Курсовая

Курсовая Проектирование и расчет гидроприводов

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024





ВВЕДЕНИЕ
Гидроприводы широко применяются в элементах технологических систем: в современных металлорежущих станках, технологической оснастке, элементов автоматизации технологических процессов. Они позволяют существенно упростить кинематику механизмов, приводящих в движение исполнительные органы, снизить металлоемкость, повысить точность надежность работы, а также уровень автоматизации. (1)

Широкое использование гидроприводов в станкостроении определяется рядом их существенных преимуществ перед другими типами приводов и, прежде всего возможностью получения больших усилий и мощностей при ограниченных размерах исполнительных силовых двигателей.

Компактные гидродвигатели легко встроить в станочные механизмы и соединить трубопроводами с насосной установкой. Это открывает широкие возможности для контроля, оптимизации и автоматизации рабочих процессов, применение копировальных, адаптивных и программных систем управления, модернизации и унификации. К основным преимуществам гидроприводов следует отнести также достаточное значение КПД, повышенную жесткость и долговечность.

В данной курсовой работе рассматриваются вопросы проектирования и расчета гидроприводов для различных технологических систем, целью ее является практическое усвоение и закрепление теоретических знаний при изучении курсов гидравлика и гидроприводы.


1. Задание
Разработать гидросхему для цилиндров 3 и 6.

1.Усилие на штоке, Н:

 - гидроцилиндра 3 5000

 - гидроцилиндра 6 105

2. Ход штока, м:

 - гидроцилиндра 3 0.2

 - гидроцилиндра 6 0.5

3. Время срабатывания, с:

 - гидроцилиндра 3 20

4. Скорость перемещения штока

гидроцилиндра 6, м/с 0.2


Рисунок 1. Схема штамповки.
Приведённое выше устройство работает следующим образом. После установки заготовки 8 в ложемент матрицы пуансон 5 под действием гидроцилиндра 6 перемещается вниз, производя вытяжку заготовки. После подъёма пуансона 5 готовая деталь 4 выталкивается из матрицы 2 посредством штока гидроцилиндра 3. Затем питатель 9 с помощью гидроцилиндра 10, перемещаясь вправо, сталкивает готовую деталь 4 в тару. Одновременно питатель перемещает заготовку 8, расположенную в его отверстии, к матрице. В конечном правом положении отверстие питателя совмещается с ложементом матрицы, и заготовка падает в ложемент. Затем посредством гидроцилиндра 11 питатель поднимается в вертикальном направлении, освобождая заготовку 8, и перемещается влево, при этом его отверстие совмещается с отверстием накопителя 7, и заготовка под действием собственного веса падает в отверстие питателя. Затем питатель опускается вниз. Гидроцилиндры питателя 10, 11 работают от одного насоса, а гидроцилиндры 3 и 6 пресса работают от другого насоса.
2.            Разработка принципиальной схемы гидропривода


Рисунок 2. Гидравлическая схема.
Схема гидропривода установки состоит из нерегулируемого насоса 1 с предохранительным переливным клапаном 2, гидрораспределителей 3 и 4, двух гидроцилиндров 6 и 7. Гидроцилиндр 6 перемещается в вертикальном направлении, выталкивая заготовку из матрицы, а гидроцилиндр 7 посредством пуансона прессует заготовку. На напорной магистрали установлен дроссель 5.

Гидропривод работает следующим образом. При нагнетании давления от насоса 1 масло поступает через гидрораспределитель 3 в бесштоковую полость гидроцилиндра 7. При достижении нижнего положения кулачок переключает конечный выключатель 8, перемещая его в нижнее положение, после чего происходит слив масла из цилиндра 7. При достижении верхнего положения кулачок переключает конечный выключатель 8, перемещая его в верхнее положение, тем самым переключая распределитель 4. Теперь масло нагнетается в гидроцилиндр 6. При достижении верхнего положения кулачок переключает конечный выключатель 8, перемещая его в верхнее положение, тем самым переключая распределитель 4. Начинается слив масла из цилиндра 6. При достижении нижнего положения кулачок переключает конечный выключатель 8, перемещая его в нижнее положение, при этом переключается распределитель 3 и опять начинается нагнетание масла в гидроцилиндр 7. Происходит повторение цикла.
3. Расчет исполнительных механизмов
В качестве исполнительных механизмов в гидроприводах в основном используются гидроцилиндры моментные или поступательного действия, а также гидромоторы.

Для расчета параметров исполнительных механизмов необходимо знать давление на входе в гидроцилиндр. Обычно давление принимается равным 80-85% от давления, развиваемого насосом. Объясняется это тем, что имеются потери давления при движении жидкости по трубопроводам и элементам управления. Давление насоса выбирают таким, чтобы диаметр цилиндра был в пределах 40…120 мм. Тогда























4. Определение длины хода штоков гидроцилиндров



5. Определение давления в гидросистеме
Наиболее экономичны в изготовлении цилиндры с диаметром от 40 до 120мм. Тогда давление при заданных диаметров цилиндра (max и min) определяется соотношением.





Для гидроцилиндра 6:



Для гидроцилиндра 3:



Давление, развиваемое насосом должно лежать в пределах:



Предварительно выбираем пластинчатый насос (с.22 ) БГ 12-2

давление насоса номинальное - 12,5МПа

давление насоса предельное - 14МПа


6. Определение диаметров цилиндров


где p=0.8pн

pн – номинальное давление насоса.
P=0.8Ч12.5=10МПа


Основные параметры гидроприводов должны соответствовать стандартным рядам (с.8 ).
Принимаем:

Принимаем:                                                                      
7
. Выбор рабочей жидкости

Скорость движения жидкости по трубопроводу выбирается по таблице (с.19 )



Давление в кГ/см2

50

100

150

200

Скорость в м/с

3

4,5

5,5

6


Принимаем скорость 5,5 м/с

При давлении в гидросистеме до 200 кГс/см2 кинематическая вязкость масла составляет 40ч60 сст. Выбираем масло индустриальное ИГП-49 ТУ 38-101413-78 с кинематической вязкостью 47ч51 сст при температуре 50˚С.

Расход жидкости определяется по максимальному расходу жидкости в гидроцилиндрах.

Расход жидкости для гидроцилиндра 6, при подаче жидкости в бесштокувую область, при заданной скорости штока гидроцилиндра


 м3/с ;
Расход жидкости для гидроцилиндра 3, при подаче жидкости в бесштоковую область, при заданном времени срабатывания


 м3;
         По табл.1 (стр. 17 [1]) выбираем по расходу для гидроцилиндра 6 пластинчатый нерегулируемый насос БГ12-22М с номинальной подачей 19,4 л/мин.


8. Расчёт диаметров условных проходов трубопроводов и управляющей аппаратуры
При известном расходе и скорости движения жидкости по трубопроводам диаметр трубопровода определяется по формуле


 м =8,6 мм
По нормальному ряду принимаем dt=10 мм.

Толщина стенки с учётом возможного отклонения диаметра и толщины стенки вычисляют по выражению
, где
p – максимальное давление жидкости в кГ/см2;

d – наружный диаметр трубы в см ;

[σp] – допустимое напряжение материала трубопровода при растяжении (по окружности), которое обычно выбирается равным 30…35% временного сопротивления материала трубопровода, т. е.
[σp]=0,32Ч σp
m=0,3 – отклонение по диаметру трубопровода в мм;

n=0,9 – коэффициент, учитывающий отклонение по толщине стенки трубопровода.

При расчёте трубопровода временное сопротивление в кГ/см2 примем по качественной стали матки С20



Материал

Сталь 20

σp, кГ/см2

4100



 мм

гидропривод шток цилиндр механизм

По сортаменту труб выбираем ближайшую большую по толщине стенки трубу, соответствующего прохода (стр. 337-342 [1]).

Выбираем трубу по ГОСТ 8734-75: 14Ч2.

По диаметру условного прохода и давлению определим конкретные марки управляющей и предохранительной аппаратуры. Согласно схеме гидропривода, используются следующие виды гидроаппаратуры:

а) клапан давления 2 выбираем исполнение Г52-2 с условным проходом 10 мм, давлением 0,3…10 МПа с резьбовым соединением без электрического управления обратного клапана: АГ52-22

б) гидрораспределитель 4 выбираем золотникового типа с электроуправлением , диаметром условного прохода 10 мм, давлением 0,3…10 исполнение 64, электромеханический, ток переменный, напряжение 220В, частота 50H. Согласно схеме (стр.129 [1]) выбираем гидрораспределитель 7:

ВЕ10441ОФ/В220-50H

в) гидрораспределитель 2: ВЕ105746/ФВ220-50H

г) дроссель 5 выбираем: ПГ77-12


9. Определение потерь давления жидкости от насоса к исполнительным органам
Потери давления при движении жидкости от насоса до гидроцилиндра определяются соотношением
, где          
Δpjтр – потери давления на трение при движении жидкости по трубопроводу;

Δpim – местные потери при движении жидкости по элементам управляющей аппаратуры.

Местные потери зависят от количества элементов управляющей аппаратуры, установленной на трубопроводе. Величина потерь давления зависит от конструкции и назначения соответствующей аппаратуры. Как правило, эти данные указываются в таблицах основных параметров на конкретную аппаратуру [1].

Потери давления на трение в трубопроводе определяются по следующей методике.

Зная диаметр трубы, скорость движения жидкости и кинематическую вязкость, определяется режим движения жидкости по трубопроводу, для чего определяется число Рейнольдса Re [2]



Ламинарному режиму течения жидкости в гидравлически гладких металлических трубах круглого сечения соответствует Re≤2200-2300

Потери давления при ламинарном режиме течения жидкости определяются по формуле
, где при расчётах
L и d – длина и диаметр внутреннего сечения рассматриваемого трубопровода;

ρ – плотность жидкости;

Q – расход жидкости в трубопроводе;

f – сечение трубопровода.
λ=,

 МПа
Потери давления на трение при ламинарном режиме течения
Δp1=0,18 МПа
Далее определяем местные потери давления при движении жидкости через гидрораспределители ВЕ10441ОФ/В220-50H

и ВЕ105746/ФВ220-50H по номограмме (стр. 109 [1])
Δp2=0,05 МПа
Потери давления через дроссель выбираем по таблице (стр. 86 [1])


Δp3=0,2 МПа
Тогда потери давления при питании гидроцилиндра 6
 МПа
Потери давления при питании гидроцилиндра 3
 МПа , где
Δp1=0,11 Мпа – потери давления на трение при движении жидкости по трубопроводу;

Δp2=0,05 МПа – местные потери давления при движении жидкости через распределитель 5 и 7;

Δp3=0,2 МПа – местные потери давления жидкости через дроссель 6. [1]


Таким образом, давление в гидроцилиндре 6
МПа

 МПа
Давление гидроцилиндра больше, чем давление, принятое при расчете гидроцилиндра.


ЗАКЛЮЧЕНИЕ
В данной курсовой работе мы исходя из назначения гидропривода разработали принципиальную его схему, где выбрали тип источника энергии, исполнительные механизмы, а так же управляющие и предохранительные элементы. Рассчитали исполнительные механизмы в зависимости от заданных выходных параметров. Выбрали элементы гидропривода.

После расчета давления с учётом потерь, получилось, что давления в цилиндрах больше чем начально-выбранное давление. Следовательно схема разработана и рассчитана верно.


СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
1. Свешников В.К., Усов А.А. Станочные гидроприводы: Справочник. – М.: Машиностроение, 1982.

2. Чинёнова Т.П., Чинёнов С.Г. Расчет гидроприводов: Уч. Пособие.–Челябинск: Изд. ЮУрГУ, 1997.

3. Башта Т.М. Гидропривод и гидропневмоавтоматика.–М.: Машиностроение,1972.
Размещено на Allbest.ru

1. Реферат на тему Celine Dion Essay Research Paper Celine is
2. Реферат на тему Locke Vs Marx Essay Research Paper For
3. Реферат Комунізм як ідеологія
4. Реферат на тему Dolphin Assisted Therapy Essay Research Paper Dolphin
5. Доклад на тему Храм Во Имя Святых Первоверховных Апостолов Петра и Павла в Карловых Варах
6. Реферат Экзаменационные билеты по маркетингу за 2000 год
7. Реферат Португалия 2
8. Статья на тему О посте и причастии
9. Реферат Методы диагностики и получения информации о семейной ситуации
10. Реферат на тему Turner Essay Research Paper Turner