Курсовая

Курсовая на тему Расчеты двухступенчатого цилиндрического косозубого редуктора

Работа добавлена на сайт bukvasha.net: 2015-07-02

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.9.2024


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

СУМСКОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КАФЕДРА ОСНОВ ПРОЕКТИРОВАНИЯ МАШИН

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

на тему:

«Расчеты двухступенчатого,

цилиндрического, косозубого редуктора»

080402 КП-09.000.00

Выполнил Студент ИТ-22

Остапенко

Вариант 9

Проверил Концевич

Сумы 2005

Содержание

1 Выбор электродвигателя и кинематический расчет

2 Расчет передач

3 Предварительный расчет валов редуктора

3.1 Ориентировочный расчет валов

3.2 Компоновка редуктора, конструирования зубчатых колес и корпуса

редуктора

3.3 Приближенный расчет валов

3.4 Выбор подшипников

3.5 Выбор посадок

3.6 Расчет соединений

4 Выбор смазки

5 Выбор и проверочный расчет муфт

6 Список литературы

1 Выбор электродвигателя и кинематический расчет

Задание :

Спроектировать привод цепного конвейера.

Исходные данные :

Окружная сила на звёздочке :

Скорость движения цепи :

Диаметр звёздочки :


Рисунок 1. Схема привода цепного конвейера

Определяем общий КПД привода :

КПД муфты :

КПД цилиндрической передачи :

КПД пары подшипников качения :

КПД цепной передачи :

Мощность на валу звёздочки :

Требуемая мощность электродвигателя :

По требуемой мощности с учётом возможностей привода, состоящего из одноступенчатого редуктора с цилиндрической прямозубой передачей, выбираем электродвигатель 3-х фазный, короткозамкнутый, серии 4А, закрытый обдуваемый, с синхронной частотой вращения с параметрами и скольжением .

Номинальная частота вращения и угловая скорость :

Угловая скорость барабана :

бщее передаточное отношение :

Частные передаточные числа :

  • для тихоходной ступени :

  • для быстроходной ступени :

Вал 1 :

Вал 2 :

Вал 3 :

Вал 4 :

Таблица результатов :

dвых

1

973

101.84

9.62

94.46

1


0.97



2

973

101.84

9.33

91.65


5



0.9653



3

194.6

20.37

9.01

442.31



3.395




0.92


4

57

5.97

8.25

1374.4








Проверка :

- Условие выполняется

2 Расчет передач

2.1 Расчет цилиндрических зубчатых передач

2.1. 1 Определение допускаемых напряжений

По условию задания материал шестерни – Сталь 35ХМ, с термообработкой – закалкой. С HRC и МПа [1, с.8, табл. 2.1 и 2, с.35, табл.3.3].

Допускаемое контактное напряжение:

,

.

Допускаемое напряжение изгиба:

,

,

[1, с.9, табл. 2.2].

Материал колеса – Сталь 40Х с термообработкой – улучшение, 235-262 НВ и пределом текучести МПа.

Допускаемое контактное напряжение [1, с.8, табл. 2.1, 2.2]:

,

.

Допускаемое напряжение изгиба:

,

.

2.1.2 Определения размеров венцов зубчатых колес

Расчетное допускаемое напряжение:

,

.

В качестве расчетного контактного напряжения принимаем . Требуемое условие выполнено.

Межосевое расстояние быстроходной ступени:

, (2.1)

где для косозубых колес , а передаточное число быстроходной ступени , =0,4 [1, с.11].

Срок службы в редуктора в часах:

часа,

где =0,25, =0,4.

Число циклов нагружения редуктора:

,

где =192 об\мин.

Базовое число циклов нагружений -[смотрим график нагружений]:

,

где - средняя твердость колеса.

Коэффициент концентрации загрузки:

, где [1, с.11]

- эквивалентный момент на колесе, где - коэффициент долговечности, - крутящий момент на зубчатом колесе быстроходной ступени.

Коэффициент эквивалентной нагрузки:

Принимаем: .

Тогда .

.

Принимаем: .[1, с.12]

Делительный диаметр колеса:

.

Ширина колеса:

.

Модуль зацепления:

, (2.2)

где = 5,8 [1, с.12], допускаемое напряжение изгиба - ,

- эквивалентный момент на колесе.

Коэффициент долговечности:

, (2.3)

где - базовое число циклов нагружения.

Коэффициент эквивалентности: m=6 при термической обработке улучшения.

.

.

Принимаем , .

.

Принимаем m1=2мм.

Минимальный угол наклона зубьев:

.

Суммарное число зубьев:

зуба.

Определяем действительный угол наклона зубьев:

.

Число зубьев шестерни:

зубьев.

Число зубьев колеса:

зуба.

Уточняем передаточное число:

,

,

что допустимо [1, с.13].

Делительный диаметр шестерни:

.

.

Диаметры окружностей вершин:

,

.

Диаметры окружностей впадин:

,

.

Межосевое расстояние тихоходной ступени:

, (2.4)

где для косозубых колес , а передаточное число тихоходной ступени , =0,4 [1, с.11].

.

Коэффициент концентрации загрузки:

, где x=0,75 – коэффициент режима нагрузки

[1, с.11]

.

В качестве расчетного контактного напряжения принимаем .

.

.

Принимаем: [1, с.12].

Делительный диаметр колеса:

.

Ширина колеса:

.

Модуль зацепления:

, (2.5)

где = 5,8 [1, с.12], допускаемое напряжение изгиба - ,

- крутящий момент на колесе.

.

Принимаем m2=3мм.

Минимальный угол наклона зубьев:

.

Суммарное число зубьев:

зуба.

Определяем действительный угол наклона зубьев:

.

Число зубьев шестерни:

зубьев.

Число зубьев колеса:

зуба.

Уточняем передаточное число:

,

,

что допустимо [1, с.13].

Делительный диаметр шестерни:

.

.

Диаметры окружностей вершин:

,

.

Диаметры окружностей впадин:

,

.

2.1.3 Проверочные расчеты зубчатых передач

По напряжению изгиба в зубьях колеса:

, (2.6)

Предварительно определим окружную скорость колеса быстроходней ступени:

.

При такой скорости степень точности зацепления 9 [1, с.14, табл.2.5].

Тихоходной ступени:

.

Степень точности зацепления – 9 [1, с.14, табл.2.5].

Окружная сила в зацеплении тихоходной ступени:

.

Быстроходной ступени:

.

Проверка на изгиб быстроходной ступени:

(1, с.14)

, z2=103, z1=20, коэффициент формы зуба: [1, с.16, табл.2.8].

При переменной нагрузке:

,

где x=0,75 – коэффициент режима [см. выше], - начальный коэффициент, концентрации нагрузки [1, с.15, табл.2.6]

.

Эквивалентная окружная сила:

,

где (см. выше), тогда .

,

.

Расчетное напряжение изгиба в зубьях шестерни:

.

Тихоходная ступень:

[1, с.14].

, z4=94, z3=24, коэффициент формы зуба: [1, с.16, табл.2.8].

При переменной нагрузке:

,

где x=0,75 – коэффициент режима [см. выше], - начальный коэффициент, концентрации нагрузки [1, с.15, табл.2.6].

.

Эквивалентная окружная сила:

,

где [см. выше], тогда .

, (2.7)

.

Расчетное напряжение изгиба в зубьях шестерни:

.

Проверка зубьев колес по контактным напряжениям.

Для быстроходной ступени:

, (2.8)

[1, с.16 табл.2.9], - ширина колеса, - передаточное число быстроходной ступени, - межосевое расстояние быстроходной ступени, , - для косозубых передач, [1, с.10]

,

.

Тихоходная ступень:

, (2.9)

[1, с.16 табл.2.9], - ширина колеса, - передаточное число тихоходной ступени, - межосевое расстояние тихоходной ступени, , - для косозубых передач, [1, с.10].

,

.

2.1.4 Определения сил действующих в зацеплении

Окружная сила на колесе быстроходной ступени:

.

Тихоходной ступени:

.

Радиальная сила быстроходной ступени:

,

где , , .

Для тихоходной ступени:

,

где , , .

Осеева сила:

Для быстроходной ступени:

Для тихоходной ступени:

.

3 Предварительный расчет валов редуктора

3.1 Ориентировочный расчет валов

Предварительный расчет валов проведем на кручение по пониженным допускаемым напряжениям.

Ведущий вал быстроходной ступени:

,

где - допускаемое напряжение при кручении, - крутящий момент на шестерни быстроходной ступени.

С учетом соединения вала шестерни быстроходной ступени с валом электродвигателя муфты МУВП (муфта упруга втулочно-пальцева), принимаем диаметр:мм.

Диаметр вала под уплотнением и подшипником: .

Шестерню выполняем заодно с валом: .

Ведомый вал быстроходной ступени (и ведущий тихоходной ступени):

,

где - допускаемое напряжение при кручении, - крутящий момент на ведомом валу быстроходной ступени.

Принимаем диаметр вала под подшипники: , диаметр под ведомым колесом быстроходной ступени: .

Диаметр выходного конца ведомой тихоходной ступени:

,

где - допускаемое напряжение при кручении, -крутящий момент на ведомом валу тихоходной ступени.

Принимаем: , ,.

3.2 Компоновка редуктора, конструирования зубчатых колес и

корпуса редуктора

3.2.1 Конструктивные размеры зубчатой передачи

Шестерни выполняются заодно с валами. Быстроходный вал:

, , .

Колесо быстроходной ступени кованое:

, , , .

Диаметр вала под колесом: .

Диаметр ступицы: .

Длина ступицы: .

Толщина обода: .

Толщина диска: .

Тихоходная ступень:

Размер шестерни: , , .

Колесо быстроходней ступени кованое:

, , .

Диаметр вала под колесом: .

Диаметр ступицы: .

Длина ступицы: .

Толщина обода: .

Толщина диска:.

3.2.2 Конструктивные размеры корпуса редуктора

Толщина стенок корпуса и крышки: .

Принимаем: .

.

Толщина фланцев поясов корпуса и крышки:

, .

Нижний пояс корпуса:

.

Принимаем .

Диаметр болтов:

Фундаментальных: .

Принимаем М20.

Крепящих крышку к корпусу у подшипников: . Принимаем болты с резьбой М16.

Соединяющих крышку с корпусом: . Принимаем болт с резьбой М12.

Компоновка необходима для приближенного определения положения зубчатых колес относительно опор, определения опорных реакций и подбора подшипников.

При очерчивании внутренней стенки корпуса:

  1. принимаем зазор между корпусами ступицами колеса . Принимаем А1=10мм.

  2. Принимаем зазор от окружности вершин зубьев колеса до внутренней стенки корпуса А=δ=8мм.

Предварительно намечаем радиальные шарикоподшипники. Результаты подбора занесем в таблицу:

Таблица 2 - Предварительный подбор подшипников

вала

Условное обозначение подшипников

Размеры, мм

Грузоподъемность, кН



d

D

B

C

C0

1

36208

40

80

18

38

23,2

2

36208

40

80

18

38

23,2

3

46215

75

130

25

61,5

54,8

Подшипники ведомого вала быстроходной ступени будем смазывать пластичной смазкой.

Измерением находим расстояния между наружными торцами подшипников:

, , .

Для радиально упорных подшипников расстояние от торцов до точки приложения реакции опор: ,

.

Ведущий вал быстроходной ступени: (см. рисунок 1)

, .

Ведомый вал быстроходной ступени:

, .

Ведомый вал тихоходной ступени: (см. рисунок 2)

, .

3.3 Приближенный расчет валов

3.3.1 Расчет ведущего вала быстроходной ступени

Из предыдущих расчетов:

- окружная сила быстроходной ступени;

- осевая сила в зацеплении быстроходной ступени;

- радиальная сила быстроходной ступени.

Расчетная схема вала червячного колеса приведена на Рисунке 1.

Определяем реакции в опорах плоскости XZ

, (3.1)

, (3.2)

Проверка: ,

, (3.3)

-722+2577-1855=0

0=0.

Определяем реакции в опорах плоскости YZ

, (3.4)

, (3.5)

Проверка: =0,

, (3.6)

-229+953-724=0,

0=0.

Построим эпюры крутящих и изгибающих моментов в горизонтальной плоскости:

;

.

Построим эпюры крутящих и изгибающих моментов в вертикальной плоскости:

.

Опасным сечением является сечение Б-Б:

, (3.7)

где , .

.

Из условия прочности:

, (3.8)

, (3.9)

где =310МПа.

.

По расчету , что значительно больше расчетного.


Рисунок 1 – Расчетная схема ведущего вала

3.3.2 Расчеты ведомого вала быстроходной ступени


Рисунок 2 – Расчетная схема ведомого быстроходной ступени

Из предыдущих расчетов:

, - окружная сила ведомого вала быстроходной ступени;

, - осевая сила ведомого вала в зацеплении быстроходной ступени;

, - радиальная сила ведомого вала быстроходной ступени.

Расчетная схема вала червячного колеса приведена на Рисунке 2.

Определяем реакции в опорах плоскости XZ

, (3.10)

, (3.11)

Проверка: ,

, (3.12)

-746-2577+7225-3902=0

0=0.

Определяем реакции в опорах плоскости YZ

, (3.13)

, (3.14)

Проверка: =0,

, (3.15)

-668-953+2674-1053=0,

0=0.

Построим эпюры крутящих и изгибающих моментов:

;

;

;

;

;

Опасным сечением является сечение Б-Б:

, (3.16)

где , .

.

Из условия прочности:

, (3.17)

, (3.18)

где =310МПа.

.

т.е. по расчету , что значительно больше расчетного.

3.3.3 Расчеты ведомого вала тихоходной ступени


Рисунок 3 – Расчетная схема ведомого вала тихоходной ступени

Из предыдущих расчетов:

- окружная сила ведомого вала;

- осевая сила ведомого вала в зацеплении;

- радиальная сила ведомого вала.

Расчетная схема вала червячного колеса приведена на Рисунке 2.

Определяем реакции в опорах плоскости XZ

, (3.19)

, (3.20)

Проверка: =0,

, (3.21)

4817-7225+2408=0,

0=0.

Определяем реакции в опорах плоскости YZ

, (3.22)

, (3.23)

Проверка: =0,

, (3.24)

-21-2674+2695=0,

0=0.

Построим эпюры крутящих и изгибающих моментов:

;

;

.

Опасным сечением является сечение Б-Б:

, (3.25)

где , .

.

Из условия прочности:

, (3.26)

, (3.27)

где =480МПа.

.

А у нас по расчету , что значительно больше расчетного.

3.4 Выбор подшипников

3.4.1 Ведущий вал быстроходной ступени

Суммарные реакции:

;

.

Предварительно принимаем подшипники 36208 [см. табл.2]

Эквивалентная нагрузка: более нагруженная опора 1.

, (3.28)

Где Pr=1991Н, V=1 – вращается внутреннее кольцо подшипника, Fа1=467Н, kб=1 [2, табл.9.19], kт=1 [2, табл.9.20].

при этом е=0,316 [2, табл.9.18].

Осевые составляющие:

;

.

В нашем случае S1 > S2, Fa>0, тогда Pa1=S1=629H, Pa2=S1-Fa=629-467=162H.

, тога x=1, y=0.

.

Расчетная долговечность, млн. об:

, (3.29)

млн. об.

Расчетная долговечность в часах:

, (3.30)

часов, что больше установленных, значить подшипник подходит.

3.4.2 Расчет подшипника ведомого вала быстроходной ступени

Суммарные реакции:

;

.

Предварительно принимаем подшипники 36208 [см. табл.2]

Эквивалентная нагрузка: более нагруженная опора 4.

Fa=Fa3-Fa4=1336-467=869H.

при этом е=0,35 [2, табл.9.18].

Осевые составляющие:

;

.

В нашем случае S3 < S4 , тогда Fa4=S4+Fa=1915+869=2284H.

, тога x=0,45, y=1,57[2, табл.9.18].

.

Расчетная долговечность, млн. об:

, (3.31)

,млн. об.

Расчетная долговечность в часах:

, (3.32)

часов, что больше установленных, значить подшипник подходит.

3.4.3 Расчет подшипников ведомого вала тихоходной ступени

Суммарные реакции:

;

.

Предварительно принимаем подшипники 46215 [см. табл.2]

Эквивалентная нагрузка: более нагруженная опора 6.

е=0,68 [2, табл.9.18].

Осевые составляющие:

;

.

В нашем случае S5 < S6 , тогда Fa4=1336H, Fa5=1637H,

Fa6= S5+ Fa4=1637+1336=2973Н.

, тога x=1, y=0.

.

Расчетная долговечность, млн. об:

, (3.33)

млн. об.

Расчетная долговечность в часах:

, (3.34)

часов, что больше установленных, значить подшипник подходит.

3.5 Выбор посадок

Посадки назначаем в соответствии с указанными данными в табл.10.13 [2].

Посадки зубчатых колес на валы - по ГОСТ 25347-82

Посадки муфт на валы редуктора - .

Шейки валов под подшипники выполняем с отклонением по посадке k6.

Отклонений отверстий в корпусе под наружные кольца подшипников по посадке Н7.

Мазеудерживающие кольцо сажаем на вал по посадке - .

Посадка вала под монтажом – h8.

3.6 Расчет соединений

3.6.1 Расчет шпоночных соединений

Применяем шпонки призматические по ГОСТ 23360-78. Материал шпонки, сталь 45, нормализованная.

Условие прочности:

, (3.35)

где Lp=L-b.

Допускаемое напряжение смятия при стальной ступицы , при чугунной .

Ведущий вал: d=36мм; bxh=10x8 мм; t1=5 мм; длина шпонки l=80 мм; момент на ведущем валу Т=55,6٠103Н٠мм.

,

т.е. шпонка подходит.

Расчет шпонки под зубчатое колесо наведомом валу быстроходной ступени: d=50мм; bxh=14x9 мм; t1=5,5 мм; длина шпонки l=90 мм; момент на ведущем валу Т=269,7٠103Н٠мм.

,

т.е. шпонка подходит.

Ведомый вал тихоходной ступени: d=65мм; bxh=18x11 мм; t1=7 мм; длина шпонки l=90 мм; момент на ведущем валу Т=1036٠103Н٠мм.

,

т.е. шпонка подходит.

Расчеты шпонки под зубчатым колесом на ведомом валу: d=85мм; bxh=22x14 мм; t1=9 мм; длина шпонки l=100 мм; момент на ведущем валу Т=1036٠103Н٠мм.

,

т.е. шпонка подходит.

4 Выбор смазки

4.1 Выбор смазки зацеплений и подшипников

Смазывание зубчатого зацепления производиться окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до уровня, обеспечивающие погружение колеса примерно на 10 мм. Объем масляной ванны V определяем из расчета 0,25 дм3 масла на 1 кВт передаваемой мощности: V=0,25٠5,76=1,44 дм3.

Устанавливаем вязкость масла [2, с.253, табл.10.8]. При контактных напряжениях и скорости v=2,1м/с рекомендуемая вязкость масла должна быть примерно равна 20٠10-6м2/с. Принимаем масло индустриальное И-30А [2, с. 253, табл. 10.10] по ГОСТ 20799-75.

Камеры подшипников заполняем пластичным смазочным материалом УТ-1 [2, с.204, табл. 9.14] периодически пополняем его шприцом через пресс-масленки.

5 Выбор и проверочный расчет муфт

Выбираем для соединения редуктора и электродвигателя упругую втулочно-пальцевую муфту (МУВП). Эту муфту применяют в случаях, когда возможна несоосность валов и работа соединения сопровождается толчками и ударами.

Расчет муфты сводится к определению размеров пальцев и упругих элементов.

Пальцы рассчитываются на изгиб:

Крутящий момент на быстроходном валу Т1=55,6Н٠м; Тр=2٠55,6=11,2Н٠м.[4, с.386, табл. 17.8 и 17.9].

z=6 – число пальцев;

dn=14 мм – диаметр пальцев;

D0=100 мм – диаметр окружности расположения пальцев;

ln=33 мм – длина пальцев;

dвт=27 мм – диаметр втулки;

ln=14 мм – длина втулки.

, (5.1)

Проверяем прочность втулки на смятие:

, (5.2)

.

Выбираем туже муфту (МУВП) для соединения редуктора и цепного конвеера.

Крутящий момент на быстроходном валу Т3=1036Н٠м; Тр=1٠1036=1036Н٠м.[4, с.386, табл. 17.8 и 17.9].

z=10 – число пальцев;

dn=18 мм – диаметр пальцев;

D0=170 мм – диаметр окружности расположения пальцев;

ln=42 мм – длина пальцев;

dвт=35 мм – диаметр втулки;

ln=36 мм – длина втулки.

Расчет пальцев на изгиб:

.

Проверяем прочность втулки на смятие:

6 Список литературы

  1. Дунаев П.Ф., Леликов О.П. Конструирование узлов и деталей машин.- М.: Высшая школа, 1985.- 125с

  2. Чернавский С.А. Курсовое проектирование деталей машин. – М.: Машиностроение, 1987.- 150с

  3. Иванов М.Н. Детали машин – М.: Высшая школа, 1991. – 200с.

  4. Кузьмин А.В., Чернин И.М., Козницов Б.С. Расчеты деталей машин.- М.: Высшая школа, 1986.- 200с.


1. Реферат Генератор неслучайных чисел
2. Реферат на тему Расходы по научно исследовательским и опытно конструкторским работ
3. Реферат на тему Different Names For The Same Sport Essay
4. Реферат Временное хранение товаров
5. Реферат Средства защиты информации
6. Реферат Темпельгоф, Георг Фридрих
7. Реферат МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ Руководителям служб и функциональных подсистем РСЧС Ставропольского кр
8. Диплом на тему Управление финансовыми результатами на примере государственного унитарного предприятия Главного управления
9. Кодекс и Законы Особенности правового регулирования договора аренды предприятия
10. Курсовая на тему Расчет точностных параметров и методов их контроля