала.

На верхней части дизеля размещены крышки рабочих цилиндров, к которым крепятся: впускной коллектор, выпускной коллектор и коллектор отвода воды из крышек цилиндров.

На стороне управления дизелем размещены: распределительный вал, топливные насосы и их приводы, привод впускных и выпускных клапанов, механизм регулирования подачи топлива, тяга с защелками механизма безопасности и фильтр тонкой очистки масла.

На противоположной управлению стороне дизеля расположены: коллектор подачи охлаждающей воды к втулкам рабочих цилиндров, предохранительные противовзрывные клапаны, охладители масла и воды с регуляторами температуры прямого действия.

Коленчатый вал стальной. Со стороны переднего торца на коленчатом вале располагаются шестерни привода насосов воды и масла, с заднего торца - шестерня привода распределительного вала.

Для гашения колебаний и обеспечения необходимой степени неравномерности вращения коленчатого вала дизель 6ЧНП 26/34 имеет силиконовый демпфер, который одновременно является маховиком, а также составляет часть упругой муфты отбора мощности.

Поршень цельный, чугунный, охлаждаемый маслом.

Шатун стальной, штампованный с прямым разъемом нижней головки.

Турбокомпрессоры с фильтром - глушителем на входе.

Регулятор скорости гидравлический, непрямого действия, со встроенным серводвигателем и стоп-устройством.

Топливная система состоит из шестеренчатого топливоподкачивающего насоса с редукционным клапаном, сдвоенного фильтра тонкой очистки, отдельных топливных насосов высокого давления для каждого цилиндра и форсунок.

Система смазки циркуляционная, под давлением, со свободным сливом масла в раму и откачиванием в отдельно расположенный маслобак. На дизеле установлен двухсекционный масляный насос. Первая секция насоса - нагнетает масло через фильтры из маслобака в дизель, вторая секция - откачивает масло из картера в маслобак. Предпусковая прокачка дизеля маслом производится пневмоагрегатом, смонтированным на подмоторной раме. Фильтрация масла производится фильтром полнопоточным тонкой очистки со сменными фильтрующими элементами и центробежным фильтром, расположенным на маслобаке.

Система охлаждения дизеля водяная двухконтурная, состоит из двух водяных насосов внутреннего и внешнего контуров, охладителя наддувочного воздуха, охладителя масла, охладителя воды, регулятора температуры масла, регулятора температуры воды и расширительного бачка. Дизель и турбокомпрессор охлаждаются циркулирующей пресной водой внутреннего контура, а наддувочный воздух, масло и вода охлаждаются в охладителях воздуха, воды и масла проточной водой внешнего контура (забортной водой).

Система пуска пневматическая (сжатым воздухом давлением 25-30 кГс/см2) состоит из пусковых баллонов, главного пускового клапана, воздухораспределителя золотникового типа и пусковых клапанов на крышках цилиндров.

Средства контроля над работой дизеля и состоянием параметров расположены на щите приборов дизеля:

Манометры масла, топлива, наддувочного воздуха.

Термометры воды, выходящей из дизеля; масла, поступающего в дизель.

Система для измерения температуры выпускных газов на выходе из каждого цилиндра, перед турбокомпрессором и за турбокомпрессором.

Тахометр частоты вращения коленчатого вала.

Топливо для работы применяется дизельное марки Л по ГОСТ 305-82, моторное ДТ ГОСТ 1667-68 и мазут Ф5 ГОСТ 10585-75.

Масло в дизеле должно применяться марок М-10Г2ЦС, М10ДЦЛ20, М14ДЦЛ20 ГОСТ 12337-84. Заменителями указанных масел могут быть масла зарубежных фирм с классом вязкости SAE-30.

Охлаждающая жидкость внутреннего контура - пресная вода с временной жесткостью 1,5-3,0 мГм. экв/л. с добавлением антикоррозионной присадки.

Выбор исходных данных

Среднее эффективное давление Pе=1,4 МПа

Диаметр цилиндра D=26 см

Ход поршня S=34 см

Частота вращения коленчатого вала двигателя n=500 об/мин

Атмосферное давление P0=0,1013 МПа

Температура окружающей среды T0=293K

Давление наддува PK=(0,15÷0,2)Pe=0,2*1,4=0,24МПа

Коэффициент избытка воздуха α=1,8÷2,2

Принимаем α=1,85

Коэффициент остаточных газов γг=0,01÷0,04

Принимаем γг=0,03

Коэффициент использования тепла в точке z: ξz=0,7÷0,85

Принимаем ξz=0,85

Коэффициент использования тепла в точке b: ξb=0,8÷0,92

Принимаем ξb=0,91

Коэффициент скругления индикаторной диаграммы ξ=0,96

Степень сжатия ε=12÷16 Принимаем ε=12,5

Степень повышения давления при сгорании λ=1,437

Механический к.п.д.: ηм=0,87÷0,94 Принимаем ηм=0,87

Температура отработавших газов Тг=800К

Массовый состав топлива: C=0,865 кг/кг O=0,004 кг/кг

H=0,126 кг/кг S=0,005 кг/кг

Низшая теплота сгорания:

Qнр=418, 7[81*C+300*H-26(O-S)-6(9*H+W)] кДж/кг

Qнр=418, 7[81*0,865+300*0,126-26*(0,004-0,005)-6*(9*0,126+0)]=42303 кДж/кг

Показатель политропы сжатия nК=1,75

Подогрев заряда от стенок цилиндра ΔTа=10К

Снижение температуры в воздухоохладителе ΔTохл=90К

Потеря давления в воздухоохладителе ΔPохл=0,003 МПа

Расчёт процесса наполнения

Температура воздуха за компрессором

Температура воздуха перед двигателем

Ts=TK-ΔTохл=424,04-90=334,04K

Температура заряда к концу процесса наполнения

Давление воздуха перед двигателем

Ps=PK-ΔPохл=1,4-0,003=0,237 МПа

Давление заряда к концу процесса наполнения

Pa=ka*Ps, ka=0,97

ka-коэффициент изменения давления при наполнении, зависящий от конструкции впускных органов и оборотности двигателя.

Pa=0,97*Ps=0,97*0,237=0,225 МПа

Коэффициент наполнения

Расчёт процесса сжатия

Средняя мольная теплоёмкость воздуха

Cx=av+bT=19,26+0,0025T

Средняя мольная теплоёмкость чистых продуктов сгорания

Cx’’=av’’+b’’T=20,47+0,0036T

Средний показатель политропы сжатия

Принимаем n1=1,372 в первом приближении

Принимаем n1=1,372

Давление в конце сжатия

Pc=Pa*εn1=0,225*12,51,372=7,0916 МПа

Температура в конце сжатия

Tc=Ta* εn1-1=357,3*12,51,372-1=900,37К

Расчёт процесса сгорания

Количество воздуха для сгорания

Действительное количество воздуха для сгорания

L=αL0=1,85*0,4934=0,91509 кмоль/кг

Химический коэффициент молекулярного изменения

- изменение количества молей газов при сгорании 1 кг топлива

Действительный коэффициент молекулярного изменения

Доля топлива, сгоревшая в точке z

xz= ξz / ξb=0,85/0,91=0,9341

Коэффициент молекулярного изменения в точке z

Постоянная топлива

Средняя мольная изохорная теплоёмкость смеси в точке z

25,82

Принимаем TZ=1944 K

Максимальное давление сгорания

PZ=λ*PC=1,437*7,0916=10,1919 МПа

Расчёт процесса расширения

Степень последующего расширения

Степень предварительного расширения

Принимаем Tb=1137K

Средняя мольная изохорная теплоёмкость смеси продуктов сгорания и избыточного воздуха в конце расширения точки b

Средний показатель политропы расширения

Принимаем n2=1,2562; Tb=1137К

Давление в конце процесса расширения

Определение индикаторных показателей

Теоретическое среднее индикаторное давление

Действительное среднее индикаторное давление

Pi=Pi*ξ=1,6909*0,96=1,6232 МПа

Индикаторный удельный расход топлива

Индикаторный к.п.д.

Определение эффективных показателей

Среднее эффективное давление

Pe=Pi*ηм=1,6232*0,87=1,4122 МПа

Эффективный удельный расход топлива

ge=gi/ηм=0,1938/0,87=0,2228 кг/(кВт*ч)

Эффективный к.п.д.:

ηе= ηi *ηм=0,4353*0,87=0,3787

Ni=13,1*D2*S*z*Pe*n*i=13,1*0,262*0,34*4*1,4*500*6=732,2 кВт

Ne=Ni*ηм=732,2*0,88=637,8 кВт

Расчет и построение теоретической индикаторной диаграммы

Длина индикаторной диаграммы LV=228 мм

mV=LV/ε=228/12,5=18,24

Высота диаграммы LP=112 мм

mP= PZ/Lp =10,1919/112=0,091

Полный объём цилиндра Va=VS+VC=17+1,48=18,48 дм3

Рабочий объём цилиндра VS=17 дм3

Объём камеры сгорания

дм3

Процесс сжатия

Процесс расширения

Ординаты политропы сжатия и расширения. Таблица.

Pсж

Pрш

1

7,0916

10,1919

1,25

5,228473

10,1919

1,549

3,900794

10,1919

1,75

3,302011

8,743662

2

2,751486

7,393394

2,5

2,028607

5,586059

3

1,581409

4,442608

4

1,067556

3,095209

6

0,613575

1,859877

8

0,414203

1,295794

10

0,305383

0,979034

12

0,238062

0,778628

12,5

0,225151

0,739706

Для процесса сжатия

V/VC

lg(V/VC)

n1(lg(V/VC))

(V/VC)n1

P, МПа

1,0000

0,0000

0,0000

1,0000

7,0916

1,2500

0,0969

0,1324

1,3563

5,2285

1,5000

0,1761

0,2405

1,7399

4,0759

1,7500

0,2430

0,3319

2,1477

3,3020

2,0000

0,3010

0,4111

2,5774

2,7515

3,0000

0,4771

0,6517

4,4844

1,5814

4,0000

0,6021

0,8224

6,6428

1,0676

6,0000

0,7782

1,0629

11,5578

0,6136

8,0000

0,9031

1,2335

17,1211

0,4142

10,0000

1,0000

1,3659

23,2220

0,3054

12,0000

1,0792

1,4741

29,7888

0,2381

Для процесса расширения

V/VC

lg(V/VC)

n2(lg(V/VC))

(V/VC)n2

P, МПа

1,5490

0,1673

0,2102

1,5124

11,6773

1,7500

0,2430

0,3053

2,0198

8,7437

2,0000

0,3010

0,3781

2,3887

7,3934

2,5000

0,3979

0,4998

3,1615

5,5861

3,0000

0,4771

0,5993

3,9752

4,4426

4,0000

0,6021

0,7564

5,7057

3,0952

6,0000

0,7782

0,9776

9,4954

1,8599

8,0000

0,9031

1,1345

13,6289

1,2958

10,0000

1,0000

1,2562

18,0385

0,9790

12,0000

1,0792

1,3557

22,6813

0,7786

Динамический расчет

Динамика двигателя характеризуется теми силами, которые действуют в кривошипно-шатунном механизме. Этими силами являются силы давления газов и инерционные силы, возникающие при движении деталей. Инерционные силы, кроме величин ускорений движущихся деталей, зависят также от их массы.

Схема сил, действующих на кривошипно-шатунный механизм двигателя

При работе двигателя суммарная сила, приложенная к центру поршневого пальца, представляет собой алгебраическую сумму силы P давления газов и сил инерции X поступательно движущихся частей:

F = P ± X,

Сила, приложенная к поршневому пальцу при работе кривошипно-шатунного механизма, может быть разложена на силу, действующую вдоль шатуна Рш, и силу, нормальную к оси цилиндра N. Сила Рш, действующая по шатуну и перенесенная к центру кривошипа, может быть разложена на силу тангенциальную Т и радиальную Z. Тангенциальная сила Т, действуя на радиусе r кривошипа, обеспечивает вращение коленчатого вала двигателя и развитие на нем крутящего момента Mкр. При вращении коленчатого вала от неуравновешенных вращающихся частей кривошипа возникает центробежная сила S, приложенная к центру шатунной шейки. Радиальная сила Z и центробежная сила S воспринимаются подшипниками коленчатого вала и создают соответствующую нагрузку на подшипники вала. Сила N, нормальная к стенке цилиндра, действуя на плече А от центра поршневого пальца до центра коленчатого вала, создает обратный крутящий момент Мобр, численно равный крутящему моменту Мкр двигателя. Обратный крутящий момент воспринимается от корпуса двигателя рамой автомобиля через детали подвески двигателя. Значения всех указанных сил периодически изменяются по своей величине и направлению за один полный оборот коленчатого вала. Нагрузка на подшипники определяется значениями максимальных и средних удельных давлений на шатунные и коренные шейки вала.

Постоянная кривошипа

r=s/2=34/2=17 см

Lш=260 мм

λ=r/Lш=170/660=0,2576

Избыточное давление

Pиз=PГ-P0

β=arcsin(λ*sinφ)

Движущая сила

PдвГ0j+PТ

Сила инерции

Pj=-mSrw2(cosφ+ λ*cos2φ)

mS – возвратно-поступательная масса

mS=250÷700 Принимаем mS=600

Угловая скорость

w=(π*n)/30=(3,14*500)/30=52,4 с-1

Сила тяжести

PТ=mSg=600*9,81=5886 Па

Нормальная сила

N=Pдвtgβ

Сила, действующая по оси шатуна

Q= Pдв/cosβ

Радиальная сила

Касательная сила

Расчёты приведены в таблице

Средняя суммарная касательная сила

TΣφср=ΣTΣφ*(Δφ/α)

α=720/i=720/6=120

ΣTΣφ=13,726

TΣφср=13,726*(15/120)=1,716 МПа

Вращающий момент

Mвр= ΣTΣφ*r*Fn=13,726*0,17*0,0531=0,124 МН*м

r=170мм - радиус кривошипа

Fn – площадь поршня; Fn=πD2/4=3,14*0,262/4=0,0531 м2

Mвр.ср..= TΣφср*r*Fn=1,716*0,17*0,053=0,0155 МН*м

Среднее индикаторное давление

Pi= (TΣφср*π)/(i*z)=1,716*3,14/(6*0,5)=1,797 МПа

φ, град

φ,

β,

PГ,

Pj,

Pдв,

N,

Q,

Z,

T,


рад

рад

МПа

МПа

МПа

МПа

МПа

МПа

МПа

0

0,0000

0,0000

0,237

-0,8559

-0,6189

0

-0,6189

-0,6189

0

10

0,1744

-0,1406

0,237

-0,8352

-0,5982

-0,026

-0,6042

-0,5846

-0,1295

20

0,3489

0,2374

0,237

-0,7745

-0,5375

-0,0461

-0,5530

-0,4893

-0,2272

30

0,5233

-0,2573

0,237

-0,6786

-0,4416

-0,0556

-0,4566

-0,3546

-0,269

40

0,6978

0,1931

0,237

-0,5542

-0,3172

-0,0517

-0,3232

-0,2098

-0,2435

50

0,8722

-0,0676

0,237

-0,4104

-0,1734

-0,0338

-0,1738

-0,0855

-0,1546

60

1,0467

-0,0786

0,237

-0,2568

-0,0198

-0,0044

-0,0199

-0,0061

-0,0193

70

1,2211

0,2007

0,237

-0,1031

0,1339

0,0324

0,1366

0,0154

0,1369

80

1,3956

-0,2589

0,237

0,042

0,279

0,0709

0,2886

-0,0213

0,287

90

1,5700

0,2324

0,237

0,1712

0,4082

0,1054

0,4195

-0,1054

0,4082

100

1,7444

-0,1308

0,237

0,2798

0,5168

0,1313

0,5213

-0,219

0,4861

110

1,9189

-0,0114

0,237

0,3653

0,6023

0,1456

0,6023

-0,3428

0,5162

120

2,0933

0,1501

0,237

0,4279

0,6649

0,1475

0,6725

-0,4602

0,5021

130

2,2678

-0,2419

0,237

0,4698

0,7068

0,1379

0,7280

-0,56

0,4528

140

2,4422

0,2553

0,237

0,4948

0,7318

0,1191

0,7563

-0,6372

0,3791

150

2,6167

-0,1852

0,237

0,5074

0,7444

0,0938

0,7574

-0,6915

0,291

160

2,7911

0,0566

0,237

0,5123

0,7493

0,0643

0,7505

-0,7261

0,1958

170

2,9656

0,0894

0,237

0,5135

0,7505

0,0326

0,7535

-0,7447

0,0982

180

3,1400

-0,2079

0,237

0,5135

0,7505

0

0,7670

-0,7505

0

190

3,3144

0,2600

0,2268

0,5135

0,7402

-0,0322

0,7659

-0,7346

-0,0969

200

3,4889

-0,2269

0,2318

0,5123

0,7441

-0,0639

0,7637

-0,721

-0,1945

210

3,6633

0,1208

0,2405

0,5074

0,7479

-0,0942

0,7534

-0,6948

-0,2923

220

3,8378

0,0228

0,2537

0,4948

0,7485

-0,1219

0,7487

-0,6517

-0,3878

230

4,0122

-0,1594

0,2724

0,4698

0,7423

-0,1448

0,7518

-0,5881

-0,4755

240

4,1867

0,2460

0,2984

0,4279

0,7263

-0,1611

0,7488

-0,5027

-0,5485

250

4,3611

-0,2527

0,3342

0,3653

0,6996

-0,1691

0,7225

-0,3981

-0,5995

260

4,5356

0,1769

0,384

0,2798

0,6637

-0,1686

0,6742

-0,2813

-0,6244

270

4,7100

-0,0454

0,454

0,1712

0,6252

-0,1614

0,6258

-0,1614

-0,6252

280

4,8844

-0,1001

0,5547

0,042

0,5967

-0,1516

0,5997

-0,0457

-0,614

290

5,0589

0,2146

0,7037

-0,1031

0,6007

-0,1452

0,6148

0,069

-0,6141

300

5,2333

-0,2605

0,9313

-0,2568

0,6745

-0,1496

0,6980

0,2077

-0,659

310

5,4078

0,2210

1,2914

-0,4104

0,881

-0,1719

0,9030

0,4346

-0,7854

320

5,5822

-0,1105

1,879

-0,5542

1,3248

-0,2157

1,3329

0,8762

-1,0168

330

5,7567

-0,0341

2,8468

-0,6786

2,1682

-0,2732

2,1695

1,7411

-1,3207

340

5,9311

0,1683

4,3466

-0,7745

3,572

-0,3066

3,6232

3,2518

-1,5098

350

6,1056

-0,2496

6,1567

-0,8352

5,3215

-0,2312

5,4917

5,2005

-1,1518

360

6,2800

0,2496

10,1919

-0,8559

9,336

0

9,6346

9,336

-0,0001

370

6,4544

-0,1683

10,1919

-0,8352

9,3567

0,4066

9,4908

9,144

2,0251

380

6,6289

0,0341

10,1919

-0,7745

9,4174

0,8082

9,4229

8,573

3,9803

390

6,8033

0,1105

7,6288

-0,6786

6,9502

0,8756

6,9929

5,5812

4,2334

400

6,9778

-0,2210

5,2063

-0,5542

4,652

0,7574

4,7680

3,0768

3,5705

410

7,1522

0,2605

3,6874

-0,4104

3,277

0,6394

3,3914

1,6166

2,9213

420

7,3267

-0,2146

2,73

-0,2568

2,4732

0,5485

2,5313

0,7616

2,4161

430

7,5011

0,1001

2,1098

-0,1031

2,0068

0,485

2,0169

0,2306

2,0516

440

7,6756

0,0454

1,6953

0,042

1,7372

0,4413

1,7390

-0,1329

1,7874

450

7,8500

-0,1769

1,4099

0,1712

1,5811

0,4082

1,6062

-0,4082

1,5811

460

8,0244

0,2527

1,2086

0,2797

1,4883

0,3781

1,5371

-0,6308

1,4001

470

8,1989

-0,2460

1,0638

0,3653

1,4291

0,3454

1,4735

-0,8134

1,2248

480

8,3733

0,1594

0,9585

0,4279

1,3864

0,3075

1,4042

-0,9595

1,0469

490

8,5478

-0,0228

0,8815

0,4698

1,3513

0,2637

1,3517

-1,0706

0,8657

500

8,7222

-0,1208

0,8256

0,4948

1,3204

0,215

1,3301

-1,1496

0,684

510

8,8967

0,2269

0,786

0,5074

1,2934

0,163

1,3274

-1,2016

0,5056

520

9,0711

-0,2599

0,7597

0,5123

1,272

0,1092

1,3162

-1,2326

0,3325

530

9,2456

0,2079

0,7446

0,5135

1,2581

0,0547

1,2858

-1,2485

0,1646

540

9,4200

-0,0894

0,4468

0,5135

0,9603

0

0,9642

-0,9603

0

550

9,5944

-0,0566

0,2234

0,5135

0,7368

-0,032

0,7380

-0,7312

-0,0964

560

9,7689

0,1852

0,2234

0,5123

0,7357

-0,0631

0,7485

-0,7129

-0,1923

570

9,9433

-0,2553

0,2234

0,5074

0,7308

-0,0921

0,7553

-0,6789

-0,2856

580

10,1178

0,2419

0,2234

0,4948

0,7182

-0,1169

0,7397

-0,6253

-0,3721

590

10,2922

-0,1501

0,2234

0,4698

0,6932

-0,1353

0,7011

-0,5492

-0,4441

600

10,4667

0,0114

0,2234

0,4279

0,6513

-0,1444

0,6513

-0,4508

-0,4918

610

10,6411

0,1308

0,2234

0,3653

0,5887

-0,1423

0,5938

-0,3351

-0,5045

620

10,8156

-0,2324

0,2234

0,2798

0,5031

-0,1278

0,5170

-0,2132

-0,4733

630

10,9900

0,2589

0,2234

0,1712

0,3946

-0,1019

0,4082

-0,1019

-0,3946

640

11,1644

-0,2007

0,2234

0,042

0,2654

-0,0674

0,2708

-0,0203

-0,273

650

11,3389

0,0786

0,2234

-0,103

0,1203

-0,0291

0,1207

0,0138

-0,123

660

11,5133

0,0677

0,2234

-0,2568

-0,0334

0,0074

-0,0335

-0,0103

0,0326

670

11,6878

-0,1932

0,2234

-0,4104

-0,187

0,0365

-0,1905

-0,0922

0,1667

680

11,8622

0,2574

0,2234

-0,5542

-0,3308

0,0539

-0,3421

-0,2188

0,2539

690

12,0367

-0,2374

0,2234

-0,6786

-0,4552

0,0573

-0,4683

-0,3655

0,2772

700

12,2111

0,1406

0,2234

-0,7745

-0,5511

0,0473

-0,5566

-0,5017

0,233

710

12,3856

0,0000

0,2234

-0,8352

-0,6118

0,0266

-0,6118

-0,5979

0,1324

720

12,5600

-0,1406

0,2234

-0,8559

-0,6325

0

-0,6388

-0,6325

0

α, град

1

2

3

4

5

6

7

0

0,0000

0,5021

-0,5485

-0,0001

1,0469

-0,4918

0,5087

10

-0,1295

0,4528

-0,5995

2,0251

0,8657

-0,5045

2,1101

20

-0,2272

0,3791

-0,6244

3,9803

0,6840

-0,4733

3,7186

30

-0,2690

0,2910

-0,6252

4,2334

0,5056

-0,3946

3,7412

40

-0,2435

0,1958

-0,6140

3,5705

0,3325

-0,2730

2,9683

50

-0,1546

0,0982

-0,6141

2,9213

0,1646

-0,1230

2,2925

60

-0,0193

0,0000

-0,6590

2,4161

0,0000

0,0326

1,7704

70

0,1369

-0,0969

-0,7854

2,0516

-0,0964

0,1667

1,3766

80

0,2870

-0,1945

-1,0168

1,7874

-0,1923

0,2539

0,9248

90

0,4082

-0,2923

-1,3207

1,5811

-0,2856

0,2772

0,3678

100

0,4861

-0,3878

-1,5098

1,4001

-0,3721

0,2330

-0,1505

110

0,5162

-0,4755

-1,1518

1,2248

-0,4441

0,1324

-0,1980

120

0,5021

-0,5485

-0,0001

1,0469

-0,4918

0,0000

0,5087

Расчёт на прочность шатуна

Шатун является звеном кривошипно-шатунного механизма, которое передает усилие поршня к коленчатому валу. Преобразует поступательное движение поршня во вращательное движение коленчатого вала.

Нижняя головка шатуна обеспечивает шарнирное соединение шатуна с кривошипной шейкой коленчатого вала и образует корпус шатунного подшипника.

Определение основных размеров шатуна.

Диаметр поршневого пальца.

dпп = (0.3-0.38)*Dц = 0,35*0,26 = 0,091 м;

Внутренний диаметр верхней головки.

dв = (1,2-1,25)* dпп = 1,2*0,091 = 0,1092 м;

Наружный диаметр верхней головки.

dн = (1,3-1,7)* dпп = 1,7*0,091 = 0,1547 м;

Длина верхней головки шатуна.

lв = (0.33-0.4)*Dц = 0,4*0,26 = 0,104 м;

Диаметр шатунной шейки коленчатого вала.

dш = (0,56-0,75)*Dц = 0,7*0,26 = 0,182 м;

Толщина стенки вкладыша.

t = (0.03-0.05)* dш = 0,04*0,182 = 0,007 м;

Расстояние между шатунными болтами.

lб = (1,3-1,75)* dш = 1,5*0,182 = 0,273 м;

Длина нижней головки шатуна.

lн = (0,45-0,9)* dш = 0,8*0,182 = 0,1456 м;

Размеры двутаврового сечения:

h = (1,2-1,4)* h = 1,4*0.0546 = 0,0764 м;

где: hm = 0.5* dв = 0.5*0.1092 = 0,0546;

b = (0.55-0.75)*h = 0,75*0,0764 = 0,0573 м;

а = 0,03 м, с = 0,015 м;

Длина шатуна.

l = r/l = 0,170/0,2576 = 0,659 м;

где: r – радиус кривошипа;

l - кривошипно-шатунное отношение.

Условия работы шатуна

При работе шатун подвергается действию силы давления газов, действию усилия заедания поршня, действию сил инерции (шатун участвует в поступательном и во вращательном движении), действию силы трения.

Сила газов, силы инерции и заедание поршня будут вызывать деформации растяжения-сжатия, изгиба. Сила трения будет вызывать износ вкладышей нижней головки шатуна и втулки поршневой головки. Знакопеременные нагрузки будут вызывать усталостные разрушения.

Напряжения сжатия в стержне шатуна:

кг/см2

где – минимальное сечение головки шатуна.

Сила , кроме сжатия, вызывает продольный изгиб.

Наименьший диаметр шатуна, в функции диаметра цилиндра, составит d=0.25D; наибольшая длина шатуна l определиться из условий наименьшего значения и наибольшего отношения S/D. Примем

=l/5,5 ; S/D=1.3

Расчёт с достаточной степенью точности может быть проведен по формуле, определяющей ломающие критические напряжения кг/см2 :

=(4700-23*l/i) кг/см2 ( для легированной стали).

По напряжениям подсчитывается критическая сила

=f кг,

где f - площадь среднего сечения шатуна в см2.

Отношение /= ε

=12,5*10,1919=127,4.

В плоскости качания шатун можно рассматривать как балку с шарнирными опорами, при этом деформация изгиба распространяется по всей его длине. В плоскости, перпендикулярной качанию шатуна, его следует рассматривать как балку с заделанными концами, в данном случае деформация изгиба распространяется на половину длины шатуна.

Таким образом:

кгс/см2 МПа;

кгс/см2 МПа,

Где f – площадь среднего сечения шатуна:

см2.

и – моменты инерции сечения относительно осей x и y:

см4;

см4.

Шатуны подвергаются ещё и значительному воздействию сил инерции массы шатуна, действующих в плоскости его движения. В этом случае шатуны, кроме того, необходимо проверять на изгиб указанными силами инерции. Наибольшее значение рассматриваемые силы имеют при угле между шатуном и мотылём, равном 908.

Наибольший изгибающий момент равен:

кгс.см Н.м,

где P – равнодействующая сил инерции:

кгс кН,

где q – сила инерции элемента стержня шатуна длиной 1 см:

кгс/см кН/м,

где кгс/см3 – удельный вес материала шатуна.

Суммарные напряжения в стержне шатуна будут равны:

кгс/см2 МПа МПа,

где W – момент сопротивления сечения шатуна, удаленного на расстояние от центра верхней головки.

Верхнюю головку шатуна проверяют на разрыв силой, возникающей при заедании поршня. Её условно принимают равной:

кгс кН.

Напряжения в верхней головке шатуна:

кгс/см2 МПа МПа,

где см.

Для нормальной работы головного подшипника верхняя головка шатуна должна иметь соответствующую жёсткость. В соответствии с этим необходимо принятые размеры проверять на жёсткость. Относительная деформация верхней головки шатуна может быть определена по формуле:

мм/см мм/см,

где E – модуль упругости материала головки шатуна;

I – момент инерции сечения головки:

см4.

В двигателе 6ЧН26/34 шатунные болты изготовлены из стали 37ХНА3А.

Шатунные болты нижней головки шатуна проверяют на растяжение силой .

В то же время при монтаже нижней головки шатуна болты должны быть затянуты настолько, чтобы при действии силы Pв не была нарушена плотность соединения половинок головки. Усилие предварительного затяга Рз принимают равным:

,

Тогда напряжения растяжения болтов составят

где i=4 - число болтов; f=2,08см2 - наименьшее сечение болта

кг/см2.

Независимо от напряжений, вызываемых силой Рз, шатунным болтам необходимо обеспечить прочность при возможном заедании рабочего поршня. Сила Р условно принимается равной:

где D – диаметр цилиндра; р=15-20кг/см2 – условное усилие на 1см2 площади поршня.

Если Р будет больше Рз то в качестве расчетной силы следует принять силу Р.

.

Литература

1. Танатар Д.Б. «Компоновка и расчет быстроходных двигателей с воспламенением топлива от сжатия» М.: «Морской транспорт».- 1952 г

2. Фомин Ю.Я. «Судовые двигатели внутреннего сгорания» - Л.: «Судостроение». – 1989 г

3. Ваншейдт В. А. «Конструирование и расчеты прочности судовых дизелей». – Л.: «Судостроение» - 1969 г .

4. Р.А. Зейнетдинов, И.Ф. Дьяков, С.В. Ярыгин «Проектирование автотракторных двигателей» Ульяновск 2004 г


1. Реферат Основы аудита 6
2. Реферат на тему Doctor Faustus Death Essay Research Paper Faustus
3. Реферат на тему William Shakespeare Essay Research Paper William ShakespeareA
4. Курсовая Управление украинским городом на основе Магдебургского права
5. Сочинение на тему Литературный герой ЕВРИПИД
6. Курсовая на тему Статус депутата Государственной Думы члена Совета Федерации Федерального Собрания Российской Федерации
7. Реферат Анализ стихотворения С. Есенина На Кавказе и стихотворения И.С. Тургенева Мы еще
8. Реферат на тему Система функционального компьютерного мониторинга при тяжелой механической травме
9. Реферат на тему Fertility Drugs Essay Research Paper Fertility DrugsIn
10. Реферат на тему Египет при XIX династии