Курсовая Вплив радіоактивного забруднення на флору
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
ЗМІСТ
ВСТУП
РОЗДІЛ 1 ПОНЯТТЯ ПРО РАДІОАКТИВНЕ ЗАБРУДНЕННЯ
1.1 Одиниці вимірювання доз радіації
1.2 Природні джерела радіоактивного випромінювання
РОЗДІЛ 2 РАДІОАКТИВНЕ ЗАБРУДНЕННЯ
2.1 Забруднення ґрунтів
2.2 Зона відчуження Чорнобильської АЕС та діючі АЕС - джерела радіонуклідного забруднення
РОЗДІЛ 3 РАДІОАКТИВНЕ ЗАБРУДНЕННЯ РОСЛИН
3.1 Надходження РН у рослини залежно від їхніх фізико-хімічних властивостей
3.2 Надходження РН у рослини з різних типів ґрунтів
3.3 Надходження РН у рослини залежно від їхніх біологічних особливостей
РОЗДІЛ 4 ВПЛИВ РАДІОНУКЛІДІВ НА РОСЛИНИ
4.1 Радіорезистентність вищих рослин
4.2 Чутливість рослин до хронічного опромінювання
4.3 Вплив радіонуклідів на популяції рослин
4.4 Генетичні наслідки опромінення рослин
4.5 Радіоекологія горілого лісу
РОЗДІЛ 5 АНАЛІЗ РАДІОАКТИВНОГО ЗАБРУДНЕННЯ ҐРУНТІВ ТА РОСЛИННОЇ ПРОДУКЦІЇ ЧЕРНІГІВСЬКОЇ ОБЛАСТІ
ВИСНОВОК
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
ВСТУП
Актуальність. На сучасному етапі розвитку нашого суспільства, при створенні та використанні новітніх технологій людина створює реальні небезпечні ситуації, що спричинені аваріями. Використання радіоактивного палива та недбале ставлення до техніки безпеки роботи з радіоактивними речовинами створює передумови виникнення аварій на АЕС.
Радіація значно відрізняється від інших видів забруднення навколишнього середовища, і ця відмінність виявилася життєво важливою.
По-перше, до багатьох забруднювачів біологічні системи адаптуються, і їх дія послаблюється. По-друге, відмінність радіоактивних речовин (РР) від отруйних хімічних речовин полягає в можливості їх впливу внаслідок іонізуючого випромінювання (IB) не тільки всередині організму, але й дистанційно (на відстані), а також в неможливості припинення цього випромінювання при будь-яких хімічних реакціях PP. По-третє - у тривалості дії РР і накопиченні дози опромінення протягом певного часу.
Досить небезпечним радіонукліди є для рослинної продукції, в яку вони потрапляють переважно із забруднених ґрунтів.
Мета роботи – проаналізувати вплив радіоактивного забруднення на флору.
Завдання роботи:
1) дати поняття про радіоактивне забруднення та одиниці вимірювання;
2) проаналізувати стан радіоактивного забруднення ґрунтів;
3) охарактеризувати особливості надходження радіонуклідів у рослини;
4) проаналізувати вплив радіонуклідів на рослини;
5) проаналізувати забруднення радіонуклідами ґрунтів та рослинної продукції Чернігівської області за 1998 – 2006 рр..
Практичне значення роботи. В умовах широкого застосування ядерної енергії перед фахівцями всіх категорій і рангів стоїть завдання серйозної підготовки в галузі радіаційної безпеки, вивчення критеріїв оцінки радіоактивного випромінювання як шкідливого фактору впливу на людей і об'єкти навколишнього середовища, в одержанні потрібних знань з радіоекології, які дозволять у практичній діяльності організувати роботу й керувати підлеглими так, щоб гарантувати безпеку, зберегти здоров'я і працездатність людини в умовах радіоактивного забруднення навколишнього середовища, сировини і продуктів харчування.
РОЗДІЛ 1
ПОНЯТТЯ ПРО РАДІОАКТИВНЕ ЗАБРУДНЕННЯ
1.1 Одиниці вимірювання доз радіації
Серед різноманітних видів іонізуючих випромінювань надзвичайно важливими при вивченні питання небезпеки для здоров'я і життя людини є випромінювання, що виникають в результаті розпаду ядер радіоактивних елементів, тобто радіоактивне випромінювання .
Однією з основних характеристик джерела радіоактивного випромінювання є його активність, що виражається числом радіоактивних перетворень за одиницю часу.
Активність А радіонукліда у джерелі - міра радіоактивності, яка дорівнює співвідношенню числа самовиникаючих ядерних перетворень у цьому джерелі за невеликий інтервал часу до цього інтервалу часу.
Одиниця активності - кюрі (Кі), 1 Кі = 3,7*1010 ядерних перетворень за 1 секунду. В системі СІ одиниця активності - бекерель (Бк). 1 Бк дорівнює 1 ядерному перетворенню за 1 секунду або 0,027 нКі.
Кількість такої енергії, переданої організму, або поглинутої ним, називається дозою. Розрізняють експозиційну, поглинуту та еквівалентну дозу іонізуючого випромінювання.
Ступінь іонізації повітря оцінюється за експозиційною дозою рентгенівського або гамма-випромінювання.
Експозиційною дозою називається повний заряд іонів одного знака, що виникають у малому об'ємі повітря при повному гальмуванні всіх вторинних електронів, котрі були утворені фотонами до маси повітря в цьому об'ємі.
Одиницею вимірювання експозиційної дози є кулон на 1 кг (Кл/кг). Позасистемна одиниця - рентген (Р); 1 Р = 2,58*10-4 Кл/кг.
Експозиційна доза характеризує потенційні можливості іонізуючого випромінювання.
Поглинута доза випромінювання (Д) - це фізична величина, яка дорівнює співвідношенню середньої енергії, переданої при випромінюванні речовині, в деякому елементарному об'ємі до маси речовини в ньому.
Одиниця вимірювання поглинутої зони - грей (Гр.); 1 Гр = 1 Дж/кг.
Застосовується також позасистемна одиниця - рад. 1 рад = 0,01 Гр.
Для оцінки можливої шкоди здоров'ю людини від дії радіоактивного випромінювання довільного складу введено поняття еквівалентна доза.
Еквівалентна доза (Н) - основна дозиметрична величина в зоні радіаційної безпеки. Еквівалентна доза дорівнює добутку поглиненої дози Д на середній коефіцієнт якості іонізуючого випромінювання у даному елементі об'єму біологічної тканини.
Одиниця еквівалентної дози - бер. 1 бер = 0,01 Дж/кг. У системі СІ одиниця еквівалентної дози - зіверт (Зв), 1 Зв = 100 бер. Для γ і β випромінювань 1 Зв = 1 Гр = 100 бер.
1.2 Природні джерела радіоактивного випромінювання
Опромінення від природних джерел переважає багато інших джерел і є істотним фактором еволюції живих організмів у біосфері.
До природних джерел IB належать:
- космічні випромінювання;
- природні натуральні джерела;
- технологічні природні джерела (штучні джерела в навколишньому середовищі і в побуті).
Космічне випромінювання. Космічне випромінювання складається з галактичного і сонячного, яке пов'язане з сонячними спалахами. Сонячне космічне випромінювання відіграє важливу роль за межами земної атмосфери, але через порівняно низьку енергію мало впливає на дозу випромінювання біля поверхні Землі.
Слід розрізняти первинні космічні частинки, повторне і фотонне випромінювання, що утворюється в результаті взаємодії первинних частинок з ядрами атомів атмосфери.
Первинне космічне випромінювання більше ніж на 90% складається з протонів високих енергій. Крім них, до складу частинок входять альфа-частинки, нейтрони, ядра атомів різних елементів і інші частинки. Вступаючи у взаємодію з атмосферою Землі, ці частинки проникають до висоти 20 км над рівнем моря і утворюють повторне високоенергетичне випромінювання, яке складається з мезонів, нейтронів, протонів, електронів, фотонів тощо.
Інтенсивність космічного випромінювання залежить від сонячної активності, географічного розташування об'єкта і висоти над рівнем моря.
Залежність від широти пояснюється тим, що Земля подібна до гігантського магніту, унаслідок чого заряджені частинки відхиляються від свого шляху і проходять повз планети, інші - змінюють курс над екватором і збираються у вигляді воронки біля полюсів, закручуючись відповідно до напряму силових ліній прямо над геомагнітним полюсом (пояснення феномену північного сяйва, що виникає при проходженні інтенсивних космічних променів біля полюсів). Інтенсивність космічного випромінювання зберігається відносно постійною на географічній широті між ±15° по обидва боки від екватора, а далі в міру руху до північної або південної широти ±50° швидко зростає, після чого знову залишається практично незмінною аж до полюсів.
Потужність еквівалентної дози (ПЕД) космічного випромінювання значною мірою залежить від висоти над рівнем моря. Для різних висот ПЕД відповідно складає: 0-0,035; 4-0,2; 8-1,35; 20-12,75 мкЗв х год-1.
На вершині Евересту (Н = 8848 м), найвищої точки земної поверхні, еквівалентна доза космічного випромінювання складає близько 8 мЗв х год-1.
В орбітальному польоті на висоті 200-400 км потужність дози всередині корабля в 100 і більше разів вища, тобто за рік космонавти одержують 0,1-0,15 Зв. Рекордну дозу опромінення 0,16 Зв одержали американські астронавти у 84-добовому польоті на орбітальній станції «Скайлеб». Висота орбіти - 433 км. Допустима доза піврічного космічного польоту в СРСР була прийнята рівною 0,37 Зв.
Отже, області поблизу екватора, які знаходяться на рівні моря, одержують найменшу дозу космічного випромінювання - близько 0,35 мЗв х год-1. У географічних областях на широті 50° доза космічного випромінювання складає близько 0,5 мЗв х год-1. Таку дозу отримують жителі, що проживають поблизу даної широти, - такі міста, як Лондон, Нью-Йорк, Токіо, Торонто, Москва, Київ, Харків, Львів, Одеса.
Природні натуральні
джерела. У біосфері Землі є більше 60 природних РН, які можна розділити на три групи.
Перша група. - ряд довгоіснуючих РН, які входять до складу Землі з часу її утворення - природні радіоактивні ряди.
Друга група - РН, що не утворюють радіоактивного ряду і генетично не пов'язані з ним. До цієї групи відносяться 11 довгоіснуючих РН (40К, S7Rb, i0Ca, l30Te, l3SLa, u7Sm,...), що мають періоди піврозпаду від 107 до 1015 років.
Третя група - космогенні РН, які безперервно виникають у біосфері в результаті ядерних реакцій під впливом космічних випромінювань. Космогенні РН утворюються переважно в атмосфері в результаті взаємодії протонів і нейтронів з ядрами азоту, кисню і аргону, а далі потрапляють на земну поверхню з атмосферними опадами. До них відносяться 3Н, 14С, 7Ве, 22Na, 25Mg, 32P, 35S, 39Аr,... - всього 14 РН. Помітний внесок у дозу опромінення роблять 3Н, 7Ве, 14С і 22Na. При цьому 3Н і 14С - це джерела внутрішнього опромінення, а основними джерелами зовнішнього опромінення є 7Ве, 22Nа і 24Na.
Уран, на якому тепер базується ядерна енергетика - широковживаний і сильно розсіяний у земній корі елемент. Середній вміст його в земній корі складає близько 3 х 10 4 %. У природі уран має три ізотопи: 238U (вміст 99,275%), 235U (0,72%) і 234U (0,0054). Усі ці ізотопи урану радіоактивні, довільно розпадаються з випромінюванням альфа-частинок.
Слід відзначити, що віт природного урану-238 міститься 54,8 г урану-234; 0,36 г радію-226; 2,35 х 10-6 г радону-222; 1,3 х 10-9 г полонію-218; 1,17 х 10-13 г полонію-214.
Опромінення людини всіма зазначеними природними РН може бути зовнішнім і внутрішнім.
Зовнішнє гамма-опромінення людини поза приміщеннями (будинками) зумовлене наявністю РН у різних природних середовищах (ґрунті, приземному повітрі, гідросфері і біосфері).
Основний внесок у дозу зовнішнього гамма-опромінення дають гамма-РН урано-радієвого і торієвого рядів і калій-40. При цьому головними джерелами зовнішнього гамма-опромінення в повітрі торієвої серії РН є торій-228 і радій-224, а в урановому ряду 99% дози визначається гамма-випромінюванням свинцю-214 і вісмуту-214.
Так, щорічна доза, яку отримує населення від РН, що знаходяться в зовнішньому середовищі, складає від 0,32 до 0,82 мЗв залежно від умов місцевості.
Середня щорічна еквівалентна доза зовнішнього опромінення для населення всієї земної кулі приймається рівною 0,65 мЗв. Якщо людина знаходиться в приміщенні, доза зовнішнього опромінення змінюється під впливом двох протилежно діючих чинників: екранування зовнішнього випромінювання будинком і випромінювання природних РН, що знаходяться в матеріалах, з яких збудовано будинок. Залежно від концентрації 40K, 226Rа, 232Th у різних будівельних матеріалах потужність дози в будинках значно змінюється.
Якщо за одиницю взяти такий матеріал, як дерево, то мешканці, що проживають у будинках з іншого будівельного матеріалу, одержують річну дозу:
- з вапняку - в 1,3 рази більшу;
- з бетону, цегли - в 3 рази;
- з пемзового каменю - в 10 разів;
- з граніту - в 10-12 разів.
При цьому потужність дози всередині будинків у всіх цих містах перевищує потужність дози поза приміщеннями на 16-46% , виняток складає Севастополь, де потужність цих доз практично однакова.
Пояснюється це просто: у гранітах урану в 2-3 рази, а торію - у 3-10 разів більше, ніж у вапняках.
Внутрішнє опромінення людини створюється РН, що потрапляють в організм разом із їжею, повітрям і водою. З них найбільш високий вклад в ефективну еквівалентну дозу вносять 40K,14С,87ЯЬ,210Ро,226Да, а також радон-222 і радон-220 (торон).
Найбільш вагомими з усіх природних джерел радіації є полоній-210 (8%), калій-40 (13%) і особливо радон-220 і 222 (близько 75%).
Радон надходить до організму при диханні разом з повітрям. Він є продуктом розпаду радію, який у свою чергу повсюди міститься в ґрунті, стінах будинків та інших об'єктах зовнішнього середовища.
Основна частина опромінення спричинена не самим радоном, а продуктами його розпаду.
Радон - це невидимий важкий газ, який не має ні смаку, ні запаху (у 7,5 разів важчий за повітря). При розпаді випромінює альфа-частинки. Радон вивільняється із земної кори повсюди. Концентрація його в закритих приміщеннях звичайно у вісім раз вища, ніж на вулиці, а на верхніх поверхах нижча, ніж на першому.
Джерелами надходження радону є будівельні матеріали, вода і природний газ.
При кип'ятінні радон випаровується, у сирій воді його набагато більше. Основну небезпеку викликає його попадання в легені з водяною парою. Найчастіше це відбувається у ванній кімнаті, коли людина приймає гарячий душ.
Під землею радон змішується з природним газом, який потім використовується в побутових газових плитах, і таким чином попадає в приміщення. Концентрація його значно збільшується за відсутності надійних витяжних систем.
За даними наукового комітету з атомної енергетики ООН, концентрація радону разом з продуктами його розпаду всередині будинків приблизно у 25 разів перевищує середній рівень у зовнішньому повітрі.
Радон, потрапляючи в організм, відразу ж уражає залози внутрішньої секреції, гіпофіз, кору надниркових залоз. Це викликає задишку, серцебиття, мігрень, тривожний стан, безсоння. Іноді розвиваються злоякісні пухлини в легенях, печінці, селезінці.
Український науковий центр радіаційної медицини стверджує, що близько 70-75% дози опромінення населення України від усіх джерел природної радіоактивності припадає на радон. Винним є Український щит - тектонічна структура, яка проходить з півночі на південь майже посередині України і займає близько 30% усієї території. Складається щит з гранітів та інших кристалічних порід, що характеризуються підвищеною радіоактивністю.
Підвищену радіоактивність мають сланці, фосфорити. Тому фосфорні (а також азотні і калієві) мінеральні добрива часто є носіями радіоактивного забруднення ґрунтів і ґрунтових вод. Високу радіоактивність мають кальцієво-силікатний шлак, фосфогіпс, доменний шлак, вугільний шлак.
Аномалії природного фону. На планеті є місця, де рівні радіаційного фону підвищені внаслідок значних покладів радіоактивних мінералів. Виявлено п'ять основних населених місць, які мають істотно збільшений природний рівень радіації через певний склад ґрунту і гірських порід. Це Бразилія, Франція, Індія, острів Німує (Тихий океан) і Єгипет.
У ряді місць Бразилії, головним чином у прибережних смугах, кожна з яких має довжину в кілька кілометрів і ширину в кілька сотень метрів, потужність випромінювання з ґрунту і скельних порід складає 5 мЗв х рік-1.
Аномальні райони в Україні - Хмельник, Миронівка, Жовті Води, а також Дніпропетровська, Кіровоградська і Миколаївська області, де знаходяться рудники з видобування урану. У цих місцях рівні природного фону в десятки і сотні разів більші, ніж на іншій території.
У цілому, за даними спеціального наукового комітету ООН, середня еквівалентна доза опромінення населення в промислово розвинених країнах земної кулі за рахунок природних джерел випромінювання складає 2,5 - 3,0 мЗв х рік-1.
У табл. 1.1 наведено сумарну середньорічну ефективну дозу від природних джерел випромінювання.
Таблиця 1.1
Середньорічний фон природної радіації (Константінов М.П.)
Джерела випромінювання | Ефективна еквівалентна доза, мЗв | ||
Зовнішнє опромінення | Внутрішнє опромінення | сумарна доза | |
Космічне випромінювання | 0,5 | - | 0,5 |
Космогенні радіонукліди | - | 0,015 | 0,015 |
Природні радіонукліди: | | | |
Радон-220, 222 | - | 1,22 | 1,22 |
Радій - 226, 228 | - | 0,02 | 0,02 |
Полоній - 210 | - | 0,13 | 0,13 |
Калій - 40 | 0,12 | 0,18 | 0,3 |
Інші РН | 0,53 | 0,035 | 0,565 |
Разом | 1,15 | 1,6 | 2,75 |
Слід зазначити, що діти до 10 років через вікові особливості організму одержують дозу в 1,5 рази більшу внаслідок надходження в організм продуктів розпаду радону з повітрям, оскільки частота дихання в дітей більша.
РОЗДІЛ 2
РАДІОАКТИВНЕ ЗАБРУДНЕННЯ2.1 Забруднення ґрунтів
Біологічні процеси, супутні утворенню ґрунтів, істотно впливають на накопичування в них PP. Концентрація природних РН у природі змінюється в широких межах.
У табл. 2.1. дана характеристика основних довгоіснуючих природних РН, що знаходяться в земній корі і об'єктах зовнішнього середовища з моменту утворення Землі.
Таблиця 2.1
Концентрація природних РН у земній корі (Константінов М.П.)
Радіону-клід | T1/2, років | Вид і енергія випромінювання, МеВ | Концентрація, рН у ґрунті, г/г |
14С | 5,5 х 103 | β 0,165 (100%) | 1х10-4 |
40К | 1,3 х 109 | β 1,32 (88%) γ 1,46 (12%) | 2х10-3 |
87Rb | 4,8 х 1010 | β 0,27 (100%) | 3х10-4 |
226Ra | 1,62 *х 103 | α 4,76 (92%) α 4,59 (4%) γ 0,187 (4%) | 1 х 10-12 |
232Th | 1,41 х 1010 | α 4,01 (76%) γ 0,59 (24%) | 1 х 10-5 |
235U | 7,1 х 108 | α 4,18 (33%) γ 0,185 (55%) γ 0,43 (12%) | 7 х 10-9 |
238U | 4,51 х 109 | α 4,19 (77%) γ 0,05 (23%) | 5 х 10-6 |
У земній корі, наприклад, з усіх РР найбільше міститься калію (2,5%), тоді як вміст урану і торію в десятки і сотні (урану-238 - 3 • 10-4%), а радію - у мільйон разів менше порівняно з вмістом радіоактивного калію.
Значною є різниця концентрації РН у ґрунтах різних типів. Концентрація РН у ґрунтах різних типів і відповідні потужності поглинутої дози (ППД) у повітрі на висоті 1 м від поверхні землі наведені в табл. 2.2.
РН, що потрапляють в атмосферу, врешті-решт концентруються в ґрунті. Через декілька років після випадання на земну поверхню надходження РН у рослини з ґрунту є основним шляхом надходження їх у їжу людини і корм тварин.
Як показала аварія на ЧАЕС, уже на другий рік після випадання основний шлях попадання РН у харчові ланцюги - надходження РН з ґрунту в рослини.
Поглинання ґрунтами РН перешкоджає їх пересуванню по профілю ґрунтів, проникненню в ґрунтові води. Так, на цілинних ділянках, природних луках і пасовищах РН затримуються у верхньому шарі (0-5 см). Після оброблення ґрунту РН знаходяться переважно в орному шарі.
Таблиця 2.2
Концентрація РН у ґрунтах різних типів (Константінов М.П.)
Ґрунт | Концентрація, пКі, г-1 | ППД, мкрад • год-1 | ||
40К | 238U | 232Th | ||
Сірозем | 18 | 0,85 | 1,3 | 7,4 |
Сіро-коричневий | 19 | 0,75 | 1,1 | 6,9 |
Каштановий | 15 | 0,72 | 1,0 | 6,0 |
Чорнозем | 11 | 0,58 | 0,97 | 5,1 |
Підзолистий | 4,0 | 0,24 | 0,33 | 1,8 |
Торф'яний | 2,4 | 0,17 | 0,17 | 1,1 |
Середнє для всього світу | 10 | 0,7 | 0,7 | 4,6 |
Кожний ґрунт у природному стані містить певну кількість обмінно-поглинених катіонів Са, Н, Mg, Na, NH4, A1 та ін., у більшості ґрунтів переважає Са, друге місце посідає Mg, а в деяких ґрунтах у поглиненому стані в значній кількості міститься Н і, звичайно, відносно небагато Na, К, NH4 і А1.
Характер взаємодій РН з ґрунтовим поглинаючим комплексом (ГПК) загалом можна показати такою схемою обмінної реакції:
ГПК М + т ↔ ГПК т + М,
де М - іони елементів поглинаючого комплексу, т - іони РН.
Кількісними критеріями, які описують взаємодії РН з ґрунтами, є повнота поглинання (сорбція) їх ГПК і стійкість закріплення в поглиненому стані.
Наприклад, якщо порівняти стійкість закріплення в поглиненому стані довгоживучих РН 90Sr і 137Cs, то виявиться, що вони неоднаково витісняються з ґрунтів. З усіх ґрунтів 90Sr витісняється в більшій кількості, ніж 137Cs, тобто поглинений цезій закріплюється міцніше. На різних ґрунтах стійкість закріплення РН неоднакова. Міцніше вони закріплюються в чорноземі.
На сорбційні процеси РН у ґрунтах впливає дисперсний склад ґрунтів (гранулометричний).
Ґрунти, які утримують більшу кількість високодисперсних частинок (розміром менше 0,001 мм), характеризуються високою ємністю поглинання, у якій поглинається до 77% від загального вмісту РН у ґрунті.
Різниця в закріпленні мікрокількості 90Sr і 137Cs різними за розміром фракціями зумовлена не тільки неоднаковою площею поверхні цих частинок, їх різним хімічним складом, але й різним мінералогічним складом.
Відмінності в повноті сорбції РН і ступеня їх закріплення різними мінералами зумовлені, перш за все, неоднаковою структурою кристалічної ґратки мінералів.
Загалом цезій, на відміну від стронцію, стійкіше сорбується (закріплюється) мінералами, зокрема, глинами.
За однакової щільності забруднення ґрунту радіаційна небезпека від стронцію у 6 разів вища, ніж від цезію.
Щоб зменшити ступінь міграції, проводять агрохімічні заходи: вапнування кислих ґрунтів, бідних на обмінний кальцій, внесення органічних добрив - перегною, торфу, намулу, гною. Так, для зниження надходження стронцію застосовують фосфорні, а для цезію - калійні добрива.
На чорнобильській аварії — найбільшій техногенній катастрофі в історії людства — необхідно акцентувати особливу увагу.
Жодна катастрофа XX сторіччя не мала таких тяжких екологічних наслідків, як чорнобильська. Це трагедія не регіонального, навіть не національного, а глобального масштабу. Вже загинуло більш як 50 тис. чоловік із 100 тис, які брали участь у ліквідації наслідків аварії в перший рік. Підірвано здоров'я сотень тисяч людей. Забруднені мільйони гектарів ґрунтів. У водосховищах осіли десятки мільйонів тонн радіоактивного мулу. І це тільки відомі на сьогодні наслідки.
Територія із сильним радіоактивним забрудненням ґрунту становить 8,4 млн. га й охоплює 32 райони шести областей України. Більша частина цих ґрунтів припадає на сільськогосподарські угіддя. Радіонуклідами забруднено також 3 млн. га лісу. На територіях із забрудненням цезієм-137 більш як 45 Кі на 1 км2 проживає понад 15 тис. чоловік, 15 — 45 Кі — близько 46 тис, 5 — 15 Кі — ще 150 тис. Близько 1,5 млн. чоловік проживає на території, де радіоактивний фон перевищує допустимі норми (Київська, Житомирська, Чернігівська, Рівненська, Черкаська, Вінницька, Чернівецька, Кіровоградська, Івано-Франківська області). Дезактиваційні роботи, на які в 1986—1989 рр. були витрачені мільйони, бажаних результатів не дали.
У водах Прип'яті, Дніпра та його водосховищ (особливо в Київському) різко зросла концентрація радіонуклідів. Навіть через 6 років після аварії вона була в 10—100 разів вищою, ніж до неї, а в донних осадах, особливо мулах, багатих на органіку, нагромадилася величезна кількість радіоактивних відходів. Вважають, що забруднення заплавних територій і річок 30-кілометрової зони становить: і37Сs — 14 400 Кі, 905г — 7360 Кі, Рu — 250 Кі. А в Київському водосховищі на дні нагромадилося вже більш як 60 млн. т радіоактивного мулу (забруднення І37Сs — близько 2000 Дж).
2.2 Зона відчуження Чорнобильської АЕС та діючі АЕС - джерела радіонуклідного забруднення
Внаслідок аварії на ЧАЕС у природне середовище надійшов широкий спектр радіонуклідів, але особливо велику екологічну небезпеку становлять такі довгоіснуючі радіонукліди. Загальна площа забруднення 137Сs щільністю від 3,7x1010 до 18,5х1010 Дж на 1 км2 оцінюється у 150000 км2.
Радіонуклідному забрудненню були піддані 9 млн. га території 12 областей України (3,1 млн. га орної землі). Із господарського користування вилучено 180 тис. га сільськогосподарських угідь і 157 тис. га лісів, обмеження агропромислового виробництва і лісогосподарського користування поширені на площі 256 тис. га. В результаті післяаварійних і дезактиваційних робіт у зоні відчуження створено понад 800 могильників радіоактивних відходів. Зруйнований реактор ізольований залізобетонними конструкціями (об'єкт "Укриття") і за оцінками містить близько 180 т ядерного палива, в якому знаходиться понад 7,4х1017Бк радіоактивних речовин. Викид радіоактивних речовин із зруйнованого реактора продовжується, хоч і в значно меншій кількості, і за оцінками на 2000 рік досяг близько 33,3х1017 Бк (90 МКі) [19].
З метою гасіння у палаючий реактор було скинуто 1780 т піску, 900 т доломіту, 40 т карбіду бору і 2400 т свинцю. Температура в реакторі коливалась від 2500 до 10000°С, становлячи в середньому за різними оцінками близько 3000°С. Через деякий час вияснилось, що в шахту реактора потрапили далеко не всі матеріали, які скидались, значна їх частина і зараз знаходиться у фізичній залі. У зв'язку з тим, що температура палаючого реактора значно перевищувала температуру кипіння свинцю (1740 °С), велика кількість цього елемента була викинута потоками повітря у природне середовище.
У післяаварійний період запаси радіонуклідів у водних екосистемах поповнюються зі стоком талих і дощових вод з територій зони відчуження, на яких питома радіоактивність ґрунтів досягає 40,7x103 Бк/кг. Функціональна схема виносу радіонуклідів з 30-кілометрової зони ЧАЕС відображає складність і направленість процесів, що визначають водний шлях транспорту радіонуклідів (рис.2.1.)
Україна відзначається розвинутою атомною енергетикою, джерелами водопостачання для якої служать ріки і водосховища (рис.2.2.). Після того, як 15 грудня 2000 р. був зупинений третій реактор Чорнобильської АЕС в Україні залишилось діючими чотири АЕС, які в якості джерел водопостачання використовують: Запорізька - Каховське водосховище, Рівненська - р. Стир (притоку р. Прип'яті), Хмельницька - р. Горинь (притоку р. Прип'ять), Південноукраїнська - р. Південний Буг. У басейні р. Десни на території Росії працюють Курська та Смоленська АЕС. Курська розташована на притоці Десни р. Сейм. Водозабезпечення Смоленської АЕС здійснюється з використанням водосховища, побудованого шляхом перекриття верхньої ділянки русла р. Десни земляною дамбою. Досить інтенсивно розвинута атомна енергетика і в країнах басейну р. Дунай: у Болгарії, Угорщині, Федеративній Республіці Німеччині та інших, що обумовлює актуальність радіоекологічних досліджень всього басейну і особливо нижньої ділянки цієї ріки в межах України. Вирішення основних наукових, технічних і соціально-економічних проблем, пов'язаних з виводом із експлуатації реакторів АЕС України, намічено на друге десятиліття XXI століття. Серед великої кількості екологічних проблем, які породжує атомна енергетика, слід виділити споживання води, її витрати на випаровування, теплове, хімічне і радіонуклідне забруднення.