Курсовая

Курсовая на тему Редуктор зубчато-червячный

Работа добавлена на сайт bukvasha.net: 2015-07-02

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024


ФЕДЕРАЛНОЕ АГЕНСТВО ПО КУЛЬТУРЕ И КИНЕМАТОГРАФИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ

УНИВЕРСИТЕТ КИНО И ТЕЛЕВИДЕНИЯ

Кафедра механики

Расчетно-пояснительная записка к курсовому проекту

на тему «Редуктор зубчато-червячный»

Санкт-Петербург 2009г.

Содержание

Техническое задание на курсовое проектирование

1 Кинематический расчет и выбор электродвигателя

2 Выбор материалов и определение допускаемых напряжений

3 Расчет тихоходной ступени привода

3.1 Проектный расчет

3.2 Проверочный расчет по контактным напряжениям

3.3 Проверочный расчет зубьев на изгиб

4 Расчет быстроходной ступени привода

5 Проектный расчет валов редуктора

5.1 Расчет тихоходного вала редуктора

5.2 Расчет быстроходного вала редуктора

5.3 Расчет промежуточного вала редуктора

6 Подбор и проверочный расчет шпонок

6.1 Шпонки быстроходного вала

6.2 Шпонки промежуточного вала

6.1 Шпонки тихоходного вала

7 Проверочный расчет валов на статическую прочность

8 Выбор и проверочный расчет подшипников

9 Выбор масла, смазочных устройств

Список использованной литературы

Техническое задание на курсовое проектирование

Механизм привода

  1. электродвигатель;

  2. муфта упругая;

  3. редуктор зубчатый цилиндро-червячный;

  4. передача зубчатая цилиндрическая;

  5. передача червячная;

  6. муфта;

  7. исполнительный механизм.

Вариант 10

Потребный момент на валу исполнительного механизма (ИМ) Тим=11Нм;

Угловая скорость вала ИМ ωим=12с-1.

Разработать:

  1. сборочный чертеж редуктора;

  2. рабочие чертежи деталей тихоходного вала: зубчатого колеса, вала, крышки подшипника.

1 Кинематический расчет и выбор электродвигателя

Исходные данные:

  • потребный момент на валу исполнительного механизма (ИМ) Тим=11Нм;

  • угловая скорость вала ИМ ωим=12с-1;

Определяем мощность на валу ИМ Nим= Тимх ωим=11х12=132Вт.

Определяем общий КПД привода по схеме привода

ηобщзп ηчп ηм ηп(1.1)

где [1, с.9,10]: ηзп=0,97- КПД зубчатой цилиндрической передачи;

ηчп=0,8- КПД червячной передачи;

ηм=0,982 – потери в муфтах;

ηп=0,994- коэффициент, учитывающий потери на трение в подшипниках 4-х валов.

Сделав подстановку в формулу (1.1) получим:

ηобщ.=0,97*0,85*0,982*0,994=0,7

Определяем потребную мощность электродвигателя [1,с.9]

NэдNимобщ.(1.2)

где Nэд – требуемая мощность двигателя:

Nэд=132/0,7=188,6Вт

Выбираем электродвигатель [1,с.18,табл.П2]

Пробуем двигатель АИР56В2:

Nдв.=0,25кВт;

Синхронная частота вращения nдв=3000об/мин;

S=8%.

Определяем номинальную частоту вращения электродвигателя по формуле (5) [1,c.11]:

nном=nдв·(1-S/100);nном=3000·(1-0,08);

nном=2760 об/мин

Определяем угловую скорость вала двигателя

ωдвnдв/30=π*2760/30=289рад/с;

Определяем общее передаточное число привода

U=ωдв./ωим=289/12=24,1

Производим разбивку передаточного числа по ступеням. По схеме привода

Uобщ.=U1· U2;(1.3)

Назначаем по рекомендации [1,табл.2.3]:

U2=10;

тогда

U1= Uобщ./U2;

U1=2,4. Принимаем U1=2,5. Тогда Uобщ.=25

Принимаем окончательно электродвигатель марки АИР56В2.

Угловые скорости определяем по формуле

ω=πn/30(1.4)

Рис.1 Схема валов привода

1 – быстроходный вал; 2 – промежуточный вал; 3 – тихоходный вал.

По схеме валов (рис.1) и формуле (1.4) определяем частоты вращения и угловые скорости каждого вала

n1= nном.

ω1= ωдв=289рад/с;

n2= nном/U1=2760/2,5=1104об/мин;

ω2n2/30=π*1104/30=115,6 рад/с;

n3= n2/U2=1104/10=110,4 об/мин;

ω3n3/30=π*110,4/30=11,5 рад/с.

Определяем мощность на каждом валу по схеме привода

N1=Nдв ηм=0,25*0,98=245Вт;

N2=N1 ηзп ηп2=245*0,97*0,992=233Вт;

N3=N2 ηчп ηп =233*0,8*0,99=184,5Вт;

Nим=N3 ηм =224*0,98=181Вт.

Определяем вращающие моменты на каждом валу привода по формулам [1,с.12,14]:

; Т21U1; Т32U2; (1.5)

Т1=245/289=0,85 Н•м;

Т2=0,85•2,5=2,1 Н•м;

Т3=2,1•10=21 Н•м.

Все рассчитанные параметры сводим в табл.1.

Параметры кинематического расчетаТаблица 1

вала

n, об/мин

ω, рад/с

N, Вт

Т, Нм

U

Дв

2760

289

250

0,85


1

2760

289

245

0,85

2,5

2

1104

115,6

233

2,1







10

3

110,4

11,5

184,5

21


ИМ

110,4

11.,5

181

21


2 Выбор материалов и определение допускаемых напряжений

Выбираем материал для шестерни, червяка и колеса по табл.3.2 [4,c.52]:

шестерня и червяк– сталь 40Х, термообработка – улучшение 270НВ,

колесо - сталь 40Х, термообработка – улучшение 250НВ.

Для выбора марки материала червячного колеса рассчитаем скорость скольжения

,(2.1)

где Т – вращающий момент на валу червячного колеса,

ω – угловая скорость тихоходного вала,

U – передаточное число.

Подставив значения в формулу 2.1 получим:

;

vs=2,2 м/с.

В соответствии с табл. 3.5 [4] для червячного колеса примем бронзу БрА9Ж3Л, отлитую в кокиль с σв=500Н/мм2 и σт=230Н/мм2.

Определяем допускаемое контактное напряжение для стальных деталей по формуле [4,c.53]:

(2.2)

где σHlimb – предел контактной выносливости при базовом числе циклов;

КHL – коэффициент долговечности;

[SH] – коэффициент безопасности;

по [1,c.33]:КHL =1; [SH] =1,1.

Определяем σHlimb по табл.3.1[4,c.51]:

σHlimb =2НВ+70;(2.3)

σHlimb1 =2×270+70; σHlimb1 =610МПа;

σHlimb2 =2×250+70; σHlimb1 =570МПа.

Сделав подстановку в формулу (2.1) получим

;МПа;

;МПа.

Определяем допускаемое расчетное напряжение по формуле [4,c.53]:

(2.4)

;

МПа.

Определяем допускаемые напряжения по по табл.3.1[4,c.51]:

[σ]Fo =1,03НВ;

[σ]Fo1 =1,03x270=281МПа;

[σ]Fo2 =1,03x250=257МПа.

Определяем допускаемое контактное и изгибное напряжения для червячного колеса по формулам табл. 3.6 [4,c.58]:

[σ]Н =250-25vs, [σ]F =(0,08σв+0,25 σт)(2.5)

[σ]Н =250-25∙2,2=195Н/мм2;

[σ]F =(0,08∙500+0,25∙230)=97,5Н/мм2.

3 Расчет тихоходной ступени привода

3.1 Проектный расчет

Определяем межосевое расстояние передачи по формуле [4,c.74]:

(3.1)

гдеТ – вращающий момент на колесе ,Т3 =21 Нм (см. табл.1).

Подставив значения в формулу (3.1) получим:

Принимаем окончательно по ГОСТ6636-69 [4,табл.13.15]

Число витков червяка Z1 принимаем в зависимости от передаточного числа.

При U = 10 принимаем Z1 = 4.

Число зубьев червячного колеса Z2 = Z1 x U = 4 x 10 = 40.

Определяем модуль [4,c.74]:

mn=(1,5…1,7)·аw/z2;(3.2)

mn=(1,5…1,7)·50/40.

Принимаем модуль mn=2мм .

Из условия жесткости определяем коэффициент диаметра червяка [4,c.75]:

q=(0,212…0,25) z2;

Принимаем модуль q=8.

Определяем основные размеры червяка и червячного колеса по формулам [4,c.76]:

Делительный диаметр червяка

Диаметры вершин и впадин витков червяка

Длина нарезной части шлифованного червяка :

Принимаем b1=28мм .

Делительный угол подъема

γ=arctg(z1/q);

γ=arctg(4/8);

γ=26°33'54''.

Делительный диаметр червячного колеса

Диаметры вершин и впадин зубьев червячного колеса

Наибольший диаметр червячного колеса

Ширина венца червячного колеса

Принимаем b2=28мм

Окружная скорость

червяка -

колеса -

Определяем силы в зацеплении [4, табл.6.1]:

- окружные

(3.7)

- радиальные

; где γ=26°33'54'' - угол подъема витка;(3.8)

-осевые

(3.9)

Все вычисленные параметры заносим в табл.2.

Таблица 2 Параметры червячной передачи тихоходной ступени

Параметр

Червяк

Колесо

m,мм

1

q

8


z

4

40

d,мм

16

80

dа,мм

20

84

df,мм

11,2

75,2

b, мм

28

28

Ft, Н

262,5

525

Fr, Н

262,5

262,5

Fа, Н

525

262,5

3.2 Проверочный расчет по контактным напряжениям

Проверку контактных напряжений производим по формуле [4, c.77]:

;(3.10)

где: К – коэффициент нагрузки, при окружной скорости колеса менее 3м/с К=1.

Определяем ∆σН

;

;недогрузки, что допускается.

3.3 Проверочный расчет зубьев на изгиб

Расчетное напряжение изгиба в основании ножки зубьев колеса [4,с.78]:

;(3.11)

где: YF– коэффициент формы зуба колеса, YF =1,55 [4,табл.4.10].

Подставив значения в формулу получим:

;

Прочность зубьев на изгиб обеспечивается.

Определяем ∆σF

;

Все вычисленные параметры проверочных расчетов заносим в табл.3.

Таблица 3 Параметры проверочных расчетов

Параметр

Обозн.

Допускаемое

Расчетное

Недогрузка(-) или перегрузка(+)

Контактное напряжение, МПа

σН

195

154

-20%

Напряжение изгиба, МПа

σF1

97,5

10,1

-79%

4 Расчет быстроходной ступени привода

Межосевое расстояние для быстроходной ступени для того, чтобы корпус редуктора был разъемным по осям валов принимаем равным 50мм.

а=50мм.

Определяем модуль [2,c.36]:

mn=(0,01…0,02)·50;

mn=0,5…1;

Принимаем mn=1.

Определяем суммарное число зубьев по формуле (3.12) [1,c.36]:

zΣ=2а/mn;

zΣ=2·50/1; zΣ=100

Принимаем zΣ=100.

Определяем число зубьев шестерни и колеса по формулам (3.13) [2,c.37]:

z1= zΣ/(U1+1);z1=100/(2,5+1);z1=28,5; принимаем z1=28.

Тогда z2= zΣ-z1=100-28=72

Фактическое передаточное соотношение U1=72/28=2,57

Отклонение передаточного числа от номинального незначительное.

Определяем делительные диаметры шестерни и колеса по формуле (3.17) [2,c.37]:

d1=mn·z1=1х28=28мм;

d2=mn·z2=1х72=72мм;

Определяем остальные геометрические параметры шестерни и колеса по формулам [2,c.37]:

;;

;;;

мм;

;мм;

;мм;

;мм;

;мм;

;мм;

;мм

; мм;

;мм;

Определяем окружные скорости колес

;м/с.

Назначаем точность изготовления зубчатых колес – 7А [2,c.32].

Определяем силы в зацеплении [4, табл.6.1]:

- окружная

;Н;

- радиальная

; где α=20° - угол зацепления;

;Н;

Осевые силы в прямозубой передачи отсутствуют.

Все вычисленные параметры заносим в табл.4.

Таблица 4 Параметры зубчатой передачи быстроходной ступени

Параметр

Шестерня

Колесо

mn,мм

1

ha,мм

1

ht,мм

1,25

h,мм

2,25

с, мм

0,25

z

28

72

d,мм

28

72

dа,мм

30

74

df,мм

25,5

69,5

b, мм

15

18

аW,мм

50

v, м/с

4

Ft, Н

58.3

Fr, Н

21,2

5 Проектный расчет валов редуктора

По кинематической схеме привода составляем схему усилий, действующих на валы редуктора по закону равенства действия и противодействия. Для этого мысленно расцепим шестерни и колеса редуктора, при этом дублирующий вал не учитываем.

Схема усилий приведена на рис.1.

Рис.2 Схема усилий, действующих на валы редуктора.

Из табл.1,2,4 выбираем рассчитанные значения:

Т1=0,85 Нм;Т2=2,1 Нм;Т3=21 Нм;

Ft1= Ft2=58,3 Н; Ft3=262,5 Н;Ft4=525 Н;Fr1= Fr2=21,2 Н;Fr3= Fr4=262,5 Н; d1=28мм;d2=72мм;d3=16мм;d4=80мм.

Fm1 и Fm1 – консольные силы от муфт, которые равны [4, табл.6.2]:

;;

Н;Н.

Rx и Ry – реакции опор, которые необходимо рассчитать.

Так как размеры промежуточного вала определяются размерами остальных валов, расчет начнем с тихоходного вала.

5.1 Расчет тихоходного вала редуктора

Схема усилий действующих на валы редуктора представлена на рис.2.

Назначаем материал вала. Принимаем сталь 40Х, для которой [2, табл.8.4] σв=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.

Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение [2,c.161]:

где [τк]=(20…25)МПа

Принимаем [τк]=20МПа.

;мм.

Принимаем окончательно с учетом стандартного ряда размеров Rа20 (ГОСТ6636-69):

мм.

Намечаем приближенную конструкцию ведомого вала редуктора (рис.3), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.

Рис.3 Приближенная конструкция тихоходного вала

мм;

мм – диаметр под уплотнение;

мм – диаметр под подшипник;

мм – диаметр под колесо;

мм – диаметр буртика;

b4=28мм.

Учитывая, что осевые нагрузки на валу имеются предварительно назначаем подшипники шариковые радиально-упорные однорядные серии диаметров 2 по мм подшипник №46205, у которого Dп=52мм; Вп=15мм [4,табл.К27]. Выбираем конструктивно остальные размеры:

W=20мм; lм=20мм; l1=35мм; l=60мм; с=5мм.

Определим размеры для расчетов: l/2=30мм;

с=W/2+ l1+ lм/2=55мм – расстояние от оси полумуфты до оси подшипника.

Проводим расчет тихоходного вала на изгиб с кручением.

Заменяем вал балкой на опорах в местах подшипников (см. рис.4). Назначаем характерные точки 1,2, 3 и 4. Определяем реакции в подшипниках в вертикальной плоскости.

ΣМ2y=0;RFy·0,06-Fr4·0,03=0

RFy= 262,5·0,03/ 0,06;

RЕy= RFy=131Н.

Определяем изгибающие моменты в характерных точках:

М=0;

М=0;

М= RЕy·0,03;

М =4Нм2;

М=0;

Строим эпюру изгибающих моментов Му, Нм2 (рис.3)

Определяем реакции в подшипниках в горизонтальной плоскости.

ΣМ4x=0;Fm2·0,115- RЕx·0,06+ Ft4·0,03=0;

RЕx=( 1145·0,115+ 525·0,03)/ 0,06;

RЕx=4820Н;

ΣМ2x=0;-Fm2·0,055+ Ft4·0,03+ RFx·0,06=0;

RFx= (1145·0,055- 525·0,03)/ 0,06;

RFx=787Н.

Определяем изгибающие моменты:

М=0;

М2= -Fr4·0,03

М=-262,5·0,03;

М=-8Нм;

М3хслева=-Fm2·0,085-RЕх ·0,055;

М3хслева==-1145·0,085-787·0,03;

М3хслева=-121Нм;

М=- REх ·0,055;

М=- 4820 ·0,03;

М=- 144;

М=0;

Строим эпюру изгибающих моментов Мх.

Рис.4 Эпюры изгибающих моментов тихоходного вала

Крутящий момент

Т1-1= Т2-2= Т3-3= T3=21Нм;

T4-4=0.

Определяем суммарные радиальные реакции [4,рис 8.2]:

;;

;Н;

;Н.

Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:

; ; Нм2.

Эквивалентный момент:

;; Нм2.

5.2 Расчет быстроходного вала редуктора

Схема усилий, действующих на быстроходный вал представлена на рис.2.

Назначаем материал вала. Принимаем сталь 40Х, для которой [2, табл.8.4] σв=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.

Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение [2,c.161]:

где [τк]=(20…25)Мпа

Принимаем [τк]=20Мпа.

;мм.

Принимаем окончательно с учетом стандартного ряда размеров Rа10 (ГОСТ6636-69):

мм.

Намечаем приближенную конструкцию быстроходного вала вала редуктора (рис.5), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.

мм;

мм – диаметр под уплотнение;

мм – диаметр под подшипник;

мм – диаметр под ступицу шестерни;

мм – диаметр буртика;

b1=15мм.

Учитывая, что осевых нагрузок на валу нет предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по мм подшипник №100, у которого Dп=26мм; Вп=8мм [4,табл.К27].

Выбираем конструктивно остальные размеры:

W=14мм; lм=16мм; l1=25мм; l=60мм.

Определим размеры для расчетов:

l/2=30мм;

с=W/2+ l1+ lм/2=40мм – расстояние от оси полумуфты до оси подшипника.

Проводим расчет быстроходного вала на изгиб с кручением.

Рис.5 Приближенная конструкция быстроходного вала

Заменяем вал балкой на опорах в местах подшипников (см. рис.6). Назначаем характерные точки 1,2, 3 и 4. Определяем реакции в подшипниках в вертикальной плоскости.

ΣМ2y=0;RАy·0,06-Fr1·0,03=0

RАy= 21,2·0,03/ 0,06;

RАy= RВy=10,6Н.

Определяем изгибающие моменты в характерных точках:

М=0;

М=0;

М= RАy·0,03;

М =0,5Нм2;

М=0;

Строим эпюру изгибающих моментов Му, Нм2 (рис.6).

Определяем реакции в подшипниках в горизонтальной плоскости.

ΣМ4x=0;Fm1·0,1- RАx·0,06+ Ft1·0,03=0;

RАx= (64,5·0,1+ 58,3·0,03)/ 0,06;

RАx=137Н;

Рис.6 Эпюры изгибающих моментов быстроходного вала

ΣМ2x=0;Fm1·0,02- Ft1·0,03+ RВx·0,06=0;

RВx= (58,3·0,03- 64,5·0,02)/ 0,06;

RВx=7,7Н

Определяем изгибающие моменты:

М=0;

М2= -Fm1·0,04

М=-64,5·0,04;

М=-2,6Нм;

М3хсправа=-Fm1·0,1+RВх ·0,03;

М3хсправа==-64,5·0,1+7,7 ·0,03;

М3хсправа=-6,2Нм;

М=- RАх ·0,03;

М=- 137 ·0,03;

М=- 4,1;

М=0;

Строим эпюру изгибающих моментов Мх.

Крутящий момент

Т1-1= Т2-2= Т3-3= T1=0,85Нм;

T4-4=0.

Определяем суммарные радиальные реакции [4,рис 8.2]:

;;

;Н;

;Н.

Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:

; ; Нм2.

Эквивалентный момент:

;; Нм2.

5.3 Расчет промежуточного вала - червяка

Назначаем материал вала. Принимаем сталь 40Х, для которой [1, табл.8.4] σв=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.

Определяем диаметр выходного конца червяка из расчёта на чистое кручение

;

где [τк]=(20…25)Мпа[1,c.161]

Принимаем [τк]=20Мпа.

;мм.

Принимаем dв=8мм.

Принимаем диаметр вала под подшипник 10мм.

Намечаем приближенную конструкцию червяка (рис.7), увеличивая диаметр ступеней вала на 5…6мм

Рис.7 Приближенная конструкция промежуточного вала

х=8мм;

W=20мм;

r=2,5мм;

b2=18мм;

b3=28мм.

Расстояние l определяем из суммарных расстояний тихоходного и быстроходного валов с зазором между ними 25…35мм.

l=60+30+30=120мм.

l1=30мм;l2=30мм.

Учитывая, что осевые нагрузки на валу имеются предварительно назначаем подшипники шариковые радиально-упорные однорядные серии диаметров 1 по мм подшипник №36100К6, у которого Dп=26мм; Вп=8мм [4,табл.К27].

Заменяем вал балкой на опорах в местах подшипников.

Рассматриваем вертикальную плоскость (ось у) Определяем реакции в подшипниках в вертикальной плоскости.

åМСу=0;

-RDу·0,09+Fr3·0,03+Fr2·0,12=0

RDy=(262,5·0,03+21,2·0,12)/ 0,09;

RDy==116Н.

åМDу=0;

RCy·0,09- Fr3·0,06+ Fr2·0,03=0;

RCy=(262,5·0,06-21,2·0,03)/ 0,09;

RCy=168Н.

Назначаем характерные точки 1, 2, 3, и 4 и определяем в них изгибающие моменты:

М=0;

М=-RCy·0,03;

М=-5Нм;

М3услева=-RCy·0,09+Fr3·0,06;

М3услева=0,6Нм

М3усправа= Fr2·0,03;

М3усправа= 0,6Нм

М=0;

Строим эпюру изгибающих моментов Му, Нм (рис.8).

Определяем реакции в подшипниках в горизонтальной плоскости.

åМСх=0; RDx·0,09-Ft3·0,03-Ft2·0,12=0;

RDx=( 262,5·0,03+ 58,3·0,12)/0,09;

RDx=87,5Н;

åМDх=0;

RCx·0,09- Ft3·0,06-Ft2·0,03=0;

RCx=(262,5·0,03+58,3·0,06)/ 0,09;

RCx=126Н.

Назначаем характерные точки 1, 2, 3 и 4 и определяем в них изгибающие моменты:

М1x=0;

М2x=-RCx·0,03;

М2x=-3,8Нм;

М3xслева= -RCx·0,09-Ft3·0,06;

М3xслева=-27Нм;

М3xсправа= Ft2·0,03;

М3xсправа=1,7Нм;

М=0.

Строим эпюру изгибающих моментов Му, Нм (рис.8)

Рис.8 Эпюры изгибающих и крутящих моментов промежуточного вала.

Крутящий момент Т1-1=0;

Т2-2=-Т3-3=- T2=-2,1Нм;

Т4-4=0.

Определяем суммарные радиальные реакции [4,рис 8.2]:

;;

;Н;

;Н.

Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:

; ; Нм.

Эквивалентный момент:

;; Нм.

Все рассчитанные значения сводим в табл.5.

Параметры валов Таблица 5


R1, H

R2, H

MИ, Нм

MИэкв, Нм

Тихоходный вал

4821

798

144

146

Быстроходный вал

137,4

13,1

6,2

6,3

Промежуточный вал - червяк

1419

405

92,5

93

6 Подбор и проверочный расчет шпонок

Выбор и проверочный расчет шпоночных соединений проводим по [4]. Обозначения используемых размеров приведены на рис.9.

Рис.9 Сечение вала по шпонке

6.1 Шпонки быстроходного вала

Для выходного конца быстроходного вала при d=6 мм подбираем призматическую шпонку со скругленными торцами по ГОСТ23360-78 bxh=2x2 мм2 при t=1,2мм (рис.9).

При длине ступицы полумуфты lм=16 мм выбираем длину шпонки l=14мм.

Материал шпонки – сталь 40Х нормализованная. Напряжения смятия и условия прочности определяем по формуле:

(6.1)

где Т – передаваемый момент, Н×мм; Т1=0,85 Н×м.

lр – рабочая длина шпонки, при скругленных концах lр=l-b,мм;

[s]см – допускаемое напряжение смятия.

С учетом того, что на выходном конце быстроходного вала устанавливается полумуфта из ст.3 ([s]см=110…190 Н/мм2) вычисляем:

Условие выполняется.

Для зубчатого колеса вала при d=15 мм подбираем призматическую шпонку со скругленными торцами bxh=5x5 мм2 при t=3мм, t1=2,3мм. Т1=0,85Нм.

При длине ступицы шестерни lш=15 мм выбираем длину шпонки l=12мм.

Материал шпонки – сталь 45 нормализованная. Проверяем напряжение смятия, подставив значения в формулу (6.1):

Условие выполняется.

6.2 Шпонки промежуточного вала

Для зубчатого колеса вала при d=8 мм подбираем призматическую шпонку со скругленными торцами bxh=2x2 мм2 при t=1,2мм, t1=1мм. Т2=2,1Нм.

При длине ступицы шестерни lш=18 мм выбираем длину шпонки l=14мм.

Материал шпонки – сталь 45 нормализованная. Проверяем напряжение смятия, подставив значения в формулу (6.1):

Условие выполняется.

6.3 Шпонки тихоходного вала

Передаваемый момент Т3=21Нм.

Для выходного конца вала при d= 18мм подбираем призматическую шпонку со скругленными торцами bxh=6x6 мм2 при t=3,5мм.

При длине ступицы полумуфты lМ=20 мм выбираем длину шпонки l=16мм.

Для червячного колеса тихоходного вала при d=30 мм подбираем призматическую шпонку со скругленными торцами bxh=8x7мм2 при t=4мм.

При длине ступицы шестерни lш=28 мм выбираем длину шпонки l=22мм.

С учетом того, что на ведомом валу устанавливается колесо из бронзы ([s]см=70…90 Н/мм2) вычисляем по формуле (6.1):

условие выполняется.

Таблица 6

Параметры шпонок и шпоночных соединений

Параметр

тих.вал- полум

тих.вал- колесо

промвал-шестерня

быстр

вал-шестер.

быстр.

вал-полум.

Ширина шпонки b,мм

6

8

2

5

2

Высота шпонки h,мм

6

6

2

5

2

Длина шпонки l,мм

16

22

14

12

14

Глубина паза на валу t,мм

3,5

4

1,2

3

1,2

Глубина паза во втулке t1,мм

2,8

3,3

1

2,3

1

7. Проверочный расчет валов на статическую прочность

В соответствии с табл.5 наиболее опасным является сечение 3-3 тихоходного вала, в котором имеются концентраторы напряжений от посадки зубчатого колеса с натягом, шпоночного паза и возникают наибольшие моменты.

Исходные данные для расчета:

МИэкв= 146Нм;

МИ=144Нм;

Т3-3=21Нм;

dв=30мм;

в=8мм – ширина шпонки,

t=4мм – глубина шпоночного паза,

l=22мм – длина шпонки.

При расчете принимаем, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения – по отнулевому циклу.

Определяем диаметр вала в рассчитываемом сечении при допускаемом напряжении при изгибе [σ-1]и=60МПа:

мм; 30>23.

Условие соблюдается.

Определяем напряжения изгиба:

σии/W;

где W – момент сопротивлению изгибу. По [4,табл.11.1]:

;

мм3;

σи=144000/32448=4,4Н/мм2.

При симметричном цикле его амплитуда равна:

σа= σи =4,4Н/мм2.

Определяем напряжения кручения:

τк3-3/Wк;

где Wк – момент сопротивлению кручению. По [4,табл.22.1]:

;

мм3;

τк=21000/64896=0,3Н/мм2.

При отнулевом цикле касательных напряжений амплитуда цикла равна:

τа= τк /2=0,3/2=0,15Н/мм2.

Определяем коэффициенты концентрации напряжении вала [4, с.258]:

σ)D=( Кσd+ КF-1)/ Кy;(Кτ)D=( Кτd+ КF-1)/ Кy;(7.1)

где Кσ и Кτ – эффективные коэффициенты концентрации напряжений, по табл.11.2 [4] выбираем для шпоночных пазов, выполненных концевой фрезой Кσ =1,6, Кτ =1,4;

Кd – коэффициент влияния абсолютных размеров поперечного сечения, по табл.11.3 [4] выбираем Кd =0,75;

КF- коэффициент влияния шероховатости, по табл.11.4 [4] выбираем для шероховатости Rа=1,6 КF=1,05;

Кy - коэффициент влияния поверхностного упрочнения, по табл.11.4 [4] выбираем для закалки с нагревом ТВЧ Кy =1,5.

Подставив значения в формулы (7.1) получим:

σ)D=( 1,6/0,75+ 1,05-1)/ 1,5=1,45;

τ)D=( 1,4/0,75+ 1,05-1)/ 1,5=1,28.

Определяем пределы выносливости вала [4, c263]:

-1)D-1/(Кσ)D;(τ-1)D-1/(Кτ)D;(7.2)

где σ-1 и τ-1 – пределы выносливости гладких образцов при симметричном цикле изгиба и кручения, по табл.3. [4] σ-1 = 380Н/мм2 , τ-1 ≈0,58 σ-1 =220Н/мм2;

-1)D=380/1,45=262Н/мм2; -1)D=220/1,28=172 Н/мм2.

Определяем коэффициенты запаса прочности по нормальным и касательным напряжениям 4, c263]:

sσ=(σ-1)D/ σа;sτ=(τ-1)D/ τа.(7.3)

sσ=262/ 4,4=59;sτ=172/ 0,15=1146.

Определяем общий коэффициент запаса по нормальным и касательным напряжениям [4, c263]:

(7.4)

где [s]=1,6…2,1 – допускаемый коэффициент запаса прочности.

Сопротивление усталости вала в сечении 3-3 обеспечивается, расчет остальных валов не проводим, т.к. расчет проведен на самом опасном сечении, и коэффициент запаса прочности значительно превышает допустимый.

8 Выбор и проверочный расчет подшипников

Предварительно выбранные подшипниками с действующими на них радиальными нагрузками приведены в табл.7.

Таблица 7 Параметры выбранных подшипников


Быстроходный вал

Промежуточный вал

Тихоходный вал

100

36100

46205

d, мм

10

10

25

D, мм

26

26

52

В, мм

8

8

15

С, кН

4,62

5,03

15,7

Со, кН

1,96

2,45

8,34

RА, Н

137,4

1419

4821

RБ, Н

13,1

405

798

Подшипники устанавливаем по схеме «враспор». Пригодность подшипников определяем по условиям [4, c.129]:

Ср≤С;LрLh;

где Ср – расчетная динамическая грузоподъемность;

Lh – требуемая долговечность подшипника, для зубчатых редукторов Lh =10000ч.

;[4, c.129](8.1)

где ω – угловая скорость соответствующего вала (см. табл.1);

m=3 для шариковых подшипников;

RЕ – эквивалентная динамическая нагрузка, при отсутствии осевых усилий [4, табл.9.1]:

RЕ=V×RАКδКτ(8.2)

где Kd - коэффициент безопасности; Kd =1,1…1,2 [4, табл.9.4]. Принимаем Kd =1,1.

V – коэффициент вращения, при вращении внутреннего кольца V=1

Kτ – температурный коэффициент; Kτ =1 (до 100ºС) [4, табл.9.4].Определяем расчетную долговечность подшипников в часах [4, c.129]:

(8.3)

Подставив значения в формулы (8.1)-(8.3) проверяем подшипники.

Для быстроходного вала:

RЕ=137,4х1,1=151Н;

- условие выполняется;

- условие выполняется.

Для промежуточного вала:

RЕ=1419х1,1=1560Н;

- условие выполняется;

- условие выполняется.

Для тихоходного вала:

RЕ=4821х1,1=5300Н;

- условие выполняется.

- условие выполняется.

Окончательные параметры подшипников приведены в табл.7.

9 Выбор масла, смазочных устройств

Используем картерную систему смазывания. В корпус редуктора заливаем масло так, чтобы червяк был в него погружен на глубину hм (рис.10): hм max =(0,1…0,5)d1 = 2…8мм;

hм min = 2,2×m = 2×1 = 2,2мм.

При вращении колеса масло будет увлекаться его зубьями, разбрызгиваться, попадать на внутренние стенки корпуса, откуда стекать в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которым покрываются поверхности расположенных внутри корпуса деталей, в том числе и подшипники.

Рис.10 Схема определения уровня масла в редукторе

Объем масляной ванны принимаем из расчета 0,5 л на 1кВт передаваемой мощности V = 0,5×Nдв = 0,5×0,25 = 0,125 л.

Контроль уровня масла производится круглым маслоуказателем, который крепится к корпусу редуктора при помощи винтов. Для слива масла предусмотрена сливная пробка. Заливка масла в редуктор производится через съемную крышку в верхней части корпуса.

Выбираем смазочный материал. Для этого ориентировочно рассчитаем

необходимую вязкость:

где ν50 – рекомендуемая кинематическая вязкость смазки при температуре 50°С;

ν1 =170мм2/с – рекомендуемая вязкость при v=1м/с для зубчатых передач с зубьями без термообработки;

v=4м/с – окружная скорость в зацеплении

Принимаем по табл.10.29 [4] масло И-220А.

Для обоих валов выберем манжетные уплотнения типа 1 из ряда 1 по ГОСТ 8752-79. Установим их рабочей кромкой внутрь корпуса так, чтобы обеспечить к ней хороший доступ масла.

Список использованной литературы

1. Основы конструирования: Методические указания к курсовому проектированию/ Сост. А.А.Скороходов, В.А Скорых.-СПб.: СПбГУКиТ, 1999.

2. Дунаев П.Ф., Детали машин, Курсовое проектирование. М.: Высшая школа, 1990.

3. Скойбеда А.Т., Кузьмин А.В., Макейчик Н.Н., Детали машин и основы конструирования, Минск: «Вышейшая школа», 2000.

  1. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб. пособие. – М.: Высш. шк., 1991

5. Анурьев В.И. Справочник конструктора-машиностроителя: В 3 т. -8-е изд. перераб. и доп. Под ред. И.Н.Жестковой. – М.: Машиностроение, 1999


1. Курсовая Развитие нанотехнологий
2. Реферат на тему Мистецтво доби бароко
3. Реферат на тему How Dsl Works Essay Research Paper How
4. Реферат Железнодорожный переезд
5. Реферат Совершенствование трудовой деятельности бортпроводника на основе функционально-стоимостного анал
6. Курсовая на тему Организация труда в бригадах
7. Реферат на тему Thanatopsis Essay Research Paper The poem 2
8. Контрольная работа Идея независимости Польши и 2-я Мировая война
9. Реферат на тему Socrates Know Thyself Essay Research Paper What
10. Реферат на тему Ordinary People Essay Essay Research Paper Written