Курсовая

Курсовая на тему Требования экологической безопасности к охлаждающим жидкостям для автотракторных двигателей

Работа добавлена на сайт bukvasha.net: 2015-07-02

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024


Министерство образования РФ

Департамент кадровой политики и образования Минсельхоза РФ

Иркутская Государственная Сельскохозяйственная Академия

Кафедра ЭМТП

Реферат

«Требования экологической безопасности к охлаждающим жидкостям для автотракторных двигателей»

Выполнил: студент 4 курса. 1 гр.

Инженерного факультета

Спец: 110301.65

Иванов К.Н.

Проверил: Хабардин В.Н.

Иркутск-2010

Содержание

Введение.

  1. Требования, предъявляемые к охлаждающим жидкостям.

  2. Вода, как охлаждающая жидкость.

  3. Этиленгликолевые смеси.

  4. Комплексная утилизация смазочно-охлаждаюших жидкостей с применением гидрофобизированных порошков.

Список литературы.

Введение

Часть тепла, выделяющегося при сгорании топлива в двигателе идет на нагрев камеры сгорания и цилиндров двигателя. При чрезмерном нагреве стенок камер сгорания теряется мощность двигателя вследствие ухудшения наполнения цилиндров, ухудшаются условия смазывания, появляется детонация, калильное зажигание и другие нежелательные явления. Чтобы предотвратить перегрев деталей двигателя, их охлаждают. В качестве охлаждающих агентов в двигателях используют воздух или жидкости Наибольшее распространение получили жидкостные системы охлаждения.

В двигателях с жидкостным охлаждением блок и головка цилиндров выполнены двойными. Между стенками образуется охлаждающая рубашка, которая заполняется жидкостью. Охлаждающая жидкость отводит тепло от стенок и головки цилиндров и отдает тепло воздуху, который нагнетается вентилятором через радиатор. Таким образом, охлаждающая жидкость непрерывно циркулирует в замкнутой системе охлаждения, нагреваясь в блоке и головке цилиндров и охлаждаясь в радиаторе.

Требования, предъявляемые к охлаждающим жидкостям

Для обеспечения нормальной работы всей системы к охлаждающей жидкости предъявляют ряд требований. Жидкость должна:

иметь высокие теплоемкость и теплопроводностъ для эффективного отвода тепла;

не замерзать и не кипеть при всех рабочих температурах двигателя;

не воспламеняться;

не вспениваться;

не вызывать коррозии металлов и сплавов;

не разъедать резинотехнические изделия системы охлаждения;

обладать достаточно низкой стоимостью и производиться в достаточном количестве;

удовлетворять все требования экологической безопасности

Для эксплуатации двигателей при положительных температурах воздуха самой подходящей охлаждающей жидкостью является вода. При отрицательных температурах во избежание замерзания воды применяют водные смеси с различными веществами, понижающими температуру застывания. Такие смеси получили название антифризов.

Вода, как охлаждающая жидкость

Вода - наиболее распространенная охлаждающая жидкость. Она доступна, безопасна в пожарном отношении, безвредна для человека и окружающей среды, имеет высокую удельную теплоемкость - 4,19 кДж/кг·°С, превосходящую все другие известные охлаждающие жидкости. Существенным недостатком является высокая температура замерзания (вода замерзает при температуре О °С со значительным увеличением объема, что вызывает разрушение (размораживание) системы охлаждения при низких температурах.

Слой накипи имеет очень малую теплопроводность, т.е. ухудшает теплоотвод. Одновременно уменьшается сечение трубок радиатора, что также ведет к перегреву двигателя и как следствие - к увеличению расхода топлива

Соли кальция и магния, находящиеся в растворенном состоянии, придают воде свойства, которые получили название «жесткость».

Чем выше содержание в воде солей магния и кальция, тем больше ее жесткость. За единицу жесткости принимают миллиграмм-эквивалент солей на 1 л воды. Если жесткость воды равна 1 мг·экв/л, то это означает, что в 1 л воды содержится 20,04 мг ионов кальция или 12,16 мг ионов магния. Различают жесткость временную, постоянную и общую.

Вещества, известные под названием антинакипинов, позволяют предотвратить образование накипи обработкой воды непосредственно в системе охлаждения. Добавление антинакипинов особо удобно в полевых условиях при отсутствии мягкой воды. Действие антинакипинов сводится к предотвращению образования твердых отложений накипи на горячих поверхностях.

Достигается это за счет перевода солей, дающих накипь, в рыхлое состояние или за счет удержания таких солей в воде в виде перенасыщенных растворов. В качестве антинакипинов используют различные составы .

Воду, предназначенную для систем охлаждения, необходимо предохранять от загрязнения нефтепродуктами. Попадание топлив и масел в воду часто сопровождается интенсивным вспениванием и выбросом охлаждающей жидкости из системы.

Этиленгликолевые смеси

Этиленгликолъ - двухатомный спирт, представляет собой прозрачную бесцветную вязкую жидкость без запаха. Цвет технического этиленгликоля слегка желтоватый. При небольшой температуре застывания чистого этиленгликоля, его смеси с водой застывают при более низких температурах. Меняя соотношение воды и этиленгликоля, можно получить смеси с температурой застывания от 0 до минус 70°С

Основные показатели этилен гликоля следующие:

плотность при 20 °С, кг/м3 1,113

коэффициент рефракции 1,4318

температура плавления, °С 11,5

температура кипения, °С 197,4

коэффициент объемного расширения 0,00062

удельная теплоемкость при 20°С, кДж/(кг · °С) 2,40

температура вспышки, °С 122

температура воспламенения, °С 140

температура самовоспламенения, °C 380

пределы воспламенения паров в воздухе от нижнего до верхнего, 3,8- 6,4 % (по объему).

Технический этиленгликоль и жидкости, в которых он содержится, являются весьма токсичными.

Этиленгликоль токсичен. Летальная доза при однократном пероральном употреблении составляет 100—300 мл этиленгликоля (1,5-5мл на 1 кг массы тела). Имеет относительно низкую летучесть при нормальной температуре, пары обладают не столь высокой токсичностью и представляют опасность лишь при хроническом вдыхании. Определённую опасность представляют туманы, однако при их вдыхании об опасности сигнализируют раздражение и кашель. Противоядием при отравлении этиленгликолем являются этанол и 4-метилпиразол.

Комплексная утилизация смазочно-охлаждаюших жидкостей с применением гидрофобизированных порошков

Современные СОЖ представляют собой сложные многокомпонентные композиции, отвечающие комплексу требований к их технологическим и сопутствующим свойствам. Опыт передовых машиностроительных заводов показывает, что эффективные СОЖ позволяют в 1,2—4 раза повысить стойкость инструмента, на 20—60% форсировать режимы резания, на 10—50% повысить производительность труда, уменьшить энергозатраты при механообработке. Но в процессе многократного использования при механической обработке металлов СОЖ теряют свои технологические свойства. В результате накопления металлических частиц и продуктов термического разложения масел, продуктов их окисления, образования смол - снижается эффективность применения СОЖ. Кроме того, эмульсия обедняется за счет выноса эмульсола со стружкой (полосой). Попадание в СОЖ масел, смазок и спецжидкостей из гидравлических систем, станков и станов, повышение содержания солей жесткости в водной фазе (выпаривание воды из эмульсии и внесение солей жесткости при добавлении воды), микробиологическое поражение (загнивание) - всё это приводит к разрушению СОЖ, и возникает необходимость в её замене и последующей утилизации.

Наиболее часто используемый метод с предварительной очисткой от механических примесей является реагентный метод разложения отработанных эмульсий. Его основным достоинством является простота реализации технологического процесса, доступное оборудование и материалы.

На ряде крупных российских предприятий ОАО «АВТОВАЗ» г. Тольятти, ОАО «Северсталь» г. Череповец, ОАО «НЛМК» г. Липецк - действуют технологические системы утилизации СОЖ с применением реагентов-коагулянтов, флокулянтов, минеральных кислот и щелочей.

Однако остаточные концентрации загрязняющих веществ в водной фазе после разложения СОЖ достаточно велики, в десятки раз превышая установленный предельно допустимый сброс (ПДС) - Снефтепрод =10-100 мг/л при ПДСнефтепрод =0,5-1,2 мг/л.

Для комплексной утилизации СОЖ предлагается использовать гидрофобизированные порошки (ГФП) на основе природных сорбентов Ульяновской области (диатомита, опоки). Установлена возможность и эффективность их применения, как для разрушения отработанной эмульсии, так и для очистки водной и масляной фаз. Предлагаемый сорбционный метод разрушения эмульсий обладает рядом преимуществ по сравнению с реагентным методом:

- снижение себестоимости разложения 1 м3 отработанной СОЖ на 80-90%;

-большая эффективность разделения эмульсии на водную и масляную фазы;

-остаточное содержание основного загрязняющего вещества в водной фазе нефтепродуктов не превышает 1...2 мг/л вместо 10…50 мг/л для реагентного метода;

-более эффективное удаление анионов, катионов (до норм ПДС, установленных для предприятия);

-применение природного сырья при изготовлении гидрофобизированных порошков сокращает затраты и предотвращает загрязнение окружающей среды при осуществлении технологического процесса разложения СОЖ;

-получаемые продукты разложения СОЖ вода и масло соответствуют требованиям, предъявляемым для дальнейшего использования их в техпроцессах;

-значительное снижение отходов с переработки 1 м3 отработанной СОЖ, кроме того, сами загрязненные порошки могут подвергаться термической регенерации, либо использоваться в дорожном строительстве в качестве заменителя гудрона.

Для реализации комплексной утилизации отработанных СОЖ с применением ГФП предлагается следующая технологическая схема, состоящая из модулей :

1.Модуль приготовления ГФП;

2.Модуль отработанной СОЖ;

3.Реактор;

4.Модуль очистки водной фазы;

5.Модуль утилизации осадков;

6.Модуль очистки масляной фазы;

7.Модуль регенерации ГФП.

Модуль приготовления ГФП предназначен для приёма природного порошкового сорбента и его гидрофобизации. В модуле накопления отработанной СОЖ происходит депонирование и предварительная очистка эмульсии от механических примесей и удаление свободного масла,

В реактор осуществляется подача отработанной СОЖ и ГФП с установленным расходом. Предварительно установленный расход ГФП по нашим данным составляет около 10 кг/м3. В реакторе образуется водная фаза и осадок ГФП, содержащий масляную фазу.

Водная фаза направляется в модуль очистки воды. Здесь может быть использован негидрофобизированный природный сорбент для глубокой очистки воды от загрязняющих компонентов, до требуемой степени в зависимости от варианта дальнейшего использования.

Осадок, содержащий ГФП, попадает в модуль утилизации осадков, где происходит разделение ГФП и масляной фазы. Порошок направляется в модуль регенерации ГФП, а отделённое масло в модуль очистки масляной фазы.

В модуле очистки масляной фазы происходит удаление примесей из масла и его обезвоживание, обработка масла осуществляется сорбентом.

В модуле регенерации отработанный ГФП, накапливается и очищается от остаточного загрязнения, повторно гидрофобизируется для восстановления исходных свойств. После этого ГФП направляется на подачу в реактор.

Комплексная утилизация отработанных СОЖ реализуется в данной технологической схеме в полной мере. Под комплексной утилизацией СОЖ мы понимаем совокупность технологических процессов переработки отработанной эмульсии и всех продуктов её разложения с полным или частичным возвратом их в производство.

Удельная стоимость переработки 1м3 СОЖ значительно уменьшается до 100-200 руб/м3 за счёт возврата в производство сырьевых ресурсов - воды и масла. Себестоимость переработки 1 м3 отработанной СОЖ в приведённых выше примерах реагентным методам достигает 800-1000 руб.

Вода составляет порядка 90-95 % от общего объёма поступающей на утилизацию эмульсии. При осуществлении дополнительной очистки до требуемых норм вода может быть использована в других технологических процессах.

При разложении СОЖ масло образуется в объёме 3-5% от исходного объёма. При дополнительной очистке его можно применять следующим образом:

в качестве технологических смазочных материалов в литейном производстве; в виде топлива для котельных и ТЭЦ; как закалочные среды; добавка к битумам; сырьё для обмасливания металлургических порошков в сталелитейном производстве; в качестве сырья для производства керамзита; как смазочные материалы для форм при производстве железобетона.

Шламы и осадки после просушки и прокаливания можно добавлять к строительным материалам, при большом содержании металлических частиц проводить магнитную сепарацию и извлечённые ферромагнитные частицы прессовать в брикеты для дальнейшей переплавки.

Таким образом, реализация сорбционного метода разрушения эмульсии с использованием ГФП, доочистки водной и масляной фаз после разложения СОЖ с применением изученных материалов позволит перейти на более эффективный технологический процесс утилизации, что существенно снизит нагрузку предприятия на окружающую среду.

Список литературы

  1. Стребков С.В., Стрельцов В.В. Применение топлива, смазочных материалов и технических жидкостей в агропромышленном комплексе. Учебное пособие. – Белгород: Белгородская ГСХА, 1999. – 404 с.

  2. Смазочно-охлаждающие технологические средства и их применение при обработке резанием: Справочник / Л.В. Худобин, А.П. Бабичев, Е.М. Булыжёв и др. / Под общ. Ред. Л.В. Худобина. - М.: Машиностроение, 2006. - 544 с; ил

  3. http://ru.wikipedia.org/wiki/Этиленгликоль

  4. http://goup32441.narod.ru/files/eo/001_oporn_konspekt/t2z3.html

  5. http://catalog.autodela.ru/article/view/349


1. Контрольная работа на тему Налогообложение имущества
2. Реферат на тему Анализ рентабельности предприятия НПРУП Экран 9
3. Реферат Образ и судьба русской деревни в повести Бунина Деревня
4. Реферат Олигополия 7
5. Курсовая Вегетарианский стол
6. Реферат Обычное и необычное вещество вода
7. Реферат Іуда Іскаріотський
8. Реферат на тему Computers Essay Research Paper computers are fun
9. Доклад Бизнес-план ООО ФРИК
10. Реферат Повышение производительности труда на предприятии