Курсовая Вивчення систем, еквівалентних системам з відомим типом крапок спокою
Работа добавлена на сайт bukvasha.net: 2015-10-25Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
Курсова робота
"Вивчення систем, еквівалентних системам з відомим типом крапок спокою"
Реферат
Курсова робота складається з _____ сторінок, 3-х джерел.
Ключові слова: вложима система, з відомим типом крапок спокою, перший інтеграл диференціальної системи, функція, клас систем еквівалентних системі з відомим типом крапок спокою.
Метою курсової роботи є дослідження системи з відомим типом крапок спокою, знаходження першого інтеграла системи, застосування теореми про еквівалентність диференціальних систем.
Зміст
Введення
1. Визначення вложимої системи. Умови вложимості
2. Загальне рішення системи
3. Знаходження першого інтеграла диференціальної системи й умови його існування
4. Функція, що відбиває
5. Застосування теореми про еквівалентність диференціальних систем
Висновок
Список джерел
Введення
У курсовій роботі розглядається вложима система з відомим типом крапок спокою. Як відомо система є вложимою, якщо будь-який компонент цієї системи вложима, тобто система вложима тоді й тільки тоді, коли множина її рішень є підмножиною множини рішень деякої лінійної стаціонарної системи.
В 1-
В 3-м ми знаходимо перший інтеграл системи й перевіряємо виконання тотожності.
В 4-м пункті досліджуємо функції, що відбивають
В 5-м пункті застосовуємо теорему про еквівалентність диференціальних систем
1. Визначення вложимої системи. Умови вложимості
Розглянемо диференціальну систему
Будемо називати i-ю компоненту x
для якого
2. Загальне рішення системи
Розглянемо вложиму систему
(b>0 і а-постійні) із загальним рішенням
x=0, y=at+c
Підставимо загальне рішення
у нашу систему (1) одержимо
=
a-
Для стислості розпишемо знаменник і перетворимо
x
+b=
=a+c (c
a-
Одержуємо, що x і y є загальним рішенням системи.
3. Знаходження першого інтеграла диференціальної системи й умови його існування
Розглянемо систему
Нехай V (t, x), V: G
V
Лема 1.
Для будь-якого рішення x (t), t
V
Без доказу.
Лема 2.
Функція U (t, x), U: G
Необхідність. Нехай U (t, x) є перший інтеграл системи (1). Тоді для будь-якого рішення x (t) цієї системи, застосовуючи лему 1 будемо мати тотожності
U
Звідки при t=t
Достатність. Нехай тепер U
а з ним і достатність.
З визначення першого інтеграла треба, що постійна на G функція також є першим інтегралом системи (1). Перший інтеграл U (t, x) будемо називати на G, якщо при всіх (t, x)
Функцію U (x) будемо називати стаціонарним першим інтегралом системи (1), якщо вона не залежить від t і є першим інтегралом системи (1).
Знайдемо перший інтеграл нашої системи:
Піднесемо до квадрата й виразимо з
y
Покладемо
Перевіримо, що функція
Знайдемо похідні по t, x, y
Після вище зроблених перетворень одержуємо, що функція
3) Перевіримо виконання тотожності:
Перетворимо (3).
[з огляду на всі зроблені позначення] =
=
=
=
[через те, що
Таким чином, тотожність (3) щире.
4. Функція, що відбиває
Визначення. Розглянемо систему
вважає, що права частина якої безперервна й має безперервні частки похідні по
функцією, що відбиває, системи (5) назвемо функцію
Для функції, що відбиває, справедливі властивості:для будь-якого рішення
для функції, що відбиває, F будь-якої системи виконані тотожності
3) функція
і початковій умові
5. Застосування теореми про еквівалентність диференціальних систем
Одержуємо
Поряд з диференціальною системою
Тому що вище вже показано, що функція
Теорема 1.
Система
Тому що система
Висновок
У даній курсовій роботі розглянута вложима система з відомим типом крапок спокою, перевірене задоволення загального рішення нашій системі, знайдені перший інтеграл і перевірений виконання тотожності, потім за допомогою теореми 1 доведена еквівалентність диференціальних систем. Сформульовано визначення вложимої системи, першого інтеграла, що відбиває функції й загальні властивості функції, що відбиває. Сформульована теорема за допомогою якої ми довели еквівалентність нашої системи з диференціальною системою.
Список джерел
1. Мироненко В.І. Лінійна залежність функцій уздовж рішень диференціальних рівнянь. - К., 2001.
2. Мироненко В.І. Функція, що відбиває, і періодичні рішення диференціальних рівнянь. - К., 2004.
3. Мироненко В.І. Збурювання диференціальних систем, що не змінюють тимчасових симетрій. - К., 2004 р.