Курсовая

Курсовая Конструирование утепленной ребристой плиты покрытия с фанерными обшивками

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025


Содержание

  1. Исходные данные

  2. Проектирование сборных плит покрытия с деревянным ребристым каркасом

2.1 Исходные данные

2.2 Компановка поперечного сечения плиты

2.3 Расчётная схема плиты, нагрузка и усилия

2.4 Проверка прочности панели по нормальным напряжениям

2.5 Проверка растянутой обшивки с учётом сращивания листов фанеры на "ус" в расчётном сечении

2.6 Проверка сжатой обшивки на устойчивость

2.7 Проверка фанеры на скалывание по собственному клеевому шву

2.8 Проверка жёсткости панели в целом

  1. Проектирование дощатоклееной балки

3.1 Исходные данные

3.2 Решение по 1 варианту из неармированного дощатоклееного пакета.

3.3 Решение по 2 варианту с продольной арматурой в растянутой зоне.

  1. Проектирование дощатоклееных колонн поперечной рамы одноэтажного дома

4.1 Составление расчётной схемы двухшарнирной поперечной рамы и определение расчётных усилий в колоннах

4.2 Конструктивный расчёт стержня колонны

4.2.1 Проверка устойчивости колоны в плоскости поперечника

4.2.2 Проверка устойчивости колоны из плоскости поперечника

4.3 Расчёт и конструирование узла крепления колоны к фундаменту

    1. Определение расчётных усилий в плоскости сопряжения с фундаментом

    2. Расчёт фундаментных болтов

    3. Расчёт соединительных болтов

1. ИСХОДНЫЕ ДАННЫЕ

  1. Пролет поперечника в осях А – Б, L = 21 м;

  2. Высота корпуса в чистоте, H = 10 м;

  3. Температурно-влажностный режим эксплуатации соответствует А3;

  4. Класс ответственности здания по назначению – III

  5. Район строительства:

  • по снеговой нагрузке – IV;

  • по ветровой нагрузке – IV;

  • по типу местности соответствует С.

6. Материал – сосна I, II, III сорта, фанера строительная водостойкая марки ФСФ (принимается по сортаменту).

    1. Проектирование сборных плит покрытия с деревянным ребристым каркасом.

2.1. Исходные данные

Рассчитать и сконструировать утепленную ребристую плиту покрытия с фанерными обшивками при следующих данных.

Номинальные размеры плиты в плане (из схемы расположения элементов) bхl=1.5 х 4.5 м, конструктивные – соответственно 1.48 х 4.48 м.

Материал ребер каркаса – сосновые доски 2-го сорта для продольных ребер и без ограничения для поперечных.

Обшивки из березовой водостойкой фанеры марки ФСФ.

Утеплитель минераловатные в виде полужестких плит марки 75 на синтетическом связующем, толщина 100 мм (по теплотехническому расчету).

Пароизоляция из полиэтиленовой пленки толщиной 0.2 мм (масса 0.1 кг/м2).

Кровля из 3-х слоев рубероида на битумной мастике (масса 0.1 кг/м2).

Условия эксплуатации по температурно-влажностному режиму соответствуют А3.

Район строительства по снеговой нагрузке – IV.

Класс ответственности здания по назначению – III .

2.2 Компоновка поперечного сечения плиты

Предварительно принимаем продольные ребра из доски толщиной bр=40 мм.

При ширине плиты b=1480 мм целесообразно поставить четыре ребра. Тогда расстояние между ними в свету равно:

мм,

а между осями мм, что меньше 500 мм.

Удовлетворяет рекомендации.

Предварительно задаемся толщиной листа фанеры верхней обшивки

dф.в.= 10 мм, что составляет 1:46 шага ребер, близко рекомендуемой.

Проверяем достаточность толщины расчетом на местный изгиб сосредоточенной силой Р=1.2 кН.

Лист фанеры рассматриваем как балку–пластинку с рабочей шириной

100 см, защемленную по концам в местах приклейки к ребрам (Рис. 1).

Расчетный изгибающий момент (выровненный):

М=Р×а /8=1.2*42.7/8=6.405 кН×см;

Момент сопротивления рабочего сечения обшивки:

W=100×0.82/6=10.7 см3;

Условие прочности обшивки :

smax=M/W £ mн×Rф.и.90

где mн=1.2 – коэффициент, учитывающий кратковременность

монтажной нагрузки [1, табл.6];

Rф.и.90 = 6.5 МПа = 0.65 кН/см2 – расчетное сопротивление

семислойной фанеры толщиной 10 мм изгибу из плоскости

листа поперек наружных волокон [1, табл.10].

Рис. 1. К расчету верхней обшивки на местный изгиб:

а – схема деформации балки пластинки;

б – расчетная схема и эпюра моментов.

Подставляем:

smax = 6.405/10.7 = 0.6 кН/см2 < mн×Rф.и.90 = 1.2×0.65 = 0.78 кН/см2.

Условие прочности удовлетворяется.

Задаемся толщиной нижней обшивки 6 мм.

Размеры листов фанеры по сортаменту принимаем b´l = 1525´1525 мм. Так как длина плиты равна 4500 мм, то необходимо сращивать листы по длине, совмещая стыки c поперечными ребрами.

Высоту сечения плиты назначаем в пределах

hп=(1/25…1/30)×l=180…150 мм.

По сортаменту пиломатериалов принимаем ребра из досок 150´40 мм.

После фрезерования кромок действительная высота плиты будет равна

hп=150-10+10+6=156 мм,

что достаточно для размещения слоя утеплителя и образования продух (Рис. 2).

Дальнейшим расчетом проверяем достаточность принятых размеров.

Рис. 2. Конструкция клеефанерной плиты с ребристым каркасом из досок: 1 – продольные ребра; 2 – поперечные ребра;3 – обшивка верхняя; 4 – обшивка нижняя; 5 – утеплитель; 6 – продух; 7 – стык фанеры.

2.3 Расчетная схема плиты, нагрузка и усилия

Расчетная схема плиты на действие эксплуатационной нагрузки – балка на двух опорах, загруженная равномерно распределенной нагрузкой от собственной массы плиты с кровлей и снега (Рис. 3). Расчетная длина l0 = 0.98×l = 0.98×4.5 = 4.41 м.

Вид нагрузки

Нормативная

gf

Расчетная


кН/м2

кН/м при b=1.5 м


кН/м2

кН/м при b=1.5 м

1.

2.

3.

4.

5.

6.

Постоянные: 1.От собственной массы каркаса плиты:

четыре продольных ребра и шпунтовые рейки из сосновых досок (gсм = 500 кг/м3)

5×(0.04´0.14´4.48)×500 = 62.72 кг

четыре поперечных ребра

4×(0.04´0.14´1.48)×500=16.6 кг

фанерные обшивки

при gсм =700 кг/м3

(0.006+0.01)×1.48´4.48´700=

= 74.26 кг






Общая масса отнесенная к 1м2

(62.72+16.6+74.26)/(4.5´1.5)= 22.75 кг/м2

2.От массы утеплителя слоем 100 мм при gсм = 75кг/м2

[4, прил.III]

3.Масса трехслойной рубероидной кровли

4.Пароизоляция полиэтиленовая

0.2275


0.075


0.10

0.001

0.341


0.113


0.150

0.0015

1.1


1.2


1.3

1.2

0.25


0.09


0.130

0.0012

0.375


0.135


0.195

0.0018

Итого :

qсмн = 0.606 кН/м


qсм = 0.707 кН/м

Временная:

Снеговая для II снегового района по [1], табл.4 с учетом

п. 5.7*


1.71


2.56


1.4


2.4


3.6

Всего :

qн = 3.166 кН/м


q = 4.307 кН/м

*В соответствии с п. 5.7 при отношении постоянной нагрузки к снеговой 0.606/3.6 = 0.168<0.8 принят gf =1.6.

Расчетные усилия :

кН×м;

кН.

Рис. 3. К расчету плиты на эксплуатационную нагрузку:

а – схема опирания плиты на стропильные балки; б – расчетная схема плиты и усилия; 1 – плита; 2 – стропильные балки.

2.4 Проверка прочности панели по нормальным напряжениям

Расчетное поперечное сечение показано на Рис. 4. Так как

l0 = 4480 > 6×a = 6×467 = 2800 мм,

то вводимая в расчет ширина обшивок

bрасч = 0.9 ×b = 0.9×148 = 133 см.

Суммарная ширина дощатых ребер

Sbр = 4×4 = 16 см.

Модули упругости древесины Ед = 1000 кН/см2, фанеры семислойной марки ФСФ при d ф = 8 мм, Еф = 850 кН/см2, при d ф = 6 мм, Еф = 950 кН/см2. Принимаем усредненно Еф = 900 кН/см2, тогда коэффициент приведения древесины к фанере nд/ф = 1000/900 = 1.11.

Расстояние от низа плиты до центра тяжести приведенного сечения:

см,

а от верха плиты до центра тяжести приведенного сечения:

см.

Приведенные геометрические характеристики:

см3;

см3.

Рис. 4. Расчетное поперечное сечение плиты

Расчетные сопротивления фанеры березовой семислойной по [1, табл.10] растяжению вдоль волокон: Rф.р = 14 МПа = 1.4 кН/см2, сжатию вдоль волокон при толщине листа 8 мм: Rф.с = 12 МПа = 1.2 кН/см2. Вводим поправочные коэффициенты. Для условия работы А3 по [1, табл.5] mв = 0.9. Для зданий II класса ответственности по [2, с. 34] gn = 0.9. Поправочный множитель к расчетным сопротивлениям:

2.5 Проверка растянутой обшивки с учетом сращивания листов фанеры на "yс" в расчетном сечении

кН/см2,

что меньше чем

= 0.6 × 1.4 × 1 = 0.84 кН/см2,

где mф = 0.6 – коэффициент, учитывающий снижение прочности фанеры

при наличии стыков в расчетном сечении.

Прочность растянутой обшивки обеспечена.

2.6 Проверка сжатой обшивки на устойчивость

Предварительно, согласно [1, п. 4.26], вычисляем jф.

При а0/dф = 467/10 = 46.7< 50, находим

jф = .

Условие устойчивости:

Подставим значения:

кН/см2;

кН/см2;

кН/см2.

Устойчивость сжатой обшивки обеспечена.

2.7 Проверка фанеры на скалывание по собственному клеевому шву

Предварительно находим статические моменты сдвигаемых частей относительно центра тяжести приведенного сечения.

Сдвигается верхняя обшивка,

Sсжотс = 133 × 1 × (7,1 – 1×0.5) =877,89 см3.

Сдвигается нижняя обшивка,

Sротс = 133 × 0.6 × (8,5 - 0.6×0.5) = 654,3 см3.

Наибольшим сдвигающим напряжениям соответствует

Smaxотс = Sсжотс = 877,89 см3 верхней обшивки.

По [1], табл.10 при dф = 10 мм расчетное сопротивление скалыванию в плоскости листа вдоль волокон наружных слоев Rф.ск = 0.8 Мпа = 0.08 кН/см2.

Проверяем условие [1], (42):

кН/см2 < Rф.ск × 1 = 0.8 кН/см2

Прочность клеевого шва достаточна.

2.8 Проверка жесткости панели в целом

Наибольший относительный прогиб панели как двухопорной балки по середине пролета вычисляем по формуле:

Условие жесткости

[1],

табл.16 удовлетворяется.

3. Проектирование дощатоклееной балки

Для двухскатного малоуклонного покрытиятребуется рассчитать и сконструировать стропильную балку в двух вариантах: 1-дощатоклееная не армированная; вариант 2 – дощатоклееная с продольным армированием.

3.1 Исходные данные

Пролет поперечника в осях L = 21 м, шаг балок В = 4.5 м.

Настил из сборных клеефанерных плит. Нагрузка от собственной массы плит с кровлей: нормативная – 0.404 кН/м2; расчетная – 0.471 кН/м2.

Снеговая нормативная нагрузка – 1.71 кН/м2.

Класс ответственности здания – III.

Температурно-влажностный режим соответствует A3.

Пиломатериал - сосновые доски 2-го и 3-го сортов.

Предельный прогиб балки посередине [f/l] = 1:300.

3.2 Решение по варианту 1 из неармированного дощатоклееного пакета

Расчетная схема балки на рис.6.

Уклон крыши i = 1:15.

Расчетный пролет l0 = L - hк = 21 - 0.6 = 20.4 м.

Нагрузку от собственной массы балки со связями найдем, приняв

Ксв = 6

кН/м2

Подсчет нагрузок на балку приведен в таблице.

Вид нагрузки

Нормативная

gf

Расчетная


кН/м2

кН/м

при В=4.5м


кН/м2

кН/м при

В=4.5 м

Постоянная:

от плит настила и кровли от собственной массы балки и связей

0.404

0.295

1.818

1.329

1.2

0.471

0.355

2.12

1.593

Итого:

0.699

3.147


0.826

3.715

Временная: снеговая

1.71

7.695

1.4

2.4

10.8

Всего:


10.862



14.51

*Коэффициент надежности по снеговой нагрузке gf = 1.4 принят в соответствии с п. 5.7 [2] при qнп/pнс = 0.699/1.71 = 0.408 < 0.8.

Высоту балки по середине пролета h предварительно определим из условия надежности по деформациям с учетом выражения для прогиба и известной формулы прогиба балки постоянной высоты при равномерно распределенной нагрузке

, где .

После подстановки и решения относительно h получим

,

где b – ширина сечения пакета;

поправочный коэффициент.

Задавшись предварительно рекомендуемыми отношениями h0/l = 1/15 и

h0/h » 0.5, по формулам вычисляем

;

.

Тогда

Шириной досок для пакета зададимся: b = 17.5 см без фрезерования кромок. Модуль упругости сосны Ед = 1000 кН/см2 = 107 кН/м2.

Подставив значения получаем

м.

Принимаем h = 167 см.

На опоре h0 = h – 0.5×l0×i = 1.67 – 0.5×20.4×1/15 = 0.99м, что > 0.4×h = 0.668.м.

Проверим сечение балки из условий прочности.

По [1,табл. 3] находим требуемые расчетные сопротивления: при изгибе для древесины 2-го сорта Rи =15 МПа = 15 кН/см2; при скалывании вдоль волокон для 3-го сорта Rск = 1.5 МПа = 0.15 кН/см2.

Коэффициенты условий работы:

- для условий эксплуатации A3 по [1,табл.5], mв = 0.9;

- для балок высотой 120 см и более по [1,табл.7], mб = 0.8;

- при толщине слоя досок в пакете 33 мм по [1,табл.8], mсл = 1.

Коэффициент надежности по назначению для зданий II класса gn = 0.9.

Поправочные коэффициенты при расчетах:

на изгиб ;

на скалывание.

Поперечная сила в опорном сечении

Qmax = 0.5×q×l0 = 0.5×14.51×20.4 =148.1 кН.

Минимальная высота балки в опорном сечении из условия прочности на скалывание:

см,

h0 = 99 > 85 см.

Прочность на скалывание обеспечена.

Расстояние от опоры до расчетного нормального сечения:

м.

Изгибающий момент в сечении xр = 6.05 м равен:

кН×м.

Высота балки в расчетном сечении:

см.

Момент сопротивления расчетного сечения:

см3.

Проверим условие устойчивости, задавшись предварительно коэффициентом устойчивости при изгибе jм = 1:

кН/см2,

что < Rи×Õmi = 1.5×0.8 = 1.2 кН/см2.

Условие устойчивости удовлетворяется. При этом фактическая величина коэффициента

.

Найдем расстояние между связями в плоскости сжатой кромки, при котором

jм = 0.927:

см,

гдеkф = 1.13 и – коэффициенты.

Примем расстояние между связями lр = 255 см из условия расстановки.

Поперечное сечение балки компонуем из досок в заготовках 40 мм, после острожки – по пласти 33 мм. В крайних слоях располагаем доски 2-го сорта, а в среднем – 3-го сорта.

3.3 Решение по варианту 2 с продольной арматурой в растянутой зон

Задаемся арматурой из 2 Æ 20 А-II, А =6.28 см2.

Из условия расположения стержней следует принять . Примем мм , тогда мм , по сортаменту b= 175 мм

Требуемый момент инерции среднего сечения для обеспечения жесткости берем из расчета по варианту 1 ,

I =I = = 6792133.54 см2

Комплексное металлодеревянное сечение приведем к однородному с помощью коэффициента

hS / Еd =20 .

Коэффициент

m = = =0.0021

Для I находим требуемую высоту :

см

В опорном сечении

h0 =h – 0.5×l0×i = 1.606 – 0.5×21×1/15 = 0.906м >м, из расчета по прочности на скалывание (см. вариант 1).

Принимаем h0 =90.6 см, не изменяя средней высоты.

Уклон при этом равен: , что находится в рекомендуемых пределах.

Положение расчетного нормального сечения находим по

м .

Изгибающий момент:

кН×м.

Высота расчетного сечения

см.

Приведенные геометрические характеристики расчетного сечения :

см4,

см3,

кН/см2 , что < Rи×Õmi = 1.5×0.8 = 1.2 кН/см2.

Допустимый коэффициент

,

при этом расстояние между связями в плоскости сжатой кромки должно быть не больше

см.

Принимаем шаг lр =340 см по условию размещения.

Стержни 2 O20, А-|| располагаем в квадратных пазах со сторонами а=25мм на эпоксидном клее ЭПЦ-1 или К-123 с наполнителем из древесной муки.

Проверяем прочность на скалывание древесины по периметру клеевого шва. Предварительно вычислим геометрические характеристики в опорном сечении. При этом

,

см4,

см3,

см,

кН/см2,

что < кН/см2

Прочность на скалывание по клеевому шву обеспечена.

Проверяем прочность опорной площадки на смятие древесины поперек волокон. По [1, табл.3] для опорных узлов Rсм =3.0 МПа.

При ширине опорной площадки b=17.5см требуемая длина ее

см.

Расчёт опорного узла с вклееными поперечными стержнями

Расчётная несущая способность одного стержня

,

Принимаю стержень d=1.6 см ; ℓ-длина заделки стержня =64 см

причём ℓ≥10d и ℓ≥0,7h0

- учитывает неравномерность по длине

=1 при одном стержне; 0,9-при двух ; 0,8- при трёх в ряд. Если 2 и 3 стержня расположены в 2 ряда, уменьшается на 0,1.

Рекомендуется на опоре в 2 ряда с центральной прокладкой на сварке.

- на срез независимо от сорта древесины.

Требуется -длиной по 64 см. или 6стержней меньшей длины.

Проверяем условие жесткости :

Где

;

;

см4,

4. Проектирование дощатоклееных колонн поперечной рамы одноэтажного здания

4.1 Составление расчетной схемы двухшарнирной поперечной рамы и определение усилий в колоннах

Схема поперечника показана на Рис. 5. Поперечное сечение колонн принято bк = 17.5 см, hк = 80 см. Плиты покрытия ребристые клеефанерные толщиной

15.6 см. Кровля рубероидная. Стены панельные навесные толщиной 15.4 см, конструктивно подобны плитам покрытия.

Рис. 5. Расчетная схема поперечной рамы: а – вертикальные нагрузки на поперечную раму; б – параметры ветрового давления; в – статическая расчетная схема (основная система)

Расчетные нагрузки от собственной массы конструкций:

- от плит покрытия с рулонной кровлей qп = 0.471 кН/м2.

- от стропильных балок со связями qб = 0.354 кН/м2.

- от стеновых панелей qст = 0.341 кН/м2.

Расчетная снеговая нагрузка pсн = 2,4 кН/м2.

Ветровой район строительства – IV. Тип местности – C.

Расчетная схема поперечника представляет двухшарнирную П-образную раму. Стойками рамы являются колонны, защемленные в фундаментах, а ригель – – условно недеформируемая стропильная балка, шарнирно опертая на колонны.

При подсчете расчетных нагрузок на раму используем разрез и план здания. Шаг рам В = 4.5 м, свес карниза C = 1 м.

Постоянные нагрузки:

-от покрытия

кН;

-от навесных стен

кН,

гдеhw = 1.262 м – величина участка выше верха колонны;

-от собственной массы со связями при

rm = 500 кг/м3 и gf = 1.3:

кН.

От снега на покрытии:

кН.

Нормативное ветровое давление на уровне земли для III ветрового района принимаем по [2, табл. 5] w0 = 0.48 кН/м2. На высоте Z от поверхности земли, согласно [2], ветровое давление вычисляется по формуле:

wz = w0 × k,

где k – коэффициент, характеризующий изменение ветрового давления на

высоте, принимаемый по [2, табл. 6].

Для местности типа C значение k и вычисление соответствующих wz приведены ниже :

Неравномерное ветровое давление wz на участке высотою Нк заменяем эквивалентным равномерным wэк. Допускается использовать при этом условие равенства площадей эпюр wz и wэк.

кН/2.

Расчетное давление ветра на 1 п.м. вычисляем с участка стены шириной В с учетом аэродинамических коэффициентов с:

,

где gfw =1.4 – коэффициент надежности по ветровой нагрузке по [2, п. 6.11];

В = 4.5 м.

Значения аэродинамических коэффициентов, соответствующие профилю поперечника (см. Рис. 5) находим по [2, прил. 4, схема 2]: с наветренной стороны се = 0.8, с подветренной се3 = – 0.6. При этом:

с наветренной стороны qw = 0.192 × 0.8 × 1.4 × 4.5 = 0.968 кН/м;

с подветренной q'w = – 0.192 × 0.4 × 1.4 × 4.5 = – 0.726 кН/м.

Ветровое давление с участков стен, расположенных выше верха колонн:

c наветренной стороны

W = ((0.4015+0.42043)/2 )× 1.262× 0.8 × 1.4 × 4.5 = 2.614 кН;

с подветренной

W' = – 0.411 × 1.262 × 0.6 × 1.4 × 4.5 = – 1.96 кН.

Расчетная схема поперечника с усилием в лишней связи X1 показана на рис.8, в.

Вычисляем продольное усилие в стропильной балке:

;

кН.

Рис. 6. Расчетные схемы и расчетные усилия в колоннах.

Рассматриваем далее левую и правую стойки как статически определимые и для каждой из них определяем усилия в расчетных сечениях. Основными для расчета являются сечения в уровне низа и верха колонн. Заметим при этом, что при изменении направления ветра на противоположное, усилия в каждой из стоек станут также зеркальным отображением противоположной. На рис.9 показаны обе схемы загружения и эпюры N и M.

Левая стойка:

- верх:

кН;.

- низ :

кН;

Правая стойка:

- верх: N п0 = 165.4 кН; M п0 = 0;

- низ: N пmax = 190.7 кН;

Расчетные усилия:

N0 =165.4 кН; Nmax = 190.7 кН; Mmax = 63.364 кН×м.

4.2 Конструктивный расчет стержня колонны

Производим проверку сечения дощатоклееной колонны (рис.8, а) из условий устойчивости в плоскости и из плоскости поперечника. Сечение колонны

bк = 17.5 см, hк = 80 см. Пиломатериал – сосновые доски 2-го сорта толщиной 33 мм. По [1, табл.3] Rс = 15 МПа. Прикрепление к фундаменту выполнено с помощью анкерных болтов – жесткое в плоскости поперечника и условно-шарнирное из плоскости.

Коэффициенты условий работы:

- для условий эксплуатации A3 по [1, табл.5], mв = 0.9;

- для колонн с высотой сечения 80 см по [1, табл.7], mб = 0.9;

- при толщине слоя досок в пакете 33 мм по [1, табл.8], mсл = 1.0.

Коэффициент надежности по назначению для зданий III класса gn = 0.90.

4.2.1 Проверка устойчивости колонны в плоскости поперечника

Предварительно вычисляем:

см2;

см3.

Расчетная длина

lох = 2.2×Hк = 2.2 × 960 = 2112 см;

радиус инерции

rх = 0.289×hк = 0.289 × 80 = 23.12 см;

гибкость

lх = lох / rх = 2112/23.12 = 91.349

что удовлетворяет условию

lх < lmax = 120.

Вычисляем коэффициент продольного изгиба :

Вычисляем:

,

где кН/см2.

Изгибающий момент по деформированной схеме:

кН×м.

Проверяем условие устойчивости:

кН/см2,

что < Rc = 1.35 кН/см2.

Устойчивость в плоскости поперечника обеспечена.

4.2.2 Проверка устойчивости колонны из плоскости поперечника

Предварительно определим jy в предположении, что промежуточных связей нет:

Расчетная длина

lоy = Hк = 960 см;

радиус инерции

ry = 0.289×bк = 0.289 × 17.5 = 5.0575 см;

гибкость

ly = lоy / ry = 960/5.0575 = 189.817.

Так как

ly = 189.817 > lmax = 120,

то постановка промежуточных связей необходима.

Проверяем устойчивость при одной промежуточной связи.

Гибкость

ly = 0.5 ×960/5.0575 = 94.909, что < lmax = 120.

Вычисляем коэффициент продольного изгиба при l > 70:

Проверяем условие устойчивости:

кН/см2, что < Rc = 1.35 кН/см2.

Устойчивость из плоскости поперечника обеспечена.

4.3 Расчет и конструирование узла крепления колонны к фундаменту

Требуется спроектировать опорный узел дощатоклееной колонны с металлическими траверсами по типу показанного на рис.10.

Рис. 7. Узел соединения колонны с фундаментом: а – конструкция узла; б – расчетная схема; 1 – фундаментные болты; 2 – траверсы; 3 – болты; 4 – вклеенные стержни; 5 – эпоксидная шпаклевка

Исходные данные: поперечное сечение колонны bк х hк = 17.5 х 80 см. Доски из древесины сосны 2-го сорта толщиной 33 мм.

Определение расчетных усилий в плоскости сопряжения с фундаментом.

кН×м;

кН.

Вычисляем эксцентриситет:

м.

Так как е = 1.325 м больше hк/6 = 0.80/6 = 0.133, то имеется отрывной участок по плоскости сопряжения, следовательно, требуется расчет фундаментных болтов и элементов траверс.

4.5 Расчет фундаментных болтов

Вычисляем максимальное и минимальное напряжения в опорном сечении (см. Рис. 7, б):

кН/см2

smax = 0.52 кН/см2;

smin = – 0.42 кН/см2 – отрывной участок.

Определяем высоту сжатой зоны:

см.

Задаемся dб = 20 мм и находим (см. рис.10, а):

а = 0.5 × S2 + S1 = 4.75 × dб = 4.75 × 2.0 = 9.5 см;

см.

Принимаем фундаментные болты из стали марки ВСт3 кп 2 по ГОСТ 535-88 (см. табл. 60 [5]) с расчетным сопротивлением Ry = 185 МПа = 18,5 кН/см2.

Находим требуемую площадь одного болта в нарезной части:

см2.

Принимаем болт диаметром dан = 27 мм, которому соответствует

Fнт = 4,59см2 > 4,06 см2.

Расстояние между фундаментными болтами в плане (см. Рис. 7, а) получим с учетом принятых а = 95 мм и dан = 27мм:

мм;

мм.

4.6 Расчет соединительных болтов

Расчетную несущую способность соединительных (глухих) болтов для крепления траверс к колонне находим по формуле как наименьшее из двух значений:

Тгл=0.5 × bк× dгл= 0.5 × 17.5 × 2 = 17,5 кН/шов.

Тгл = 2,5× d2гл=2,5 × 22 = 10 кН/шов.

Определяем количество болтов:

шт.

Принимаем 8 болтов, размещаем их в два ряда с шагом:

S1 ³ 7 × dб = 7 × 20 = 140 мм;

S2 ³ 3.5 × dб = 3.5 × 20 = 70 мм;

S3 ³ 3 × dб = 3 × 20 = 60 мм.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  1. СНиП II-25-80. Деревянные конструкции: Нормы проектирования /Госстрой СССЗ. – М.: Стройиздат, 1983. –31с.

  2. СНиП 2.01.07-85. Нагрузки и воздействия /Госстрой СССР. –М.: ЦИТП Госстроя СССР, 1986. –36 с.

  3. Зубарев Г.Н. Конструкции из дерева и пластмассы: Учебное пособие для студентов вузов, обучающихся по специальности "Промышленное и гражданское строительство". – 2-е изд., перераб. и доп. – М.: Высшая школа, 1990. –287 с.

  4. Проектирование и расчет деревянных конструкций: Справочник /Под ред. Н.М.Гриня. –К.: Будивельник, 1988. –240 с.

  5. Рекомендации по проектированию панельных конструкций с применением древесины и древесных материалов для производственных зданий / ЦНИИСК им. Кучеренко. – М.: Стройиздат, 1982. –12 с.

  6. Серия 1.265 – 1. Деревянные панели покрытий общественных зданий. Вып. 3./ ЦНИИЭП учебных зданий. – М., 1979. – 28 с.

  7. ГОСТ 20850 – 84. Конструкции деревянные клееные. Общие технические условия.

  8. ГОСТ 24454 – 80 Е. Пиломатериалы хвойных пород. Размеры.

  9. СТ СЭВ 4409 – 83. Единая система проектно-конструкторской документации СЭВ. Чертежи строительные. Правило выполнения чертежей деревянных конструкций.


1. Реферат на тему Танкостроение СССР в военный период
2. Курсовая на тему Переработка рыбы и рыбопродуктов
3. Реферат Возникновение предпринимательства в России
4. Реферат Русское искусство конца XIX-начала XX века
5. Задача Тепловой режим земной коры и источники геотермального тепла
6. Краткое содержание Тимур и его команда
7. Курсовая на тему Субъекты гражданских правоотношений
8. Реферат на тему Mozart Essay Research Paper Final Project5200101050Mozart Eine
9. Отчет по практике на тему Характеристика предприятия ООО Слесарно монтажный инструмент 2
10. Реферат Социология религии 3