Курсовая Мембранные системы Биокон
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Содержание:
Введение
1. Конструкция и принципы работы мембранных систем БИОКОН.
2. Применений мембранных систем БИОКОН.
Введение
Мембранные процессы фильтрации и, в частности, ультрафильтрация и микрофильтрация являются сепарационными процессами, которые протекают под давлением с использованием пористых полимерных или неорганических материалов. Эти процессы за последние 30 лет нашли широкое применение в различных отраслях промышленности для очистки или концентрирования жидких сред.
Объем продаж мембран и мембранного оборудования непрерывно увеличивается с ежегодным темпом роста примерно на 10-12 %. Например, в 1986г. мембранный рынок составлял $3,2 млрд., в 1990г. – $6,1 млрд., а в конце 90-х годов должен был составить по оценкам экспертов около $10-11 млрд. /1, 2, 3/.
Производство мембран и оборудования на их основе сосредоточено главным образом в трех регионах: США, Западная Европа и Япония, на долю которых приходится около 97 % всего производства и 75 % закупок, связанных с мембранной техникой. В настоящее время в этих регионах в мембранной промышленности занято около 100 фирм и предприятий, причем только 60 из них производят собственно мембраны и мембранные модули, а остальные осуществляют проектирование оборудования с использованием мембран в качестве элементов промышленных установок /4, 5/.
Россия, главным образом, импортирует мембранную технику, таких западных фирм как, «Миллипор» (США), Палл (Германия), «Кюно» (Франция), «Мембрафлоу» (Германия) и некоторых других компаний.
Однако в России имеется, хотя и недостаточно развитая, отечественная мембранная отрасль промышленности. Из производителей полимерных мембран в России следует отметить, в первую очередь, ЗАО НТЦ «Владипор» (г. Владимир, листовые и рулонные мембраны), ГП ВНИИПВ (г. Мытищи, полые волокна), ГНИИ «Кристалл» (г. Дзержинск, трубчатые мембраны).
Конкурентно способное производство мембранного оборудования в России относится, в основном, к процессам водоподготовки, где часто используются зарубежные мембраны и компоненты мембранного оборудования (компании «Национальные водные ресурсы» г. Москва, «Медиано-Фильтр» г. Москва и др.) а также к процессам ультрафильтрации с использованием полимерных мембран в медицинской промышленности, например, фирмы «Владисарт» (г. Владимир).
В 70-х годах на рынке мембран Европы, США и Японии появились керамические мембраны. Керамические мембраны, создаваемые обычно на основе оксидов, нитридов и карбидов ряда металлов, предназначались для микро- и ультрафильтрации различных жидкостей, агрессивных по своей природе или требующих для осуществления эффективных процессов разделения их нагрева до температур свыше 100 градусов Цельсия, где полимерные (органические) мембраны теряют свои свойства или разрушаются. Кроме высокой температурной стабильности, существует еще целый ряд характерных для керамических мембран свойств, которые позволяют выделить их в отдельное направление коммерческой и научно-технической деятельности, получившее за рубежом название "бизнес керамических мембран".
Среди таких свойств следует в первую очередь отметить:
- механическую стабильность;
- стойкость к химическому и микробиологическому воздействию;
- стабильность создаваемых структурных пор и возможность активного управления ими в процессе производства мембран;
- возможность использования обратных потоков через мембрану;
- высокая пропускная способность мембран;
- большой срок службы.
За счет перечисленных преимуществ использование керамических мембран по сравнению с полимерными мембранами позволяет снизить эксплуатационные расходы (в основном за счет большего срока службы), уменьшить габариты и вес фильтровальной установки, что также несколько снижает величину капитальных затрат.
Несмотря на доминирующие позиции полимерных мембран в биотехнологических секторах промышленности на Западе, керамические мембраны начинают постепенно проникать в эти отрасли благодаря тому, что они в меньшей степени воздействуют на свертывание белков на поверхности мембран, а также позволяют многократно проводить их стерилизацию паром. Широкое применения керамические мембраны находят при фильтрации промышленных сточных вод, в частности в Германии, где сильно развита металлообрабатывающая промышленность.
Объем продаж керамических мембран в 1988г. составил $32 млн., в 1993г. - $40 млн. В 1991г. эксперты предсказывали в 90-е годы бурный рост объемов продаж неорганических мембран. Ожидалось, что объем продаж должен был составить в 1999г. около $450 млн. Однако этого не произошло, что было обусловлено высокой стоимостью керамических мембран, превышавшей в 3-5 раз стоимость полимерных мембран (для керамических мембран цены составляли - $1800 - $2500 за 1 кв. метр поверхности мембраны). Последующие оценки были более скромные. Предсказывают, что объем продаж неорганических мембран в 2003г. составит $228 млн. при доле керамических мембран 70 %
В России в настоящее время существуют небольшие производства (300-500 м2/год) конкурентно способных по качеству неорганических мембран, например, ООО «НПО «Керамикфильтр» (г. Москва, трубчатые керамические мембраны) и ГУП НПЦ «Ультрам» (г. Москва, листовые металлокерамические мембраны).
1. Конструкция и принципы работы мембранных систем БИОКОН
Базовые фильтрационные системы БИОКОН представляет собой два вида однотипных изделий - фильтрационные аппараты и фильтрационные модули, отличающиеся, главным образом, своими масштабными показателями (размером и весом).
В качестве фильтрующего материала (фильтрационного элемента) используются полимерные мембраны в виде рулонных мембранных элементов (тип ЭРУ-100-1016, ЗАО «Владипор», г. Владимир) или керамические мембраны в виде одноканальных трубчатых керамических элементов (типа КМФЭ, ООО «НПО «Керамикфильтр», г. Москва). Размер пор или порог задержки фильтрующего материала составляет:
для керамических мембран: 0.03 мкм, 0.2 мкм, 0.8 мкм, 1.2 мкм,
для полимерных мембран: 500, 10000, 20000, 50000 дальтон.
Керамические мембраны типа КМФЭ представляют собой трубки длиной 800 мм с внутренним диаметром 6 мм и внешним диаметром 10 мм, выполненные из пористого оксида алюминия, на внутренней поверхности которых нанесен селективный слой их нитевидных кристаллов карбида кремния (толщина кристаллов около 0.1 мкм).
Полимерные мембраны типа ЭРУ-100-1016 представляют собой мембранные элементы рулонного типа длиной 1016 мм и внешним диаметром 100 мм с мембраной из полисульфонамида.
Фильтрационный аппарат состоит из цилиндрического корпуса с торцевыми фланцами, выполненными из нержавеющей стали. Внутрь корпуса вставляются трубчатые керамические фильтрующие элементы или рулонные мембранные элементы. Герметизация фильтрующих элементов в аппарате осуществляется в торцевых фланцах за счет резиновых колец. На корпусе фильтрационного аппарата и торцевых фланцах имеются патрубки и штуцера для подвода фильтруемой среды, отвода фильтрата и концентрата.
Фильтрационный модуль состоит из одного или нескольких фильтрационных аппаратов, циркуляционного насоса (центробежного типа), питающего насоса, теплообменного устройства, входного и выходного коллекторов, несущей рамы, вентилей, манометров, расходомеров, вспомогательной емкости (по необходимости), соединительной быстросъемной арматуры, силового пульта.
Фильтрационный модуль построен по принципу циркуляционной петли для создания режима фильтрации в поперечном потоке (тангенциальной фильтрации).
Фильтруемая жидкость подается в модуль питающим насосом. Внутри модуля фильтруемая жидкость под действием циркуляционного насоса непрерывно прокачивается по циркуляционному контуру, образуемому соединенными последовательно (для керамических мембран) или параллельно (для полимерных мембран) несколькими фильтрационными аппаратами, теплообменником и циркуляционным насосом.
Часть жидкости и частицы, размер которых меньше размера пор, под действием давления (0,5 – 3,5 кгс/см2) проходят через мембранную поверхность фильтрационных элементов и непрерывно выводятся из модуля. Эта часть жидкости называется пермеатом. Дефицит жидкости в модуле восполняется постоянной подпиткой новой фильтруемой жидкостью.
Частицы, размер которых больше размера пор, задерживаются селективным слоем и накапливаются внутри циркуляционного контура. Эта часть потока называется концентратом. Осадок, образующийся над мембраной, непрерывно смывается циркуляционным потоком, скорость которого составляет 4-7 м/с для керамических мембран и 1-1,5 м/с для полимерных мембран.
Промышленные системы БИОКОН проектируются из нескольких фильтрационных модулей, управляющих вентилей и системы автоматического контроля. Компания БИОКОН располагает «ноу-хау» по проектированию крупных промышленных систем с учетом оптимального выбора типа мембраны и масштабов фильтрационной системы для конкретного продукта. Компания БИОКОН производит широкую гамму фильтрационных систем.
Поверхность фильтрации базовых модулей составляет:
- для керамических мембран: 0,5; 1,1; 4; 8; 10; 20 м2;
- для рулонных мембран: 5, 10, 20, 40, 80, 90, 150, 240 м2.
Накопленный опыт применения керамических мембран и рулонных элементов показывает, что они наиболее эффективны при высоких температурах:
- для керамических мембран: 40-90 0 С;
- для рулонных элементов: 40-55 0 С,
при этом срок службы составляет для керамических мембран – 3-5 лет, для рулонных элементов – 0,5 – 1 год.
2. Применений мембранных систем БИОКОН
2.1 Фармацевтическая и микробиологическая промышленности
2.1.1 Рибофлавин. Культуральная жидкость продуцента витамина В12 (рибофлавина) подвергается микрофильтрации на керамических мембранах размером пор 0,2 мкм при температуре более 110 0 С для отделения биомассы от растворенного при такой температуре витамина В12. Скорость фильтрации составляет 400 л/м2/ч. Используется установка с поверхностью фильтрации 20 м2.
2.1.2 Эритромицин. Культуральная жидкость продуцента эритромицина разбавляется в два раза водой затем подвергается микрофильтрации на керамических мембранах с размером пор 0,2 мкм при температуре 40 0С. Скорость фильтрации составляет 60-80 л/м2/ч. Выход антибиотика на стадии микрофильтрации увеличивается на 17-21 % по сравнению с прежней заводской технологией с использованием фильтр-прессов. Продолжительность процесса мойки и регенерации керамических мембран составляет 30 мин. В настоящее время используется установка с поверхностью фильтрации 110 м2 . Полная проектная мощность установки составит 290 м2.
2.1.3 Витамин В2.. Очищенный от биомассы раствор культуральной жидкости концентрируется путем нанофильтрации с использованием рулонных элементов ЭРН-100-1016 в 40 раз. Скорость фильтрации составляет 8-10 л/м2/ч.
2.1.4 Лизин. Для получения кристаллического лизина культуральная жидкость продуцента лизина подвергается процессу предварительной очистки от биомассы путем микрофильтрации на керамических мембранах с размером пор 0,2 мкм при температуре 50 0С. Скорость фильтрации составляет 120-160 л/м2/ч. По технологии 75 % получаемого очищенного раствора направляется для получения кристаллического лизина, а концентрат биомассы (25 %) направляется для производства кормового лизина. Проектная мощность установки составляет 160 м2.
2.1.5 Ферменты. Спиртовой (70%) экстракт белков и ферментов очищается на установке с поверхностью фильтрации 1,1 м2 с использованием керамических мембран с размером пор 0,2 мкм. Скорость фильтрации составляет 130 л/м2/ч.
Разделение / концентрирование органических компонентов технологических потоков при помощи ультрафильтрационных элементов
Ультрафильтрационные элементы G-серии успешно используются для фракционирования и концентрирования компонентов технологического потока в нескольких отраслях промышленности. Ультрафильтрационные мембраны G-серии идеально подходят для этой задачи благодаря своим достаточно точным характеристикам по отсечке молекулярной массы и химической стойкости.
Химическая, фармацевтическая и биотехническая отрасли промышленности используют ультрафильтрационные элементы G-серии для разделения компонентов собственных технологических потоков. Существует много потенциальных видов применения в других отраслях промышленности.