Курсовая на тему Эксплуатационные свойства автомобиля
Работа добавлена на сайт bukvasha.net: 2014-12-03Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Министерство образования и науки
Российской Федерации Федеральное агентство по образованию
Орский гуманитарно-технологический институт (филиал)
Государственного образовательного учреждения
Высшего профессионального образования
"Оренбургский государственный университет"
Механико-технологический факультет
Кафедра "Автомобили и автомобильное хозяйство"
Курсовой проект
по дисциплине "Автомобили"
Руководитель: Ушаков В.Н.
_______________________
____ _____________ 2007 г
Исполнитель: Сурских С.А.
Содержание
1. Расчёт показателей эксплуатационных свойств автомобиля. 3
1.1 Определение параметров двигателя. 3
1.2 Расчет внешней скоростной характеристики двигателя. 7
1.3 Определение передаточных чисел трансмиссии. 9
1.4 Расчет тягового баланса автомобиля. 15
1.5 Расчет мощностного баланса автомобиля. 19
1.6 Расчет динамической характеристики автомобиля. 22
1.7 Расчет ускорений автомобиля. 26
1.8 Расчет времени и пути разгона автомобиля. 29
1.9 Расчет топливной экономичности автомобиля. 33
Заключение. 38
тип двигателя - карбюраторный;
частота вращения коленвала при максимальной мощности (neN) =3000 об/мин;
грузоподъемность - 4000 кг;
пассажировместимость - 2 человека.
Минимально устойчивую частоту вращения коленвала двигателя nemin принимаем по рекомендациям (грузовые автомобили с карбюраторным двигателем):
ne min =500…600 об/мин;
Принимаю ne min =500 об/мин.
Максимальную частоту вращения коленвала двигателя принимаем в зависимости от номинальной neN по соотношениям:
грузовые автомобили ne max = ne N
nemax =3000 об/мин.
Для определения мощности двигателя проектируемого автомобиля необходимо оценить его предполагаемый собственный и полный вес.
Собственный вес автомобиля определяется по эмпирической зависимости:
для грузовых автомобилей
[кг], где
k c - коэффициент снаряженного веса;
mг - масса груза, перевозимого автомобилем, [кг].
Значение коэффициента приведено в таблице 1.
Таблица 1 - Значения коэффициента для грузовых автомобилей
mг = 4000 кг
kc = 0.75
ma = 0.75*4000 = 3000 кг.
Полная масса автомобиля определяется по следующей зависимости
, кг
где mб - масса багажа пассажиров, кг; mб = 0
n - количество пассажиров; n = 2
m = 3000 +(75+0) *2+4000 = 7150 кг
При движении автомобиля затрачивается мощность на преодоление сил сопротивления дороги (NΨ) и сил сопротивления воздуха (NW). Суммарная мощность затрачиваемая на движение полностью груженого автомобиля с максимальной скоростью по горизонтальной дороге определяется по формуле-1
, кВт (1)
где D min - минимальное значение динамического фактора, ;
для грузовых автомобилей и автобусов выбирается в интервале значений 0,030…0,045 . Принимаю D min = 0.030 ;
- максимальная скорость автомобиля по заданию на проектирование, км/ч, =100 км/ч;
k - коэффициент обтекаемости автомобиля, , для грузовых автомобилей k = 0,5…0,65 . Принимаю = 0,5
F - лобовая площадь автомобиля, м2; на этапе проектирования можно принимать ориентировочные значения лобовой площади автомобиля:
для грузовых автомобилей F =3…5, м2.
При известных габаритных размерах автомобиля или его аналога лобовая площадь автомобиля может быть определена по формуле
F = 0,78ВаНа, м2, где
Ва и На - габаритные размеры автомобиля по ширине и высоте соответственно, м2.
F = 0,78*2,38*2,22=4,12, м2.
Nψ + NW = ((7150+0) *0,30*100) /367+0,5*4,12*1003/46700=102 кВт.
Требуемая для движения полностью груженого автомобиля с максимальной скоростью по горизонтальной дороге мощность двигателя определится по формуле 2
, кВт (2)
где ηтр - КПД трансмиссии автомобиля, на этапе проектирования принимается для грузовых автомобилей ηтр = 0,85…0,9. Принимаю ηтр = 0,85
NeVmax =102/0,85= 120 кВт
Максимальная мощность двигателя проектируемого автомобиля может быть определена из формулы Лейдермана 3.
где a, b, c - коэффициенты уравнения Лейдермана; для карбюраторных двигателей a=b=c=1;
nemax - максимальная частота вращения коленвала двигателя, об/мин;
neN - частота вращения коленвала при максимальной мощности двигателя, об/мин
Ne max = 120/(1+1-1) = 120 кВт
где ne - текущая частота вращения коленвала двигателя, для которой определяется мощность, об/мин.
Ne1 = 120 [0,166+0,027 - 0,0046] =22,69, кВт
Ne2 = 120 [0,33+0,11 - 0,037] = 48,89, кВт
Ne3 = 120 [0,5+0,25 - 0,125] = 75, кВт
Ne4 = 120 [0,66+0,44 - 0,296] = 97,81, кВт
Ne5 = 120 [0,833+0,694 - 0,579] = 113,8, кВт
Ne5 = 120 [1+1 - 1] = 120, кВт
Вращающий момент на выходном конце коленвала двигателя при различных частотах его вращения может быть определен по формуле-5, устанавливающей зависимость между вращающим моментом, мощностью и частотой вращения для любого вала.
, Нм (5)
Ме1 = 9555,3*(22,69/500) = 433,6 Нм
Ме2 = 9555,3*(48,89/1000) = 467 Нм
Ме3 = 9555,3*(75/1500) = 478 Нм
Ме4 = 9555,3*(97,81/2000) = 467 Нм
Ме5 = 9555,3*(113,8/2500) = 435 Нм
Ме6 = 9555,3*(120/3000) = 382,2 Нм
Для построения внешней скоростной характеристики двигателя весь диапазон частот вращения коленвала двигателя от nmin до nmax разбивается на 5-6 интервалов размером по300 - 500 об/мин таким образом, чтобы номинальная частота вращения коленвала nN и максимальная nmax являлись границами одного или разных интервалов, при этом размеры интервалов, в которых nN и nmax являются границами, могут отличаться. По формулам 4 и 5 определяются значения Ne и Me для частот вращения коленвала ne, являющихся границами интервалов, и по полученным результатам строится внешняя скоростная характеристика двигателя.
Результаты расчетов по формулам 4 и 5 записываем в таблицу форма которой приведена ниже.
Таблица 2 - Расчет мощности Ne и вращающего момента Me на коленвалу двигателя при различных частотах вращения ne.
По полученным значениям Ne и Me на листе миллиметровой бумаги в масштабе строим внешнюю скоростную характеристику двигателя проектируемого автомобиля, а также определяем частоту вращения коленвала neM, при которой развивается максимальный вращающий момент Memax на выходном конце коленчатого вала. Значения neM и Memax необходимо записать после таблицы 2. Форма внешней скоростной характеристики двигателя приведена на рисунке 1.
SHAPE \* MERGEFORMAT
Рисунок 1 - Внешняя скоростная характеристика двигателя(нарисовать в масштабе).
SHAPE \* MERGEFORMAT
Рисунок 2 - Схема трансмиссии проектируемого автомобиля.
Второй этап в решении задачи определения передаточных чисел трансмиссии заключается в подборе шин для проектируемого автомобиля. Тип шин подбирается по максимальной нагрузке, приходящейся на неё и максимальной скорости автомобиля Vmax. Для определения нагрузок на шины передней и задних осей определяются нагрузки на оси автомобиля из выражения 6
, Н (6)
где G1(2) - нагрузка, приходящаяся на переднюю-1 или заднюю-2 оси, Н;
g - ускорение свободного падения, м/с2 (g =9,81м/с2);
х1(2) - часть полного веса автомобиля, приходящегося на переднюю 1 или задние 2 оси автомобиля, %.
У грузовых автомобилей при полном использовании грузоподъёмности 20-30% полного веса приходится на переднюю ось и 70-80% на задние (х1=20-30%, х2=70-80%). При затруднении в выборе нагрузок на оси проектируемого автомобиля следует воспользоваться распределением полного веса по осям у автомобиля аналога. Выбираем полный вес на переднюю ось x1 = 30%, на заднюю ось x2 = 70%.
G1 = 7150*9,8*(30/100) = 21021 Н
G2 = 7150*9,8*(70/100) = 49049 Н
Если после выполнения расчета окажется что нагрузка, приходящаяся на заднюю ось G2, значительно превышает нагрузку, приходящуюся на переднюю ось G1, то, для исключения значительного недогруза шин передней оси, следует увеличить число колес на задней оси, применив двухскатные колеса, либо увеличить число задних осей. Нагрузку, приходящуюся на шины передней и задних осей, определяют из выражения-7.
, Н (7)
где a1(2) - число передних-1 или задних-2 осей на автомобиле;
b1(2) - число колес на передней-1 или задней-2 оси автомобиля;
Gш1=21021/1*2=10511 Н
Gш1=49049/1*4=12262 Н
Выбор типа шины производим по рекомендациям литературного источника [3], по наиболее нагруженной шине и максимальной допустимой скорости движения на которую рассчитана эта шина. Типоразмер выбранной шины, допускаемую нагрузку и скорость движения на которую рассчитана шина, а также другие параметры шины приводим в пояснительной записке в виде таблицы - 3
Таблица 3 - Характеристика шин проектируемого автомобиля.
Отношение высоты профиля шины к ширине профиля Н/В, для шин грузовых автомобилей составляет 1 и поэтому Н=В.
Радиус качения колеса в с шиной выбранной марки определится по формуле-8
rk=0,0127(d+1,7H), м (8)
где d - диаметр обода колеса, дюймы (״);
H - высота профиля шины, дюймы (״);
rk = 0,0127(20+1,7∙8,25) = 0,43 м.
Передаточное число главной передачи автомобиля определяется из условия обеспечения заданной максимальной скорости движения автомобиля Vmax на высшей передаче из выражения-9
, (9)
где uk - передаточное число коробки передач на высшей передаче.
u0 = 0,377*0,43*3000/1*100 = 4,9
КПП проектируемого автомобиля не имеет ускоряющую передачу, поэтому uk = 1
Передаточное число первой передачи КПП определяется из условия преодоления автомобилем максимального сопротивления дороги. При этом используется формула-10
, (10)
где Ψmax - максимальный коэффициент сопротивления дороги, преодолеваемой автомобилем на первой передаче (Ψmax = 0,3…0,4).
Принимаю Ψmax = 0,4.
Меmax - максимальный вращающий момент, развиваемый двигателем, Нм (Меmax = 478 Нм).
ηтр - КПД трансмиссии автомобиля (ηтр = 0,85)
uk1 = 0,4*0,437150*9,8/478*4,9*0,85= 6,4
Полученное значение передаточного числа первой передачи КПП следует проверить по условию сцепления ведущих колес автомобиля с дорогой (на отсутствие буксования). Сцепление ведущих колес с дорогой будет обеспечено, если выполняется условие
PT max Pсц
где PT max - максимальная сила тяги на ведущих колесах автомобиля, Н.
PT max определяется по формуле-11
, Н (11)
PT max = 478*6,4*4,9*0,85/0,43= 29631, Н
Рсц - сила сцепления шин с дорогой, Н;
,
где φ - коэффициент сцепления шин с дорогой, φ=0,6…0,8.
Принимаю φ = 0,6
- сцепной вес автомобиля, Н;
для заднеприводных автомобилей Gсц=G2
где m2 - коэффициенты перераспределения нормальных реакций; при трогании автомобиля с места m2=1,2.
Gсц = 49049*1,2 = 58858,8, Н
Рсц = 0,6*58858,8 = 35315,3, Н
PT max ≤ Pсц - условие выполняется
В случае не выполнения условия сцепления ведущих колес автомобиля с дорогой при принятом передаточном числе КПП все последующие прочностные расчеты механизмов трансмиссии следует вести по силе сцепления колес с дорогой Gсц.
Принятое передаточное число первой передачи КПП uk1 является основой для нахождения передаточных чисел других передач КПП. Для их нахождения необходимо определиться с числом ступеней КПП проектируемого автомобиля. В учебных целях рекомендуется принимать 4…5 ступеней, а при больших значениях максимальной скорости автомобиля (> 120 км/ч) следует применять ускоряющую высшую передачу с передаточным числом 0,7…0,8. Передаточные числа II, III и других передач КПП определяются по формуле-12
Принимаю 4-х ступенчатую КПП
, (12)
где - число ступеней КПП без учета ускоряющей передачи при её наличии;
- порядковый номер передачи.
uk2 = 3,4
uk3 = 1,9
uk4 = 1
РТ = РΨ + РW + Рj,
где РΨ - cила сопротивления дороги, Н;
РW - сила сопротивления воздуха, Н;
Рj - сила инерции автомобиля при его неравномерном движении (при ускорении или замедлении), Н.
Уравнение тягового баланса автомобиля проще и наглядней решать графическим способом, при котором строим графики зависимости каждого из слагаемых уравнения от скорости движения автомобиля, и производим сравнение положения точек кривой с положением точек суммарной кривой РΨ и РW.Российской Федерации Федеральное агентство по образованию
Орский гуманитарно-технологический институт (филиал)
Государственного образовательного учреждения
Высшего профессионального образования
"Оренбургский государственный университет"
Механико-технологический факультет
Кафедра "Автомобили и автомобильное хозяйство"
Курсовой проект
по дисциплине "Автомобили"
Руководитель: Ушаков В.Н.
_______________________
____ _____________ 2007 г
Исполнитель: Сурских С.А.
Содержание
1. Расчёт показателей эксплуатационных свойств автомобиля. 3
1.1 Определение параметров двигателя. 3
1.2 Расчет внешней скоростной характеристики двигателя. 7
1.3 Определение передаточных чисел трансмиссии. 9
1.4 Расчет тягового баланса автомобиля. 15
1.5 Расчет мощностного баланса автомобиля. 19
1.6 Расчет динамической характеристики автомобиля. 22
1.7 Расчет ускорений автомобиля. 26
1.8 Расчет времени и пути разгона автомобиля. 29
1.9 Расчет топливной экономичности автомобиля. 33
Заключение. 38
1. Расчёт показателей эксплуатационных свойств автомобиля.
1.1 Определение параметров двигателя.
К параметрам двигателя определяемым в данном подразделе относятся минимальная и максимальная частоты вращения коленвала, вращающий момент и мощность двигателя, развиваемая во всем диапазоне частот вращения коленвала. Указанные параметры определяются по эмпирическим формулам, полученным на основе анализа существующих конструкций двигателей. Исходными данными для определения перечисленных параметров двигателя проектируемого автомобиля являются:тип двигателя - карбюраторный;
частота вращения коленвала при максимальной мощности (neN) =3000 об/мин;
грузоподъемность - 4000 кг;
пассажировместимость - 2 человека.
Минимально устойчивую частоту вращения коленвала двигателя nemin принимаем по рекомендациям (грузовые автомобили с карбюраторным двигателем):
ne min =500…600 об/мин;
Принимаю ne min =500 об/мин.
Максимальную частоту вращения коленвала двигателя принимаем в зависимости от номинальной neN по соотношениям:
грузовые автомобили ne max = ne N
nemax =3000 об/мин.
Для определения мощности двигателя проектируемого автомобиля необходимо оценить его предполагаемый собственный и полный вес.
Собственный вес автомобиля определяется по эмпирической зависимости:
для грузовых автомобилей
k c - коэффициент снаряженного веса;
mг - масса груза, перевозимого автомобилем, [кг].
Значение коэффициента
Таблица 1 - Значения коэффициента
Параметр | Значения параметра | |||||
mа, кг | 1000 | 2000 | 4000 | 6000 | 8000 | 10000 |
k c | 1,25 | 0,8 | 0,75 | 0,8 | 0,85 | 0.9 |
kc = 0.75
ma = 0.75*4000 = 3000 кг.
Полная масса автомобиля определяется по следующей зависимости
где mб - масса багажа пассажиров, кг; mб = 0
n - количество пассажиров; n = 2
m = 3000 +(75+0) *2+4000 = 7150 кг
При движении автомобиля затрачивается мощность на преодоление сил сопротивления дороги (NΨ) и сил сопротивления воздуха (NW). Суммарная мощность затрачиваемая на движение полностью груженого автомобиля с максимальной скоростью по горизонтальной дороге определяется по формуле-1
где D min - минимальное значение динамического фактора,
для грузовых автомобилей и автобусов выбирается в интервале значений 0,030…0,045
k - коэффициент обтекаемости автомобиля,
F - лобовая площадь автомобиля, м2; на этапе проектирования можно принимать ориентировочные значения лобовой площади автомобиля:
для грузовых автомобилей F =3…5, м2.
При известных габаритных размерах автомобиля или его аналога лобовая площадь автомобиля может быть определена по формуле
F = 0,78ВаНа, м2, где
Ва и На - габаритные размеры автомобиля по ширине и высоте соответственно, м2.
F = 0,78*2,38*2,22=4,12, м2.
Nψ + NW = ((7150+0) *0,30*100) /367+0,5*4,12*1003/46700=102 кВт.
Требуемая для движения полностью груженого автомобиля с максимальной скоростью по горизонтальной дороге мощность двигателя определится по формуле 2
где ηтр - КПД трансмиссии автомобиля, на этапе проектирования принимается для грузовых автомобилей ηтр = 0,85…0,9. Принимаю ηтр = 0,85
NeVmax =102/0,85= 120 кВт
Максимальная мощность двигателя проектируемого автомобиля может быть определена из формулы Лейдермана 3.
| , кВт | (3) |
nemax - максимальная частота вращения коленвала двигателя, об/мин;
neN - частота вращения коленвала при максимальной мощности двигателя, об/мин
Ne max =
1.2 Расчет внешней скоростной характеристики двигателя
Внешняя скоростная характеристика двигателя представляет собой зависимость мощности и вращающего момента на выходном конце коленвала двигателя от частоты вращения коленвала при полностью открытой дроссельной заслонке или полностью выдвинутой рейке топливного насоса высокого давления. Зависимость между мощностью, развиваемой двигателем, и частотой вращения коленчатого вала двигателя описывается с помощью уравнения Лейдермана-4, имеющего следующий вид: | , кВт | (4) |
Ne1 = 120 [0,166+0,027 - 0,0046] =22,69, кВт
Ne2 = 120 [0,33+0,11 - 0,037] = 48,89, кВт
Ne3 = 120 [0,5+0,25 - 0,125] = 75, кВт
Ne4 = 120 [0,66+0,44 - 0,296] = 97,81, кВт
Ne5 = 120 [0,833+0,694 - 0,579] = 113,8, кВт
Ne5 = 120 [1+1 - 1] = 120, кВт
Вращающий момент на выходном конце коленвала двигателя при различных частотах его вращения может быть определен по формуле-5, устанавливающей зависимость между вращающим моментом, мощностью и частотой вращения для любого вала.
Ме1 = 9555,3*(22,69/500) = 433,6 Нм
Ме2 = 9555,3*(48,89/1000) = 467 Нм
Ме3 = 9555,3*(75/1500) = 478 Нм
Ме4 = 9555,3*(97,81/2000) = 467 Нм
Ме5 = 9555,3*(113,8/2500) = 435 Нм
Ме6 = 9555,3*(120/3000) = 382,2 Нм
Для построения внешней скоростной характеристики двигателя весь диапазон частот вращения коленвала двигателя от nmin до nmax разбивается на 5-6 интервалов размером по300 - 500 об/мин таким образом, чтобы номинальная частота вращения коленвала nN и максимальная nmax являлись границами одного или разных интервалов, при этом размеры интервалов, в которых nN и nmax являются границами, могут отличаться. По формулам 4 и 5 определяются значения Ne и Me для частот вращения коленвала ne, являющихся границами интервалов, и по полученным результатам строится внешняя скоростная характеристика двигателя.
Результаты расчетов по формулам 4 и 5 записываем в таблицу форма которой приведена ниже.
Таблица 2 - Расчет мощности Ne и вращающего момента Me на коленвалу двигателя при различных частотах вращения ne.
ne min | ne N | ne max | |||||
ne, об/мин | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 3000 |
Ne, кВт | 22,69 | 48,89 | 75 | 97,81 | 113,8 | 120 | 120 |
Me, Нм | 433,6 | 467 | 478 | 467 | 435 | 382,2 | 382,2 |
SHAPE \* MERGEFORMAT
Me max |
Ne max |
ne , об/мин |
ne max |
ne N |
ne M |
ne min |
Рисунок 1 - Внешняя скоростная характеристика двигателя(нарисовать в масштабе).
1.3 Определение передаточных чисел трансмиссии.
Динамические качества автомобиля определяются во многом числом ступеней КПП, передаточными числами КПП и главной передачи. С целью определения числа ступеней и передаточных чисел трансмиссии необходимо в первую очередь определиться со схемой трансмиссии и представить её на рисунке в пояснительной записке. Например, схему трансмиссии классической компоновки можно представить так, как на рисунке 2.SHAPE \* MERGEFORMAT
Двигатель |
Сцепление |
КПП |
Карданная передача |
Главная передача и дифференциал |
Рисунок 2 - Схема трансмиссии проектируемого автомобиля.
Второй этап в решении задачи определения передаточных чисел трансмиссии заключается в подборе шин для проектируемого автомобиля. Тип шин подбирается по максимальной нагрузке, приходящейся на неё и максимальной скорости автомобиля Vmax. Для определения нагрузок на шины передней и задних осей определяются нагрузки на оси автомобиля из выражения 6
где G1(2) - нагрузка, приходящаяся на переднюю-1 или заднюю-2 оси, Н;
g - ускорение свободного падения, м/с2 (g =9,81м/с2);
х1(2) - часть полного веса автомобиля, приходящегося на переднюю 1 или задние 2 оси автомобиля, %.
У грузовых автомобилей при полном использовании грузоподъёмности 20-30% полного веса приходится на переднюю ось и 70-80% на задние (х1=20-30%, х2=70-80%). При затруднении в выборе нагрузок на оси проектируемого автомобиля следует воспользоваться распределением полного веса по осям у автомобиля аналога. Выбираем полный вес на переднюю ось x1 = 30%, на заднюю ось x2 = 70%.
G1 = 7150*9,8*(30/100) = 21021 Н
G2 = 7150*9,8*(70/100) = 49049 Н
Если после выполнения расчета окажется что нагрузка, приходящаяся на заднюю ось G2, значительно превышает нагрузку, приходящуюся на переднюю ось G1, то, для исключения значительного недогруза шин передней оси, следует увеличить число колес на задней оси, применив двухскатные колеса, либо увеличить число задних осей. Нагрузку, приходящуюся на шины передней и задних осей, определяют из выражения-7.
где a1(2) - число передних-1 или задних-2 осей на автомобиле;
b1(2) - число колес на передней-1 или задней-2 оси автомобиля;
Gш1=21021/1*2=10511 Н
Gш1=49049/1*4=12262 Н
Выбор типа шины производим по рекомендациям литературного источника [3], по наиболее нагруженной шине и максимальной допустимой скорости движения на которую рассчитана эта шина. Типоразмер выбранной шины, допускаемую нагрузку и скорость движения на которую рассчитана шина, а также другие параметры шины приводим в пояснительной записке в виде таблицы - 3
Таблица 3 - Характеристика шин проектируемого автомобиля.
Марка шины | Допустимая нагрузка на шину, [G], Н | Максимально допустимая скорость, [V], км/ч | Диаметр обода колеса, d, ״ | Ширина профиля шины, B, ״ | Отношение высоты профиля шины К ширине шины, Н/B | Высота профиля шины, H, ״ | Статический радиус шины, м |
220-508 | 11500 | 100 | 20 | 8,25 | 1 | 8,25 | 0,443 |
Радиус качения колеса в с шиной выбранной марки определится по формуле-8
rk=0,0127(d+1,7H), м (8)
где d - диаметр обода колеса, дюймы (״);
H - высота профиля шины, дюймы (״);
rk = 0,0127(20+1,7∙8,25) = 0,43 м.
Передаточное число главной передачи автомобиля определяется из условия обеспечения заданной максимальной скорости движения автомобиля Vmax на высшей передаче из выражения-9
где uk - передаточное число коробки передач на высшей передаче.
u0 = 0,377*0,43*3000/1*100 = 4,9
КПП проектируемого автомобиля не имеет ускоряющую передачу, поэтому uk = 1
Передаточное число первой передачи КПП определяется из условия преодоления автомобилем максимального сопротивления дороги. При этом используется формула-10
где Ψmax - максимальный коэффициент сопротивления дороги, преодолеваемой автомобилем на первой передаче (Ψmax = 0,3…0,4).
Принимаю Ψmax = 0,4.
Меmax - максимальный вращающий момент, развиваемый двигателем, Нм (Меmax = 478 Нм).
ηтр - КПД трансмиссии автомобиля (ηтр = 0,85)
uk1 = 0,4*0,437150*9,8/478*4,9*0,85= 6,4
Полученное значение передаточного числа первой передачи КПП следует проверить по условию сцепления ведущих колес автомобиля с дорогой (на отсутствие буксования). Сцепление ведущих колес с дорогой будет обеспечено, если выполняется условие
PT max
где PT max - максимальная сила тяги на ведущих колесах автомобиля, Н.
PT max определяется по формуле-11
PT max = 478*6,4*4,9*0,85/0,43= 29631, Н
Рсц - сила сцепления шин с дорогой, Н;
где φ - коэффициент сцепления шин с дорогой, φ=0,6…0,8.
Принимаю φ = 0,6
для заднеприводных автомобилей Gсц=G2
где m2 - коэффициенты перераспределения нормальных реакций; при трогании автомобиля с места m2=1,2.
Gсц = 49049*1,2 = 58858,8, Н
Рсц = 0,6*58858,8 = 35315,3, Н
PT max ≤ Pсц - условие выполняется
В случае не выполнения условия сцепления ведущих колес автомобиля с дорогой при принятом передаточном числе КПП все последующие прочностные расчеты механизмов трансмиссии следует вести по силе сцепления колес с дорогой Gсц.
Принятое передаточное число первой передачи КПП uk1 является основой для нахождения передаточных чисел других передач КПП. Для их нахождения необходимо определиться с числом ступеней КПП проектируемого автомобиля. В учебных целях рекомендуется принимать 4…5 ступеней, а при больших значениях максимальной скорости автомобиля (> 120 км/ч) следует применять ускоряющую высшую передачу с передаточным числом 0,7…0,8. Передаточные числа II, III и других передач КПП определяются по формуле-12
Принимаю 4-х ступенчатую КПП
где
uk2 = 3,4
uk3 = 1,9
uk4 = 1
1.4 Расчет тягового баланса автомобиля
Движение автомобиля по дороге возможно только в том случае, если сила тяги, развиваемая на ведущих колесах автомобиля, больше или равна сумме сил дорожных сопротивлений. Если величина силы тяги PТ превышает сумму сил дорожных сопротивлений, то этот запас используется либо на ускорение автомобиля, либо на буксировку автомобилем дополнительного груза. Математически это положение описывается с помощью уравнения тягового баланса автомобиля. Уравнение тягового баланса автомобиля имеет следующий видРТ = РΨ + РW + Рj,
где РΨ - cила сопротивления дороги, Н;
РW - сила сопротивления воздуха, Н;
Рj - сила инерции автомобиля при его неравномерном движении (при ускорении или замедлении), Н.
Для построения графика зависимости силы тяги РТ на ведущих колесах автомобиля от скорости его движения используется выражение-13
где Ме - вращающий момент на выходном конце коленвала двигателя при соответствующей его частоте вращения, Нм;
Скорость движения автомобиля при различных частотах вращения коленвала двигателя определяется по формуле-14
Значения сил тяги РТ и скоростей автомобиля V следует определять для частот вращения коленвала двигателя nе, которые являются границами интервалов при разбиении всего диапазона частот вращения коленвала, проделанного в п.1.2.2 Результаты расчетов по формулам 13 и 14 представляем в виде таблицы-5.
Таблица 5 - Расчет сил тяги на ведущих колесах проектируемого автомобиля и его скоростей движения.
ne, об/мин | 500 | 1000 | 1500 | 2000 | 2500 | 3000 |
Me | 433,6 | 467 | 478 | 467 | 435 | 382,2 |
PTI | 26879,2 | 28949,7 | 29631,6 | 28949,7 | 26966,0 | 23692,8 |
VI | 2,6 | 5,2 | 7,8 | 10,3 | 13 | 15,5 |
PTII | 14279,6 | 15379,5 | 15741 | 15379,5 | 14325,7 | 12586,8 |
VII | 4,9 | 9,7 | 14,6 | 19,5 | 24,3 | 29,2 |
PTIII | 7978,2 | 8592,8 | 8795,2 | 8592,8 | 8004 | 7032,5 |
VIII | 8,7 | 17,4 | 26,1 | 34,8 | 43,5 | 52,2 |
PTIV | 4162,6 | 4483,2 | 4588,8 | 4483,2 | 4176 | 3669,12 |
VIV | 16,5 | 33 | 49,5 | 66 | 85 | 99 |
Для построения графика зависимости силы сопротивления дороги РΨ от скорости движения автомобиля V используется формула
РΨ= mg [Н],
где Ψ - коэффициент сопротивления дороги (Ψ = i+ƒ);
i - уклон дороги; при движении автомобиля по горизонтальной дороге i =0;
ѓ - коэффициент сопротивления дороги; для дорог с асфальтобетонным покрытием значения коэффициента определяются по формуле
Таким образом, формула для определения силы сопротивления дороги РΨ приобретает вид формулы-15
Сила сопротивления воздуха РW движению автомобиля определяется по формуле-16
где k и F-коэффициент обтекаемости автомобиля и лобовая площадь автомобиля соответственно, значения которых принимались ранее в п.1.2.1
Так как и сила сопротивления дороги РΨ и сила сопротивления воздуха РW зависят от изменения скорости автомобиля, то задаваясь 5-ю
Таблица 6 - Расчет сил сопротивления движению проектируемого автомобиля по горизонтальной дороге с асфальтобетонным покрытием.
V, км/ч | 2,6 | 15,5 | 29,2 | 52,2 | 85 | 99 |
РΨ, Н | 1051,1 | 1064 | 1096 | 1194,2 | 1431 | 1566 |
РW, Н | 1,07 | 38,1 | 135,1 | 432 | 1145 | 1553,1 |
строим кривую зависимости силы сопротивления дороги РΨ от скорости V;
от точек кривой РΨ =ƒ(V) откладываем ординаты кривой РW =ѓ(V) и после соединения точек плавной линией получаем кривую РΨ + РW =ѓ(V).
Нанесенные на одном графике кривые РТ =ѓ(V), РΨ =ƒ(V) и РΨ + РW =ѓ(V) представляют собой графическое решение уравнения тягового баланса проектируемого автомобиля.
На графике, в точке оси V, соответствующей максимальной скорости движения автомобиля Vmax, должно быть либо РТ = РΨ + РW (кривые пересекаются), либо РТ > РΨ + РW (кривая РТ проходит выше РΨ + РW). Пример графика тягового баланса автомобиля приведен на рисунке 3.
SHAPE \* MERGEFORMAT
|
|
|
|
|
|
|
|
|
|
Рисунок 3 - График тягового баланса проектируемого автомобиля.
1.5 Расчет мощностного баланса автомобиля
Для анализа динамических свойств автомобиля можно вместо соотношения сил использовать сопоставление тяговой мощности NT с мощностью, необходимой для преодоления сопротивления движению. Мощностной баланс автомобиля в общем виде можно представить следующей формулойгде
где
Уравнение мощностного баланса, так же как и уравнение силового баланса, проще решать графически. С этой целью строим график зависимости тяговой мощности
График суммарной мощности дорожных сопротивлений
Таблица 7 - Расчет мощностного баланса проектируемого автомобиля.
Передача КПП | Частота вращения коленвала, ne, об/мин | Скорость движения автомобиля, V, км/ч | Мощность двигателя, Ne, кВт, (см. табл.3) | Мощность на ведущих колесах автомобиля, NТ, кВт | Мощность сопротивлений | Запас мощности, Nj, кВт | |
Nf, кВт | NW, кВт | ||||||
I | 500 | 2,6 | 22,69 | 19,3 | 0,76 | 0,0008 | 18,54 |
1000 | 5,2 | 48,89 | 41,56 | 1,5 | 0,006 | 40,054 | |
1500 | 7,8 | 75 | 63,8 | 2,3 | 0,02 | 61,48 | |
2000 | 10,3 | 97,81 | 83,14 | 3,02 | 0,05 | 80,07 | |
2500 | 13 | 113,8 | 96,73 | 3,83 | 0,1 | 92,8 | |
3000 | 15,5 | 120 | 102 | 4,58 | 0,16 | 97,26 | |
II | 500 | 4,9 | 22,69 | 19,3 | 1,43 | 0,005 | 17,87 |
1000 | 9,7 | 48,89 | 41,56 | 2,8 | 0,04 | 38,72 | |
1500 | 14,6 | 75 | 63,8 | 4,3 | 0,14 | 59,4 | |
2000 | 19,5 | 97,81 | 83,14 | 5,8 | 0,32 | 77,02 | |
2500 | 24,3 | 113,8 | 96,73 | 7,3 | 0,63 | 88,8 | |
3000 | 29,2 | 120 | 102 | 8,89 | 1,1 | 92,01 | |
III | 500 | 8,7 | 22,69 | 19,3 | 2,5 | 0,03 | 16,77 |
1000 | 17,4 | 48,89 | 41,56 | 5,2 | 0,23 | 36,13 | |
1500 | 26,1 | 75 | 63,8 | 7,9 | 0,78 | 55,12 | |
2000 | 34,8 | 97,81 | 83,14 | 10,8 | 1,8 | 70,54 | |
2500 | 43,5 | 113,8 | 96,73 | 13,9 | 3,6 | 79,23 | |
3000 | 52,2 | 120 | 102 | 17,3 | 6,3 | 78,4 | |
IV | 500 | 16,5 | 22,69 | 19,3 | 4,9 | 0,2 | 14,2 |
1000 | 33 | 48,89 | 41,56 | 10,2 | 1,6 | 29,76 | |
1500 | 49,5 | 75 | 63,8 | 16,2 | 5,3 | 42,3 | |
2000 | 66 | 97,81 | 83,14 | 23,5 | 12,6 | 47,04 | |
2500 | 85 | 113,8 | 96,73 | 33,7 | 27,03 | 36 | |
3000 | 99 | 120 | 102 | 43,1 | 42,7 | 16,2 |
1.6 Расчет динамической характеристики автомобиля
Динамическим фактором автомобиля D называют отношение разности силы тяги на ведущих колесах автомобиляЗначения динамического фактора автомобиля изменяются в зависимости от номера включенной передачи в КПП и от скорости движения автомобиля. Динамический фактор автомобиля при включении различных передач КПП определяется по формуле-20
SHAPE \* MERGEFORMAT
|
|
|
|
|
|
|
|
|
Рисунок 4 - График мощностного баланса проектируемого автомобиля.
Значения сил РTi для различных передач КПП и скоростей движения автомобиля приведены в таблице 4, значения сил PWi для различных скоростей движения автомобиля можно определить по формуле-21
Величина динамического фактора ограничивается условиями сцепления ведущих колес автомобиля с дорогой. Динамический фактор по условиям сцепления колес с дорогой может быть определён по формуле-22 для заднеприводных автомобилей
где
Принимаем
Принимаем
Используя формулы 20 и 21, определяем значения динамического фактора автомобиля для 5…6 скоростей его движения при включении каждой передачи КПП, и строим динамическую характеристику автомобиля на свободном поле первого листа графической части проекта. Здесь же наносим предварительно подсчитанный по одной из формул 22 динамический фактор по условию сцепления колес с дорогой и сделать вывод о возможности движения автомобиля без буксования по укатанному снегу. Расчет динамического фактора автомобиля представляем в виде таблицы 8.
Таблица 8 - Расчет динамического фактора проектируемого автомобиля.
Передача КПП | Скорость движения автомобиля, V, км/ч (см. табл.5) | Сила тяги на ведущих колесах автомобиля, PT I, H | Сила сопротивления воздуха, PW I, H | Разность сил (PT I - PW I), Н | Динамический фактор автомобиля, Di, Н/Н |
I | 2,6 | 26879,2 | 1,07 | 26878,13 | 0,384 |
5,2 | 28949,7 | 4,2 | 28945,5 | 0,413 | |
7,8 | 29631,6 | 9,6 | 29622,0 | 0,423 | |
10,3 | 28949,7 | 16,8 | 28932,9 | 0,413 | |
13 | 26966,0 | 26,8 | 26939,2 | 0,384 | |
15,5 | 23692,8 | 38,1 | 23654,7 | 0,338 | |
II | 4,9 | 14279,6 | 3,8 | 14275,8 | 0, 204 |
9,7 | 15379,5 | 15 | 15364,5 | 0,220 | |
14,6 | 15741,0 | 33,8 | 15707,2 | 0,224 | |
19,5 | 15379,5 | 60,3 | 15319,2 | 0,219 | |
24,3 | 14325,7 | 93,6 | 14232,1 | 0, 203 | |
29,2 | 12586,8 | 135,11 | 12451,7 | 0,178 | |
III | 8,7 | 7978,2 | 12 | 7966,2 | 0,114 |
17,4 | 8592,8 | 48 | 8544,8 | 0,122 | |
26,1 | 8795,2 | 107 | 8688,2 | 0,124 | |
34,8 | 8592,8 | 191 | 8401,8 | 0,120 | |
43,5 | 8004,0 | 300 | 7704,0 | 0,110 | |
52,2 | 7032,5 | 431 | 6601,5 | 0,100 | |
IV | 16,5 | 4162,6 | 43 | 4119,6 | 0,058 |
33 | 4483,2 | 172,6 | 4310,6 | 0,061 | |
49,5 | 4588,8 | 388,3 | 4200,5 | 0,060 | |
66 | 4483,2 | 690,3 | 3792,9 | 0,054 | |
85 | 4176,0 | 1144,9 | 3031,1 | 0,043 | |
99 | 3669,12 | 1553,1 | 2116,02 | 0,030 |
SHAPE \* MERGEFORMAT
|
|
|
|
|
|
Рисунок 5 - Динамическая характеристика проектируемого автомобиля.
, м/с2 (23)
где - коэффициент учета вращающихся масс автомобиля;
где - передаточное число передачи КПП, на которой движется автомобиль.
В курсовом проекте ускорение автомобиля определяем для условий движения автомобиля по горизонтальной дороге с асфальтобетонным покрытием и поэтому можно считать, что
Определение ускорений автомобиля, движущегося по горизонтальной дороге, для 5…6 скоростей каждой передачи КПП необходимо провести с учетом вышеизложенного в виде таблицы-9. Форма графика приведена на рисунке 6.
Таблица 9 - Расчет ускорений автомобиля.
SHAPE \* MERGEFORMAT
Рисунок 6 - График ускорений проектируемого автомобиля.
Кривые ускорений автомобиля, начиная с первой передачи, разбиваем на 3…4 интервала скоростей. Для каждого интервала скоростей определяем среднее ускорение и изменение скорости в пределах интервала. Время разгона автомобиля в данном интервале скоростей определяется по формуле-24
, [с] (24)
где - изменение скорости автомобиля в интервале скоростей для которого определяется время разгона, км/ч;
=
- среднее ускорение в данном интервале скоростей, м/с2;
При определении времени разгона автомобиля учитывается и время на переключение передач, которое определяется по рекомендациям таблицы-10.
Таблица 10 - Время переключения передач
Выбираю время переключения передачи - 0,5 с.
Падение скорости автомобиля за время переключения передач определяется по формуле-25
, км/ч (25)
где - коэффициент учета вращающихся масс при движении автомобиля накатом; принимается =1,05 так как при накате =0 (см. п.5.2.7);
- время переключения передачи, с; см. табл.10;
Ψ - коэффициент сопротивления дороги, соответствующий скорости движения автомобиля при которой происходит переключение передачи;
(cм. п.2.5 4)
Путь разгона автомобиля определяется для тех же интервалов изменения скорости автомобиля по формуле 26
, м (26)
где - средняя скорость движения в каждом интервале скоростей, км/ч;
=
Путь, проходимый автомобилем за время переключения передач (движение накатом), определяется по формуле-27
, м (27)
Используя всю вышеприведенную информацию, определяем время и путь разгона автомобиля на горизонтальной дороге с асфальтобетонным покрытием до максимальной скорости .
Все расчеты по данному подразделу сводим в таблицу-11.
Таблица 10 - Расчет времени и пути разгона проектируемого автомобиля до максимальной скорости.
По результатам расчетов строим графики изменения времени и пути разгона автомобиля до максимальной скорости. Эти графики допускается строить в одних координатных осях в соответствующих масштабах. Переломы графиков в точках, соответствующих моментам переключения передач следует показывать условно, так как в масштабах построения графиков, эти падения скорости движения автомобиля практически неуловимы.
Пример графиков времени и пути разгона автомобиля до максимальной скорости построенный в одних координатных осях приведен на рисунке-7.
SHAPE \* MERGEFORMAT
Рисунок 7 - График времени и пути разгона проектируемого автомобиля до максимальной скорости.
Путевой расход топлива определяется по формуле-28
, л/100км (28)
где - удельный эффективный расход топлива, г/кВт ч;
- мощность двигателя, необходимая для равномерного движения по дороге с коэффициентом сопротивления Ψ с заданной скоростью, кВт;
- плотность используемого топлива, кг/л;
для бензина = 0,74 кг/л;
Удельный эффективный расход топлива зависит от частоты вращения коленвала двигателя и степени использования мощности двигателя (степени открытия дроссельной заслонки карбюратора. Это положение учитывают коэффициенты формулы-29, связывающей удельный расход топлива при заданном режиме движения и удельный расход топлива при максимальной мощности двигателя.
(29)
где - удельный расход топлива при максимальной мощности двигателя;
для карбюраторных двигателей =353,6 г/кВт ч;
- коэффициент, учитывающий изменение удельного расхода топлива в зависимости от частоты вращения коленвала двигателя; является функцией от отношения текущей и номинальной частот вращения коленвала;
=
где - частота вращения коленвала двигателя при заданных условиях движения, об/мин;
- частота вращения коленвала двигателя при максимальной мощности; об/мин;
- коэффициент, учитывающий изменение удельного расхода топлива в зависимости от степени использования мощности двигателя при заданных дорожных условиях; является функцией от отношения текущей мощности и максимальной для данной скорости движения;
=
где - мощность двигателя при заданной скорости движения автомобиля, требуемая для преодоления сопротивлений дороги и сопротивления воздуха; определяется по формуле-30
, кВт (30)
- максимальная мощность двигателя для заданной скорости движения (при 100% открытии дроссельной заслонки или полностью выдвинутой рейке топливного насоса высокого давления). Значение берется с графика мощностного баланса автомобиля для заданной скорости движения.
В курсовом проекте построение топливно-экономической характеристики автомобиля производится для условий его движения на высшей передаче по горизонтальной дороге с асфальтобетонным покрытием. В связи с этим, для подстановки в формулу 30 и для определения следует брать 5…6 скоростей движения автомобиля на высшей передаче, а соответствующие этим скоростям частоты вращения коленвала двигателя сравнивать с номинальной частотой для определения коэффициента .
Значения коэффициентов и в зависимости от отношений и выбираем по специальным графикам или по рекомендациям таблиц 12 и 13.
Таблица 12 - Значения коэффициента
Таблица 13 - Значения коэффициента
Значения коэффициентов и для промежуточных значений отношений и следует определять методом интерполяции.
Расчет и построение топливно-экономической характеристики автомобиля следует проводить для двух условий движения автомобиля, характеризуемых следующими значениями коэффициентов сопротивления дороги: 0,015 и
Расчеты топливно-экономической характеристики автомобиля представляем в форме таблицы-14.
По результатам расчета строим топливно-экономическую характеристику автомобиля. Форма кривых топливно-экономической характеристики автомобиля показана на рисунке 8.
Таблица 14 - Расчет топливно-экономической характеристики проектируемого автомобиля.
SHAPE \* MERGEFORMAT
Рисунок 8 - Топливно-экономическая характеристика проектируемого автомобиля
Несмотря на то, что показатели эксплуатационных свойств автомобиля определены только для одного режима работы двигателя автомобиля (работа с полностью открытой дроссельной заслонкой), они имеют большое практическое значение. Некоторые показатели используются для оценки технического уровня вновь проектируемого автомобиля (например, время и путь разгона автомобиля до максимальной скорости, топливно-экономическая характеристика), другие - являются исходными данными для проектирования механизмов и систем автомобиля, на основании которых во второй части настоящего проекта разработан карданная передача проектируемого автомобиля.
1.7 Расчет ускорений автомобиля
Динамический фактор автомобиля соответствует дорожному сопротивлению, характеризуемому коэффициентом сопротивления дороги Ψ, которое автомобиль способен преодолеть на данной передаче с заданной постоянной скоростью. В случае, если величина динамического фактора автомобиля отличается от коэффициента сопротивления дороги, по которой он движется, то это движение будет ускоренным (при D > Ψ), либо замедленным (при D < Ψ). Величина развиваемого автомобилем ускорения (замедления) определяется по формуле-23где
где
В курсовом проекте ускорение автомобиля определяем для условий движения автомобиля по горизонтальной дороге с асфальтобетонным покрытием и поэтому можно считать, что
Определение ускорений автомобиля, движущегося по горизонтальной дороге, для 5…6 скоростей каждой передачи КПП необходимо провести с учетом вышеизложенного в виде таблицы-9. Форма графика приведена на рисунке 6.
Таблица 9 - Расчет ускорений автомобиля.
Передаточное число (передача) | Скорость автомобиля, V, км/ч (см. табл.5) | Динамический фактор, D, Н/Н (см. табл.8) | Коэффициент сопротивления дороги Ψ= f | Разность D-Ψ | Коэффициент вращающихся масс, δвр | Ускорение, j, м/с2 |
ukI(I) | 2,6 | 0,384 | 0,0150 | 0,369 | 3,098 | 1,17 |
5,2 | 0,413 | 0,0150 | 0,398 | 3,098 | 1,26 | |
7,8 | 0,423 | 0,0150 | 0,408 | 3,098 | 1,29 | |
10,3 | 0,413 | 0,0151 | 0,3979 | 3,098 | 1,26 | |
13 | 0,384 | 0,0151 | 0,3689 | 3,098 | 1,17 | |
15,5 | 0,338 | 0,0152 | 0,3228 | 3,098 | 1,02 | |
ukII(II) | 4,9 | 0, 204 | 0,0150 | 0,189 | 1,628 | 1,14 |
9,7 | 0,220 | 0,0151 | 0, 2049 | 1,628 | 1,23 | |
14,6 | 0,224 | 0,0152 | 0, 2088 | 1,628 | 1,26 | |
19,5 | 0,219 | 0,0153 | 0, 2037 | 1,628 | 1,22 | |
24,3 | 0, 203 | 0,0154 | 0,1876 | 1,628 | 1,13 | |
29,2 | 0,178 | 0,0156 | 0,1624 | 1,628 | 0,98 | |
ukIII(III) | 8,7 | 0,114 | 0,0151 | 0,0989 | 1,2305 | 0,79 |
17,4 | 0,122 | 0,0152 | 0,1068 | 1,2305 | 0,85 | |
26,1 | 0,124 | 0,0155 | 0,1085 | 1,2305 | 0,86 | |
34,8 | 0,120 | 0,0159 | 0,1041 | 1,2305 | 0,83 | |
43,5 | 0,110 | 0,0164 | 0,0936 | 1,2305 | 0,75 | |
52,2 | 0,100 | 0,0170 | 0,083 | 1,2305 | 0,66 | |
ukIV(IV) | 16,5 | 0,058 | 0,0152 | 0,0428 | 1,1 | 0,38 |
33 | 0,061 | 0,0158 | 0,0452 | 1,1 | 0,40 | |
49,5 | 0,060 | 0,0168 | 0,0432 | 1,1 | 0,38 | |
66 | 0,054 | 0,0182 | 0,0358 | 1,1 | 0,32 | |
85 | 0,043 | 0,0204 | 0,0226 | 1,1 | 0, 20 | |
99 | 0,030 | 0,0223 | 0,0077 | 1,1 | 0,07 |
j, м/с2 |
jI |
jII |
jIII |
jIV |
V, км/ч |
Рисунок 6 - График ускорений проектируемого автомобиля.
1.8 Расчет времени и пути разгона автомобиля
Время и путь разгона автомобиля до максимальной скорости являются самыми распространенными и наглядными характеристиками динамичности автомобиля. Их определение производят графоаналитическим способом с использованием графика ускорений автомобиля. При проведении расчетов полагаем, что разгон автомобиля на каждой передаче производится до достижения двигателем максимальных оборотов.Кривые ускорений автомобиля, начиная с первой передачи, разбиваем на 3…4 интервала скоростей. Для каждого интервала скоростей определяем среднее ускорение и изменение скорости в пределах интервала. Время разгона автомобиля в данном интервале скоростей определяется по формуле-24
где
При определении времени разгона автомобиля учитывается и время на переключение передач, которое определяется по рекомендациям таблицы-10.
Таблица 10 - Время переключения передач
Тип коробки передач | Время переключения передач, с | |
Карбюраторные двигатели | Дизельные двигатели | |
Без синхронизатора | 1,3 - 1,5 | 1 - 5 |
С синхронизаторами | 0,3 - 0,5 | 1 - 1,5 |
Падение скорости автомобиля за время переключения передач определяется по формуле-25
где
Ψ - коэффициент сопротивления дороги, соответствующий скорости движения автомобиля при которой происходит переключение передачи;
Путь разгона автомобиля определяется для тех же интервалов изменения скорости автомобиля по формуле 26
где
Путь, проходимый автомобилем за время переключения передач (движение накатом), определяется по формуле-27
Используя всю вышеприведенную информацию, определяем время и путь разгона автомобиля на горизонтальной дороге с асфальтобетонным покрытием до максимальной скорости
Все расчеты по данному подразделу сводим в таблицу-11.
Таблица 10 - Расчет времени и пути разгона проектируемого автомобиля до максимальной скорости.
Номер передачи КПП | Интервал Vi, км/ч | Интервал j i, м/с2 | ΔVi, км/ч | jср i, м/с2 | Δt i, с | ∑Δt i, c | Vср i, км/ч | ΔS i, м | ∑ΔSi, м |
I | 2,6-5,2 | 1,17-1,26 | 2,6 | 1,22 | 0,592 | 0,592 | 3,9 | 0,641 | 0,641 |
5,2-7,8 | 1,26-1,29 | 2,6 | 1,28 | 0,564 | 1,156 | 6,5 | 1,018 | 1,659 | |
7,8-10,3 | 1,29-1,26 | 2,5 | 1,28 | 0,543 | 1,699 | 9,05 | 1,365 | 3,024 | |
10,3-13 | 1,26-1,17 | 2,7 | 1,22 | 0,615 | 2,314 | 11,65 | 1,990 | 5,014 | |
13-15,5 | 1,17-1,02 | 2,5 | 1,10 | 0,631 | 2,945 | 14,25 | 2,498 | 7,512 | |
Накат | - | - | 0,255 | - | 0,5 | 3,445 | - | 2,135 | 9,647 |
II | 15,2-19,5 | 1,02-1,22 | 4,3 | 1,12 | 1,066 | 4,511 | 17,35 | 5,138 | 14,785 |
19,5-24,3 | 1,22-1,13 | 4,8 | 1,18 | 1,130 | 5,641 | 21,9 | 6,874 | 21,659 | |
24,3-29,2 | 1,13-0,98 | 4,9 | 1,06 | 1,284 | 6,925 | 26,75 | 9,541 | 31,2 | |
Накат | - | - | 0,262 | - | 0,5 | 7,425 | - | 4,037 | 35,237 |
III | 28,9-34,8 | 0,98-0,83 | 5,9 | 0,91 | 1,801 | 9,226 | 31,85 | 15,934 | 51,171 |
34,8-43,5 | 0,83-0,75 | 8,7 | 0,79 | 3,059 | 12,285 | 39,15 | 33,267 | 84,438 | |
43,5-52,2 | 0,75-0,66 | 8,7 | 0,71 | 3,404 | 15,689 | 47,85 | 45,245 | 129,683 | |
Накат | - | - | 0,286 | - | 0,5 | 16,189 | - | 7,230 | 136,913 |
IV | 51,91-66 | 0,52-0,32 | 14,09 | 0,42 | 9,32 | 25,51 | 59 | 152,74 | 289,65 |
66-85 | 0,32-0, 20 | 19 | 0,26 | 20,30 | 45,81 | 75,5 | 425,74 | 715,39 | |
85-99 | 0, 20-0,07 | 14 | 0,135 | 28,81 | 74,62 | 92 | 736,3 | 1451,69 |
Пример графиков времени и пути разгона автомобиля до максимальной скорости построенный в одних координатных осях приведен на рисунке-7.
SHAPE \* MERGEFORMAT
∑Δt |
∑ΔS |
V, км/ч |
Δt, c |
ΔS, м |
Рисунок 7 - График времени и пути разгона проектируемого автомобиля до максимальной скорости.
1.9 Расчет топливной экономичности автомобиля
Топливно-экономические качества вновь проектируемых автомобилей при движении с постоянной скоростью оцениваются топливно-экономической характеристикой. Эта характеристика представляет собой график зависимости путевого расхода топлива от скорости движения для различных дорожных условий.Путевой расход топлива определяется по формуле-28
где
для бензина
Удельный эффективный расход топлива зависит от частоты вращения коленвала двигателя и степени использования мощности двигателя (степени открытия дроссельной заслонки карбюратора. Это положение учитывают коэффициенты формулы-29, связывающей удельный расход топлива при заданном режиме движения и удельный расход топлива при максимальной мощности двигателя.
где
для карбюраторных двигателей
где
где
В курсовом проекте построение топливно-экономической характеристики автомобиля производится для условий его движения на высшей передаче по горизонтальной дороге с асфальтобетонным покрытием. В связи с этим, для подстановки в формулу 30 и для определения
Значения коэффициентов
Таблица 12 - Значения коэффициента
Для всех типов двигателей | | 0,2 | 0,4 | 0,6 | 0,8 | 1,0 | 1,2 |
| 1,13 | 1,0 | 0,96 | 0,97 | 1,0 | 1,15 |
| 0,2 | 0,4 | 0,6 | 0,8 | 1,0 | Тип двигателя |
| 2,0 | 1,34 | 1,0 | 0,98 | 1,0 | Карбюраторный |
Расчет и построение топливно-экономической характеристики автомобиля следует проводить для двух условий движения автомобиля, характеризуемых следующими значениями коэффициентов сопротивления дороги:
Расчеты топливно-экономической характеристики автомобиля представляем в форме таблицы-14.
По результатам расчета строим топливно-экономическую характеристику автомобиля. Форма кривых топливно-экономической характеристики автомобиля показана на рисунке 8.
Таблица 14 - Расчет топливно-экономической характеристики проектируемого автомобиля.
Параметры | Коэффициент сопротивления дороги Ψ1 | |||||
ne, об/мин | 500 | 1000 | 1500 | 2000 | 2500 | 3000 |
ne /nN | 0,2 | 0,3 | 0,5 | 0,7 | 0,8 | 1 |
Kn | 1,13 | 1,07 | 0,98 | 0,965 | 0,97 | 1 |
V, км/ч | 16,5 | 33 | 49,5 | 66 | 85 | 99 |
Ne, кВт | 5,906 | 13,211 | 23,312 | 37,611 | 61,093 | 84,391 |
N(100), кВт | 22,69 | 48,89 | 75 | 97,81 | 113,8 | 120 |
Ne / N(100) | 0,260 | 0,270 | 0,311 | 0,385 | 0,537 | 0,703 |
KN | 1,84 | 1,84 | 1,67 | 1,34 | 1,17 | 0,99 |
g e, г/кВт ч | 735,21 | 696,17 | 578,70 | 457,24 | 401,30 | 350,06 |
g п, л/100 км | 35,56 | 37,66 | 36,83 | 35,21 | 38,98 | 40,32 |
Параметры | Коэффициент сопротивления дороги Ψ2 | |||||
ne, об/мин | 500 | 1000 | 1500 | 2000 | 2500 | 3000 |
ne /nN | 0,2 | 0,3 | 0,5 | 0,7 | 0,8 | 1 |
Kn | 1,13 | 1,07 | 0,98 | 0,965 | 0,97 | 1 |
V, км/ч | 16,5 | 33 | 49,5 | 66 | 85 | 99 |
Ne, кВт | 11,579 | 24,556 | 40,330 | 60,302 | 90,317 | 118,427 |
N(100), кВт | 22,69 | 48,89 | 75 | 97,81 | 113,8 | 120 |
Ne / N(100) | 0,510 | 0,502 | 0,538 | 0,617 | 0,794 | 0,987 |
KN | 1,17 | 1,17 | 1,09 | 1,0 | 0,98 | 1,0 |
g e, г/кВт ч | 467,50 | 442,67 | 377,72 | 341,22 | 336,13 | 353,6 |
g п, л/100 км | 44,33 | 44,51 | 41,59 | 42,13 | 48,26 | 57,16 |
|
Ψ2 |
Ψ1 |
gп, л/100км |
Рисунок 8 - Топливно-экономическая характеристика проектируемого автомобиля
Заключение
В результате выполненных расчетов определены числовые значения показателей эксплуатационных свойств и построены графики изменения эксплуатационных свойств проектируемого автомобиля в зависимости от изменения его скорости движения.Несмотря на то, что показатели эксплуатационных свойств автомобиля определены только для одного режима работы двигателя автомобиля (работа с полностью открытой дроссельной заслонкой), они имеют большое практическое значение. Некоторые показатели используются для оценки технического уровня вновь проектируемого автомобиля (например, время и путь разгона автомобиля до максимальной скорости, топливно-экономическая характеристика), другие - являются исходными данными для проектирования механизмов и систем автомобиля, на основании которых во второй части настоящего проекта разработан карданная передача проектируемого автомобиля.