Курсовая на тему Розрахунок двигуна механізму вильоту стріли
Работа добавлена на сайт bukvasha.net: 2015-07-02Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
1. Визначення і розрахунок компонентів приводу механізму зміни вильоту стріли
1.1 Визначення зусиль у механізмі зміни вильоту стріли
Визначимо довжину стріли [2]
; =15,82 м
α1 вибирається з методички в у межах 12–200, а – відстань від нижнього шарніра стріли до осі обертання крана (визначається графічно).
Визначимо кут підйому стріли при найменшому вильоті
; =610
h1 и h2 – довжина перпендикуляра до осі поліспаста визначаються графічно
h1= 4,6 м; h2=4,0 м;
Визначимо навантаження на поліспаст з огляду на масу вантажу і масу стріли:
при максимальному вильоті стріли:; = 61197,12 Н;
при мінімальному вильоті стріли:
; = 35551,11 Н;
1.2 Визначення потужності механізму зміни вильоту стріли
Визначимо механічну потужність [2]:
, де , , k=1,1–1,5
Визначимо механічний момент [2]
, де ,
=5636,58 Hм;
=3274,44 Нм;
=4455,51 Нм;
=5792,16 Нм;
=1,57 рад/с;
=9093,7 Вт;
1.3 Вибір двигуна
Потужність двигуна визначається за формулою:
; =12124,9Вт=12КВт;
Двигун МТМ 380В, 50 Гц, 40% ПВ. Тип МТМ-412–8, РН=16кВт, n=715 об/хв, МК/МН=2,8. Статор: cosφном=0,7, cosφхх=0,08, ІС.Н=42,5А, Ісх=30А, rc=0,316Ом, хс=0,371Ом. Ротор: Ерн=200В, Ірн=52А, rp=0,098Ом, хp=0,195Ом. к=1,82, J=0,75 кг∙м2,
Маса 345 кг.
1.4. Розрахунок необхідних механічних характеристик двигуна (природної, пускової, проміжних і гальмових)
Механічна характеристика ω=f(M). Природну механічну характеристику будують по формулі Клосса.
,
де М та S – поточне значення моменту і ковзання Skp – критичне ковзання, а – коефіцієнт виражений відношенням активного опору фази статора до приведеного опору фази ротора. По навантажувальній здатності визначимо критичний момент двигуна.
, где kТ=Mkp/MH=2,8 (з каталогу)
Якщо прийняти механічні втрати в роторі 1% від номінальної потужності двигуна, то номінальний момент можна виразити рівнянням:
;
Критичне ковзання визначається в результаті рішення рівняння, записаного для номінального режиму роботи двигуна.
, где
=215,827 H∙м;
H∙м;
;
Таблиця 1
S |
0,047 | 0,1 | 0,2 | 0,308 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1 | |
M, Н∙м | 216,17 | 393,576 | 563,803 | 604,316 | 588,658 | 553,32 | 513,294 | 474,46 | 438,847 | 406,924 | 378,56 |
ω, с-1 | 74,848 | 70,686 | 62,832 | 54,35 | 47,124 | 39,27 | 31,416 | 23,562 | 15,708 | 7,854 | 0 |
1.5 Розрахунок і вибір пускорегулювальних опорів
Асинхронні двигуни з фазним ротором пускають у хід за допомогою активних опорів, включених у ланцюг ротора. Наявність таких опорів зменшує кидок струму і збільшує пусковий момент двигуна аж до значення його максимального моменту.
Перевіримо в даному випадку двоступінчастий пуск. Для якого скористаємося формулою:
;
;
1,553 ≥ 1,395;
З розрахунку видно, що такий пуск можливий. Визначимо значення опорів кожної пускової ступіні. Для цього на осі моментів природної характеристики відкладаємо значення моментів М1=0,8Мкр и М2=1,15Мн.
;
;
Відповідні ступіні знаходимо по формулі:
, де m=2 – число ступіней, n – номер ступіні.
Опір першої пускової ступіні:
;
Опір другої пускової ступіні:
;
Для побудови пускових характеристик скористаємося пропорцією:
, де Sui – ковзання на пусковій характеристиці.
;
Розрахунок і побудова першої пускової характеристики:
; ;
Se | 0,05 | 0,1 |
Su1 | 0,333 | 0,666 |
Розрахунок і побудова другої пускової характеристики:
; ;
Se | 0,05 | 0,1 | 0,2 | 0,3 |
Su | 0,129 | 0,258 | 0,516 | 0,775 |
Режим противовключения виникає тоді, коли ротор двигуна під дією зовнішніх сил по інерції починає обертатися в напрямку поля статора. Цей режим застосовується для електромагнітних зупинок двигуна в реверсивних електроприводах, а так само для забезпечення посадкової швидкості при опусканні важких вантажів. Практично режим протвовключения можна одержати змінивши порядок проходження фаз обмоток статора. У цей момент двигун необхідно відключити від мережі, інакше він буде розганятися в зворотному напрямку під дією реактивного або активного статичного моменту.
У нашому випадку, тобто у випадку з активним статичним моментом на валові двигуна, різким противовключением, якщо включити в ланцюг ротора значні додаткові опори. Якщо в межах припустимих значень навантажень механічні характеристики прийняти прямолінійними, то значення опору, що забезпечує режим протвовключения, визначитися з вираження:
Загальний опір противовключения складається з опору фази обмотки ротора, пускового опору і власне ступіні противовключения, значення якого визначається з вираження ;
Режиму противовключения відповідає ковзання в межах 1<S<2.
2. Визначення і розрахунок компонентів приводу механізму підйому вантажу
2.1 Визначення потужності механізму
Визначимо по номінальній вантажопідйомності розрахункову потужність робочого механізму.
, де , , k=1,1–1,5
Визначимо механічний момент
;
;
;
2.2 Вибір двигуна
=4,318кВт;
РН=7,5кВт, n=945 об/хв, МК/МН=2,8. Статор: cosφном=0,7, cosφхх=0,08, ІС.Н=20,9А, Ісх=30А, rc=0,685Ом, хс=0,371Ом. Ротор: Ерн=200В, Ірн=21,6А, rp=0,29Ом, хp=0,544Ом. к=1,59, J=0,142 кг∙м2.
2.3 Розрахунок необхідних механічних і електромеханічних характеристик двигуна
Механічна характеристика ω=f(M). Природну механічну характеристику будують по формулі Клосса.
,
де М та S – поточне значення моменту і ковзання Skp – критичне ковзання, а – коефіцієнт виражений відношенням активного опору фази статора до приведеного опору фази ротора. По навантажувальній здатності визначимо критичний момент двигуна.
, где kТ=Mkp/MH=2,8 (з каталогу)
Якщо прийняти механічні втрати в роторі 1% від номінальної потужності двигуна, то номінальний момент можна виразити рівнянням:
;
Критичне ковзання визначається в результаті рішення рівняння, записаного для номінального режиму роботи двигуна.
, где ;
=76,593 H∙м;
=214,46H∙м;
;
Таблиця 2
S | 0,055 | 0,1 | 0,2 | 0,3 | 0,4 | 0,519 | 0,6 | 0,7 | 0,8 | 0,9 | 1 |
M, Н∙м |
61,579 | 101,474 | 162,138 | 194,717 | 209,75 | 214,46 | 212,983 | 208,278 | 201,826 | 194,558 | 187,02 | |
ω, с-1 | 98,941 | 94,23 | 83,76 | 73,29 | 62,82 | 50,360 | 41,88 | 31,41 | 20,94 | 10,47 | 0 |
Асинхронні двигуни з фазним ротором пускають у хід за допомогою активних опорів, включених у ланцюг ротора. Наявність таких опорів зменшує кидок струму і збільшує пусковий момент двигуна аж до значення його максимального моменту.
Перевіримо в даному випадку двоступінчастий пуск. Для якого скористаємося формулою:
;
;
2,017 ≥ 1,443;
З розрахунку видно, що такий пуск можливий. Визначимо значення опорів кожної пускової ступіні. Для цього на осі моментів природної характеристики відкладаємо значення моментів М1=0,8Мкр и М2=1,15Мн.
;
;
Відповідні ступіні знаходимо по формулі:
, де m=2 – число ступіней, n – номер ступіні.
Опір першої пускової ступіні:
;
Опір другої пускової ступіні:
;
Для побудови пускових характеристик скористаємося пропорцією:
, де Sui – ковзання на пусковій характеристиці.
;
Розрахунок і побудова першої пускової характеристики:
; ;
Se | 0,05 | 0,1 | 0,2 |
Su1 | 0,355 | 0,666 | 1,42 |
Розрахунок і побудова другої пускової характеристики:
; ;
Se | 0,05 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 |
Su1 | 0,132 | 0,265 | 0,531 | 0,796 | 1,06 | 1,33 |
Режим противовключения виникає тоді, коли ротор двигуна під дією зовнішніх сил по інерції починає обертатися в напрямку поля статора. Цей режим застосовується для електромагнітних зупинок двигуна в реверсивних електроприводах, а так само для забезпечення посадкової швидкості при опусканні важких вантажів. Практично режим протвовключения можна одержати змінивши порядок проходження фаз обмоток статора. У цей момент двигун необхідно відключити від мережі, інакше він буде розганятися в зворотному напрямку під дією реактивного або активного статичного моменту.
У нашому випадку, тобто у випадку з активним статичним моментом на валові двигуна, різким противовключением, якщо включити в ланцюг ротора значні додаткові опори. Якщо в межах припустимих значень навантажень механічні характеристики прийняти прямолінійними, то значення опору, що забезпечує режим протвовключения, визначитися з вираження:
Загальний опір противовключения складається з опору фази обмотки ротора, пускового опору і власне ступіні противовключения, значення якого визначається з вираження ;
Режиму противовключения відповідає ковзання в межах 1<S<2.
3. Розрахунок моментів опору на валу двигунів
3.1 Моменти опору на валові двигуна механізму підйому стріли
; ;
передаточне число редуктора
η=0,95 – ККД передачі від двигуна до стріли.
При підйомі і спуску стріли з вантажем
;
;
При підйомі і спуску стріли без вантажу
;
3.2 Моменти опору на валу двигуна механізму підйому вантажу
– передаточне число. ;
При підйомі вантажу
; ;
При опусканні вантажу
; ;
«–» означає що отримано для гальмового моменту.
4. Розрахунок перехідних процесів
Зміна електромагнітного чи статичного моменту викликає поява так називаного надлишкового, чи динамічного моменту, що у залежності від його знака викликає розгін чи загальмування електропривода. Процес переходу з одного сталого стану в інше називається перехідним процесом. У більшості випадків перехідні процеси впливають на роботу електропривода. Зменшення їхньої динамічності ущільнює графік робочого процесу, що веде до збільшення продуктивності виконавчого механізму. Причинами перехідного процесу є: зміна навантаження, зміна схеми включення, зміна параметрів живильної мережі.
4.1 Розрахунки перехідних процесів у режимах підйому й опускання стріли
Вираження Jпр для даного механізму має вид:
;
;
Підйом стстріли:
M1ст = 884,88 Нм; Iн = 40,9А;
ωст1 = 96,36 рад/с; МП = 154,8Нм;
JПР = 0,142 кг∙м2; SH' = 0,37;
IH = 20,8A; SH2 = 0,16;
MH = 77,4 H∙м; SCM = 0,0649;
Таблица 3
Параметр | 1 | 2 | 3 | 4 | 5 | 6 |
∆ωi, c-1 | 20,94 | 20,94 | 18,85 | 12,56 | 12,56 | 12,56 |
ωi, c-1 | 20,94 | 41,88 | 50,73 | 73,29 |
85,85
98,41
∆ti, c
0,037
0,051
0,078
0,024
0,04
0,034
tП, c
0,264
–
–
–
–
–
Mдин, Н∙м
79,5
58,5
34,5
75
45
52,5
M, Н∙м
133,5
111
87/154,5
127
87/154,5
66
I, A
34,6
28,3
22,5/40,4
31,9
22,5/40,4
10,3
S
0,8
0,6
0,42
0,3
0,18
0,06
Опускання стріли: МСТ3 = 32,53 H∙м; ωст3 = 107 рад/с; JПР = 1,142 кг∙м2;
4.2 Розрахунки перехідних процесів при підйомі та опусканні вантажу
, де k – коефіцієнт враховуючий інерційність махових мас елементів кінематичної передачі.
;
Підйом вантажу:
кг∙м2;
МП = 148,5Нм; IП = 20,8A; H∙м;
I0 = 12,9A; IH = 20 A;
MH = 66,3 H∙м; Sn1 = 0,39;
Sn2 = 0,14; Sn3 = 0,055;
Таблица 4
Параметр | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
∆ωi, c-1 | 10,47 | 10,47 | 104,7 | 104,7 | 13,61 | 12,56 | 13,61 | 16,75 |
ωi, c-1 | 10,47 | 10,94 | 31,41 | 41,88 | 55,49 | 68,05 | 81,66 | 98,41 |
∆ti, c | 0,57 | 0,063 | 0,073 | 0,068 | 0,149 | 0,072 | 0,125 | 0,175 |
tП, c | 0,8 | – | – | – | – | – | – | – |
M, Н∙м | 109,5 | 102 | 94,5 | 85,5 | 72/117,3 | 99 | 72/117,3 | 49,5 |
Mg, Н∙м | 63,75 | 57 | 49,5 | 42 | 31,5 | 60 | 37,5 | 33 |
I, A | 28,9 | 26,5 | 24,2 | 21,7 | 18,3/32,1 | 25,3 | 18,3/31,04 | 13,7 |
S | 0,9 | 0,8 | 0,7 | 0,6 | 0,47 | 0,35 | 0,22 | 0,065 |
При спуску вантажу:
МСТ2 = 36,87 H∙м; ωст2 = 102,6 рад/с; JПР = 0,188 кг∙м2;
Таблица 5
Параметр | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
∆ωi, c-1 | 10,47 | 10,47 | 10,47 | 10,47 | 13,61 | 12,56 | 13,61 | 23,03 | 3,14 |
ωi, c-1 | 10,47 | 20,04 | 31,41 | 41,88 | 55,49 | 68,05 | 31,66 | 104,63 | 107,83 |
∆ti, c | 0,025 | 0,026 | 0,028 | 0,03 | 0,043 | 0,031 | 0,04 | 0,081 | 0,06 |
tП, c | 0,363 | – | – | – | – | – | – | – | – |
M, Н∙м | 100,5 | 102 | 94,5 | 85,5 | 72/ 117,3 | 99 | 72/ 117,3 | 0 | 33 |
Mg, Н∙м | 146,25 | 138 | 130,5 | 120 | 18,3/ 31,1 | 139,5 | 117 | 96 | 18 |
I, A | 28,88 | 26,5 | 24,2 | 21,7 | 105 | 25,3 | 18,3/ 31,04 | 8,82 | 10,6 |
S | 0,9 | 0,8 | 0,7 | 0,6 | 0,47 | 0,35 | 0,22 | 0 | -0,03 |
Підйом холостого гака:
МСТ3 = 6,137 H∙м; ωст3 = 103,66 рад/с; JПР = 0,117 кг∙м2;
Таблица 6
Параметр | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
∆ωi, c-1 | 10,47 | 10,47 | 10,47 | 10,47 | 13,61 | 12,56 | 13,61 | 22 |
ωi, c-1 | 10,47 | 20,04 | 31,41 | 41,88 | 55,4 | 69,05 | 81,66 | 103,66 |
∆ti, c | 0,032 | 0,035 | 0,038 | 0,042 | 0,036 | 0,042 | 0,058 | 0,113 |
tП, c | – | – | – | – | – | – | – | – |
M, Н∙м | 109,5 | 102 | 94,5 | 85,5 | 72/ 117,3 | 97,5 | 72/ 117,3 | 7,5 |
Mдин, Н∙м | 105 | 97,5 | 90 | 81 | 70,5 | 90 | 76,5 | 63 |
I, A | 28,88 | 26,88 | 24,2 | 21,7 | 18/ 31,1 | 25 | 18/ 31,04 | 9 |
S | 0,9 | 0,8 | 0,7 | 0,6 | 0,47 | 0,35 | 0,22 | 0,01 |
Спуск холостого гака:
МСТ4 = -2,8 H∙м; ωст3 = 103,66 рад/с; JПР = 0,117 кг∙м2;
Таблица 7
Параметр | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
∆ωi, c-1 | 10,47
Гальмування при підйомі вантажу: Mст1 = 65,85 Нм; SП = 2,26; ωст1 = 100,5 рад/с; IП = 14,1А; JПР = 0,188 кг∙м2; МН = 54 Нм; IH = 20 A; SH = 1,94; MП = 66,3 H∙м; 1< S < 2; МСТ4 = -2,8 H∙м; ωст3 = 103,66 рад/с; JПР = 0,117 кг∙м2; Таблица 8
Гальмування при спуску вантажу: Mст2 = 36,87 Нм; МН = 57 Нм; ωст2 = 102,6 рад/с; SH = 2,04; IH = 15,1 A; Час механічного гальмування: ; ; ; Таблица 9
| 0,8 | 2,9 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
tП, c | 4,2 | – | – | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M, Н∙м | 21 | 13,5 | 4,5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mдин, Н∙м | 48 | 40,5 | 32,2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I, A | 13,6 | 12,4 | 11,1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S | 1,75 | 1,45 | 1,09 |
Гальмування при підйомі холостого гака:
Mст3 = 6,137 Нм; IН = 14,9А;
ωст3 = 103,6 рад/с; МН = 56,25 Нм;
JПР = 0,117 кг∙м2; SH = 1,99;
Таблица 10
Параметр | 1 | 2 | 3 | 4 | 5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
∆ωi, c-1 | 19,89 | 20,04 | 20,04 | 20,04 | 20,94 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ωi, c-1 | 83,76 | 62,82 | 41,88 | 20,04 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
∆ti, c | 0,107 | 0,123 | 0,137 | 0,156 | 0,181 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
tП, c | 0,704 | – | – | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M, Н∙м | 49,5 | 45 | 39 | 34,75 | 28,5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mдин, Н∙м | 60 | 55,5 | 49,5 | 43,5 | 37,5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I, A | 13,88 | 13 | 12,17 | 11,46 | 10,7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S | 1,8 | 1,6 | 1,4 | 1,2
Гальмування при спуску холостого гака: Mст4 = 12,8 Нм; IН = 14,9А; ωст4 = 103,66 рад/с; МН = 56,25 Нм; JПР = 0,117 кг∙м2; SH = 1,99; Таблица 11
5. Побудова навантажувальних діаграм приводів 5.1 Визначення часу сталих режимів при операціях підйому і спуску стріли з вантажем і без вантажу Розрахунок часу в сталому режимі: ; ; ; ; ; при підйомі стріли; при спуску стріли; ; ; ; с – при підйомі; с – при спуску; Середньоквадратичне значення моментів ; Підйом стріли: ; Спуск стріли: ; tп = 0,144с; Mст3 = 32,53 Н∙м; Mст4 = 32,53 Н∙м; tg2 = 81,8с; ; tm=0,231 c 5.2 Визначення часу сталих режимів при підйомі опусканні вантажу Розрахунок часу в сталому режимі: , де ; ; Розрахунок сталого часу:
З графіків перехідних процесів знаходимо середньоквадратичне значення моментів для кожного з зазначених режимів роботи по формулі: .
;
;
;
; 6. Перевірка двигунів на нагрівання 6.1 Перевірка на нагрівання двигуна підйому стріли Двигун механізму зміни вильоту стріли працює в короткочасному режимі. ; ; Двигун, обраний для цього механізму має ПВ-40% – це відповідає 60 хвилин роботи. Постільку 88,75 << 3600, то двигун перегріватися не буде. 6.2 Перевірка на нагрівання двигуна підйому вантажу З графіків перехідних процесів за допомогою формули для обчислення середньоквадратичної величини знайдемо значення струмів. .
Двигун працює в повторнократкочасному режимі. У цьому випадку визначається еквівалентний струм, відповідає тільки робочому часу циклу.
Знайдемо розрахункову тривалість включення двигуна: , де ; ;
; ; ; ; ; ; ; ; ; ; Література
2. Реферат Условия возникновения эмоций 3. Реферат Гештальт - целое не всегда равно сумме его частей 4. Реферат Экологический мониторинг радиоактивных загрязнений воздуха у школы 5. Реферат Психолого-педагогическая характеристика детей школьного возраста с нарушением познавательной дея 6. Реферат Пассивная безопасность автомобиля 7. Реферат Понятие и структура предпринимательства 8. Сочинение на тему Высоцкий в. с. - Чем мне близка поэзия в. высоцкого 9. Реферат Артемисия I 10. Лабораторная_работа на тему Настройка ОС Windows |