Курсовая

Курсовая Расчет и подбор нормализованного теплообменного аппарата

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024





Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

(ВолгГТУ)
Кафедра ПАХП

Курсовая работа


на тему:

Расчет и подбор нормализованного теплообменного аппарата




Выполнил: студент

группы ХТ-341

Ошкин Михаил Иванович
Волгоград 2008г.


Содержание
Аннотация

Введение

Общая часть

1. Определение расхода теплоты и расхода воды

2. Приблизительная оценка

Расчет и подбор теплообменных аппаратов

Вариант №1: D = 273мм, n = 37, z =1 и F = 9

Вариант №2: D = 325мм, n = 56, z =2 и F = 13

Расчет нагрузочной характеристики

Заключение

Приложение №1

Приложение №2

Список используемой литературы




Аннотация
В данной семестровой работе рассматривается процесс передачи энергии в форме тепла и на основе расчетных данных осуществляется подбор теплообменного аппарата.

В данном случае рассматривается процесс охлаждения жидкости с заданным расходом.

Исходными материалами являются ацетон и скважинная вода. Вода является охладителем с начальной температурой равной . Для исключения накипи в межтрубном пространстве конечная температура воды не превышает , т.е. принята .

Жидкости подаются в теплообменный аппарат противоточно, при условии, что осуществляется развитое турбулентное течение. Кожух теплообменного аппарата выполнен из материала – сталь, с толщиной 2мм, без учета расчета на прочность. Подбор теплообменного аппарата осуществляется при условии, что поверхность теплообмена не будет превышать 10%. Исходным материалом для расчета поверхности теплообменного аппарата является учебник: К.Ф. Павлов, П.Г. Романков, А.А. Носков «Примеры и задачи по курсу процессов и аппаратов химической технологии».


Введение

теплообменный аппарат ацетон

В зависимости от способа передачи тепла различают две основные группы теплообменников:

1) поверхностные теплообменники, в которых перенос тепла между обменивающимися теплом средами происходит через разделяющую их поверхность теплообмена – глухую стенку;

2) теплообменники смешения, в которых тепло передается от одной среды к другой при их непосредственном соприкосновении.

Теплообменники и холодильники могут устанавливаться горизонтально и вертикально, быть одно-, двух-, четырех- и шестиходовыми по трубному пространству. Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали, а трубы холодильников – также и из латуни. Распределительные камеры и крышки холодильников выполняют из углеродистой стали.

Кожухотрубчатые конденсаторы предназначены для конденсации паров в межтрубном пространстве, а также для подогрева жидкостей и газов за счет теплоты конденсации пара. Они могут быть с неподвижной трубчатой решеткой или с температурным компенсатором на кожухе, также вертикальные и горизонтальные. От холодильников они отличаются большим диаметром штуцера для подвода пара в межтрубное пространство.

В кожухотрубчатых испарителях в трубном пространстве кипит жидкость, а в межтрубном пространстве может быть жидкий, газообразный, парообразный, парогазовый или парожидкостной теплоноситель. Эти теплообменники могут быть только вертикальные, с неподвижной трубной решеткой или с температурным компенсатором на кожухе.

В работе используется кожухотрубчатый теплообменник. Кожухотрубчатые теплообменные аппараты могут использоваться в качестве теплообменников, холодильников, конденсаторов и испарителей. Этот теплообменник относится к числу наиболее часто применяемых поверхностных теплообменников. В теплообменнике одна из обменивающихся теплом сред движется внутри труб, а другая – в межтрубном пространстве. Среды обычно направляются противоположно друг другу. При этом нагреваемую среду направляют снизу вверх, а среду, отдающую тепло, - в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремится двигаться данная среда под влиянием изменения ее плотности при нагревании или охлаждении.

Конструкции теплообменников должны отличаться простотой, удобством монтажа и ремонта. В ряде случаев конструкция теплообменника должна обеспечивать возможно меньшее загрязнение поверхности теплообмена и быть легко доступной для осмотра и очистки.

Конденсация ацетона водой

Примем следующие индексы:

«1» - для ацетона

«2» - для воды


Общая часть



1. Определим расход теплоты и расход воды на охлаждение ацетона
Примем температуру ацетона на входе в теплообменник равной t
н1
= 56
0С. Конечная температура ацетона, по условию задания, равной 36 0С. Вода подается в теплообменник с начальной температурой t
н2
= 17
0С. Конечная температура равна t
н2
= 27
0С.

- средняя температура воды:
0С
Данным условиям соответствуют следующие физико-химические показатели воды:

С2 = 4231,9 Дж/(кг К) – теплоемкость этилацетата (стр. 562, рис. XI, [1]);

λ2 = 0,593 Вт/(м К) – коэф. теплопроводимости (стр. 561, рис. X, [1]);

ρ2 = 998 кг/м3 – плотность этилацетата (стр. 512, т. IV, [1]);

μ2 = 1 10-3 Па с – коэф. динамической вязкости (стр. 516, т. IX, [1]).

- среднюю логарифмическую разность температур:
56→36

27←17

290С 190С
Т.к. , используется формула:


0С
Расчет - температурного коэффициента:



где
 при , ,



 тогда ,





тогда0С

- среднюю температуру исходного вещества:
0С

Данным условиям соответствуют следующие физико-химические показатели ацетона:

с1 = 2304,5 Дж/(кг К) – теплоемкость этилацетата (стр. 562, рис. XI, [1]);

λ1 = 0,163 Вт/(м К) – коэф. теплопроводимости (стр. 561, рис. X, [1]);

ρ1 = 762,5 кг/м3 – плотность этилацетата (стр. 512, т. IV, [1]);

μ1 = 0,257 10-3 Па с – коэф. динамической вязкости (стр. 516, т. IX, [1]).

Определим расход исходного вещества :

С учетом потерь теплоты в размере 5% , тепловая нагрузка составит:

Расход воды составит:

Объемные расходы исходного вещества и воды:
0,00546

0,00477


2. Наметим варианты теплообменных аппаратов
Для этого определим ориентировочное значение площади поверхности теплообмена, принимая  (стр. 47, т. 2.1, [2]):

Для более интенсивного теплообмена необходим аппарат с турбулентным режимом течения теплоносителей. Направим в трубное пространство воду, а в межтрубное пространство – ацетон. Также для наиболее эффективного теплообмена необходимо, чтобы трубы в аппарате располагались в шахматном порядке.

В теплообменниках с диаметром труб  по ГОСТу 15120-79 скорость течения исходного вещества при  должна быть более:
0,525
При этом число труб в аппарате обеспечивающих объемный расход исходного вещества при турбулентном режиме течения:
31,1=31 шт.



Расчет и подбор теплообменных аппаратов


Вариант №1:



D
= 273 мм,
n
=37 ,
z
=1 и
F
=9 м2 :

Определим расчетное значение площади поверхности теплообмена и рассчитаем запас поверхности теплообмена у теплообменного аппарата данного типа.

Размер стрелки сегмента:
мм
Расстояние между перегородками:
мм
Где
Определим скорость и критерий Рейнольдса для исходного вещества:


36847
Для воды:




Определим коэффициенты теплоотдачи:

- для воды:

Теплоотдача течении в прямых трубах и каналах (), критерий Нуссельта рассчитывается по формуле (см. стр. 152, (4.17), [1])


ε
l
= 1
– поправочный коэффициент, учитывающий влияние на коэффициент теплоотдачи отношения длины трубы к ее диаметру.

Откуда

Рассчитаем критерий Прандтля:

Тогда по формуле:
62,78
Принимаем значение = 1.

Коэффициент теплоотдачи:

1773
- для ацетона:

Рассчитаем критерий Прандтля:
3,633


Приняв.

Коэффициент теплоотдачи:

1299
Применительно к кожухотрубчатым теплообменникам с поперечными перегородками в формуле принимают коэффициент , учитывая, что теплоноситель в межтрубном лишь часть пути движется поперек труб и при угле атаки меньшем 900.

Примем тепловую проводимость загрязнений стенки со стороны воды равной  (табл. 2.2, [2]), коэффициент теплопроводимости стали равной  (табл. XXVIII, [1]), тепловую проводимость загрязнений стенки со стороны исходного вещества равной  (табл. 2.2, [2]).

Тогда


Коэффициент теплоотдачи рассчитаем по формуле:

Поверхностная плотность теплового потока:

Расчетная площадь поверхности теплообмена составит:
14,5
Запас поверхности составляет при этом:

Запас поверхности теплообмена данного аппарата не удовлетворяет условию. По аналогичной схеме рассчитаем другой вариант.


Вариант №2



D
=325 мм,
n
=56 ,
z
=2 и
F
= 13 :


Определим скорости и критерии Рейнольдса:

- для исходного вещества:


- для воды:



Определим коэффициенты теплоотдачи:

- для ацетона:





- для воды:



Коэффициент теплопередачи:

Поверхностная плотность теплового потока:

Расчетная площадь поверхности теплообмена:


Запас поверхности составляет при этом:

Запас поверхности теплообмена данного аппарата удовлетворяет условию.


Расчет нагрузочной характеристики



Примем следующий интервал температур стенки со стороны горячего теплоносителя:


T
1
=
/ 25     30      40      50      55/ 0С
Данным температурам соответствуют следующие физико-химические показатели исходного вещества:


с1.1 =2220,7 Дж/(кг К) – теплоемкость при t
ст
=25 0C
;

с1.2 = 2258,41 Дж/(кг К) – теплоемкость при t
ст
=30 0C;


с1.3 = 2283,55 Дж/(кг К) – теплоемкость при t
ст
=40 0C;


с1.4 =2308,69 Дж/(кг К) – теплоемкость при t
ст
= 50 0C;


с1.5 =2342,21 Дж/(кг К) – теплоемкость при t
ст
=55 0C;



λ1.1 =0,169 Вт/(м К)                                 ρ1.1 = 785,3 кг/м3

λ1.2 =0,167 Вт/(м К)                                 ρ1.2 = 779,5 кг/м3

λ1.3 = 0,165 Вт/(м К)                                ρ1.3 =768 кг/м3

λ1.4 =0,163 Вт/(м К)                                 ρ1.4 = 757 кг/м3

λ1.5 =0,162 Вт/(м К)                                 ρ1.5 = 751,5 кг/м3


μ1.1 = 0,3075 10-3 Па с

μ1.2 =0,293 10-3 Па с

μ1.3 = 0,268-3 Па с

μ1.4 = 0,246 10-3 Па с

μ1.5 = 0,476 10-3 Па с
Скорость исходного вещества равна:

Критерии Рейнольдса и Прандтля:






24209,73

26077,6

28002,85

14366,9


3,96

3,71

3,48

6,88
Значение Nu
рассчитываем по формуле:




166,6

170

145,54
Коэффициент теплоотдачи рассчитаем по формуле:


1090  

1100

1108

943,1 
Плотность теплового потока






6597,4

-4433,7

-8487,8
Определим температуру стенки со стороны холодного теплоносителя – воды:











Данным температурам соответствуют следующие физико-химические показатели воды:


с2.1 = 4231,9 Дж/(кг К) – теплоемкость воды при t
ст
= 240C
;

с2.2 = 4252,9 Дж/(кг К) – теплоемкость воды при t
ст
= 29,250C;


с2.3 = 4273,8 Дж/(кг К) – теплоемкость воды при t
ст
= 39,70C;


с2.4 = 4315,7 Дж/(кг К) – теплоемкость воды при t
ст
= 50,20C;


с2.5 = 4336,7 Дж/(кг К) – теплоемкость воды при t
ст
= 55,40C;


λ2.1 = 0,611 Вт/(м К)    ρ2.1 = 993,5 кг/м3

λ2.2 = 0,616 Вт/(м К)    ρ2.2 = 995кг/м3

λ2.3 = 0,637 Вт/(м К)    ρ2.3 = 992 кг/м3

λ2.4 = 0,645 Вт/(м К)    ρ2.4 = 987,5 кг/м3

λ2.5 = 0,651 Вт/(м К)    ρ2.5 = 985,3 кг/м3


μ2.1 = 0,9 10-3 Па с

μ2.2 = 0,801 10-3 Па с

μ2.3 = 0,656 10-3 Па с

μ2.4 = 0,549 10-3 Па с

μ2.5 = 0,509 10-3 Па с

Скорости воды:


Критерии Рейнольдса и Прандтля считаем аналогично:









Значение Прандтля:









Т.к. все значения Re
>10000,
то значение Nu:









Коэффициент теплоотдачи:









Плотность теплового потока:
        








Далее строим графики зависимости и . Совмещенные кривые отображают нагрузочную характеристику теплообменного аппарата. Для установившегося процесса теплопередачи должно соблюдаться условие q
1
=
q
2
, поэтому точка пересечения кривых определяет действительную плотность теплового потока и действительную температуру на поверхности стенки со стороны горячего теплоносителя. Зная эту температуру можно с помощью критериальных уравнений вычислить значения коэффициентов теплоотдачи и рассчитать величину коэффициента теплопередачи.




Данной температуре (Т=29) соответствуют следующие физико-химические показатели:

- для исходного вещества:


с1 = 2258,4 Дж/(кг К) – теплоемкость (стр. 562, рис. XI, [1]);

λ1 =0,167 Вт/(м К) – коэф. теплопроводимости (стр. 561, рис. X, [1]);

ρ1 =779,5 кг/м3 – плотность (стр. 512, т. IV, [1]);

μ1 = 0,293 10-3 Па с – коэф. динамической вязкости (стр. 516, т. IX, [1]).
- для воды:


с2 = 4232,9 Дж/(кг К) – теплоемкость (стр. 562, рис. XI, [1]);

λ2 =0,616 Вт/(м К) – коэф. теплопроводимости (стр. 561, рис. X, [1]);

ρ2 =995 кг/м3 – плотность (стр. 512, т. IV, [1]);

μ2 = 0,801 10-3 Па с – коэф. динамической вязкости (стр. 516, т. IX, [1]).
Рассчитаем значения Re
и Pr:
          

            




Коэффициент теплоотдачи:



Коэффициент теплопередачи:

Погрешность расчета:





Заключение
Для достижения поставленной цели в данной семестровой работе рассматривались только нормализованные теплообменные аппараты (холодильники), без рассмотрения экономических факторов, таких как: металлоемкость, себестоимость, вес и т.п.

В процессе приблизительной оценки были рассмотрены нормализованные теплообменные аппараты с внутренним диаметром кожуха 400мм, 600мм и 800мм. Запас поверхности теплообмена, у теплообменника с внутренним диаметром кожуха 800мм, не удовлетворял исходным требованиям, и в дальнейшем расчете нагрузочной характеристики не рассматривался. При рассмотрении теплообменных аппаратов с внутренним диаметром кожуха 400мм и 600мм, запас поверхности теплообмена составил, соответственно, 9,7% и 5%.

Далее рассчитывалась нагрузочная характеристика аппаратов. Вследствие чего, теплообменный аппарат, с внутренним диаметром кожуха 600мм, имел высокую ошибку при расчете коэффициента теплопередачи (свыше 10%), что не удовлетворяет условию задачи.

Всем требуемым условиям соответствует двухходовой нормализованный кожухотрубчатый теплообменный аппарат с внутренним диаметром кожуха 400мм, в количестве 2шт.




Приложение №1



Диаметр кожуха внутренний D, мм

Число труб n

Длина труб l
, мм


Проходное сечение, м2

nр

h, мм

1,0

1,5

2,0

3,0

4,0

6,0

9,0

Sт102

Sм102


Sв.п.102


Поверхность теплообмена F
,

мм


Одноходовые

159*

13

1,0

1,5

2,0

3,0

-

-

-

0,5

0,8

0,4

5

100

273*

37

3,0

4,5

6,0

9,0

-

-

-

1,3

1,1

0,9

7

130

325*

62

-

7,5

10,0

14,5

19,5

-

-

2,1

2,9

1,3

9

180

400

111

-

-

17

26

35

52

-

3,8

3,1

2,0

11

250

600

257

-

-

40

61

81

121

-

8,9

5,3

4,0

17

300

800

465

-

-

73

109

146

219

329

16,1

7,9

6,9

23

350

1000

747

-

-

-

176

235

352

528

25,9

14,3

10,6

29

520

1200

1083

-

-

-

-

340

510

765

37,5

17,9

16,4

35

550

Двухходовые

325*

56

-

6,5

9,0

13,0

17,5

-

-

1,0

1,5

1,3

8

180

400

100

-

-

16,0

24,0

31,0

47

-

1,7

2,5

2,0

10

250

600

240

-

-

38

57

75

113

-

4,2

4,5

4,0

16

300

800

442

-

-

69

104

139

208

312

7,7

7,0

6,5

22

350

1000

718

-

-



169

226

338

507

12,4

13,0

10,6

28

520

1200

1048

-

-





329

494

740

17,9

16,5

16,4

34

550

Четырехходовые

600

206

-

-

32

49

65

97

-

1,8

4,5

4,0

14

300

800

404

-

-

63

95

127

190

285

3,0

7,0

6,5

20

350

1000

666

-

-

-

157

209

314

471

5,5

13,0

10,6

26

520

1200

986

-

-

-

-

310

464

697

8,4

16,5

16,4

32

550

Шестиходовые

600

196

-

-

31

46

61

91

-

1,1

4,5

3,7

14

300

800

384

-

-

60

90

121

181

271

2,2

7,0

7,0

20

350

1000

642

-

-

-

151

202

302

454

3,6

13,0

10,2

26

520

1200

958

-

-

-

-

301

451

677

5,2

16,5

14,2

32

550

* Наружный диаметр кожуха

nр – число рядов по вертикали для горизонтальных аппаратов – по ГОСТ 15118-79;

h – расстояние между перегородками




Приложение №2





Список используемой литературы
1.           К.Ф. Павлов, П.Г. Романков, А.А. Носков «Примеры и задачи по курсу процессов и аппаратов химической технологии», 10-ое издание, переработанное и дополненное. Под ред. П.Г. Романтшва. Л.: Химия, 1987.-576С.

2.           «Основные процессы и аппараты химической технологии»: Пособие по проектированию / Г.С. Борисов, В.П. Брыков, Ю.И. Дытнерский и др. Под ред. Ю.И. Дытнерского, 2-ое издание, переработанное и дополненное М.: Химия, 1991.-496С.

3.           А.Г. Касаткин «Основные процессы и аппараты химической технологии». М.: Химия, 1971.-784С.

Размещено на http://www.allbest.ru

1. Реферат на тему Изучение проблемы индивидуальных различий в психологической концепции Хуана Уарте
2. Реферат Политическая система Испании
3. Реферат Правила учёта кассовых операций
4. Реферат Общая характеристика международных организаций
5. Реферат на тему Sa Essay Research Paper 3 Recruitment is
6. Контрольная работа Правила правопису в сучасній українській літературній мові
7. Отчет по практике на тему Финансово экономическая деятельность ОАО Сокольский молокозавод
8. Реферат Классификация, экспертиза и сертификация игрушек
9. Реферат Отчет о прохождении технико-экономической практики на ЗАО НКМЗ
10. Реферат на тему Gm Foods Essay Research Paper The subject