Курсовая

Курсовая Формирование вычислительных навыков на уроках математики в начальной школе

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 14.1.2025





     Курсовая работа

на тему:

«Формирование вычислительных навыков на уроках математики в начальной школе».

                    Содержание:

Введение…………………………………………………………………………..  3

Глава 1. Теоретические основы формирования вычислительных навыков у младших школьников…………………………………………………………………...…6

1.1.                     Понятие «вычислительный навык» и этапы его формирования….....6

1.2.                     Задания, направленные на формирование вычислительных навыков в начальной школе…………………………………………………………………………..16

Глава 2. Организация практической работы по формированию вычислительных навыков у учащихся 2 класса на уроках математики…………………………………...22

2.1. Изучение уровня сформированности вычислительных навыков у учащихся 2 класса……………………………………………………………………………………..22

2.2. Реализация заданий, направленных на формирование вычислительных навыков у младших школьников…………………………………………………………31

Заключение………………………………………………………………………...35

Список литературы……………………………………………………………….37
     
    Введение.

Одной из важнейших задач обучения математике младших школьников является формирование у них вычислительных навыков, основу которых  составляет осознанное и прочное усвоение приемов устных и письменных вычислений. Вычислительная культура является тем запасом знаний и умений, который находит повсеместное применение, является фундаментом изучения математики и других учебных дисциплин.

В век компьютерной грамотности значимость вычислительных навыков, несомненно, уменьшилась. Использование компьютера, калькулятора во многом облегчает процесс вычислений. Но пользоваться техникой без осознания вычислительных навыков невозможно, да и микрокалькулятор не всегда может оказаться под рукой.  Следовательно, владение вычислительными навыками необходимо. Научиться быстро и правильно выполнять вычисления важно для младших школьников как в плане продолжающейся работы с числами, так и в плане практической значимости для дальнейшего обучения. Поэтому вооружение учащихся прочными вычислительными навыками продолжает оставаться серьезной педагогической проблемой.

Проблема формирования у учащихся вычислительных умений и навыков всегда привлекала особое внимание психологов, дидактов, методистов, учителей. В методике математики известны исследования Е.С. Дубинчук, А.А. Столяра, С.С. Минаевой, Н.Л. Стефановой, Я.Ф. Чекмарева, М.А. Бантовой,  М.И. Моро, Н.Б. Истоминой,  С.Е. Царевой и др.

Глубоко и всесторонне вопросы совершенствования устных и письменных вычислений учащихся исследовались лишь в 60-70 гг. ХХ века.  Исследования последующих лет посвящены преимущественно разработке качеств вычислительных навыков (М.А. Бантова), рационализации вычислительных приемов (М.И. Моро, С.В. Степанова и др.),  применению средств ТСО (В.И. Кузнецов), дифференциации и индивидуализации процесса формирования вычислительных умений и навыков (Т.И. Фаддейчева).

Каждое из этих исследований внесло определенный вклад в разработку и совершенствование той методической системы, которая использовалась в практике обучения, и нашло отражение в учебниках   математики.

Действующие на сегодняшний день программы по математике  обеспечивают достаточный уровень формирования вычислительных навыков школьников. Изучение вычислительного приема происходит после того, как школьники усвоят его теоретическую основу (определения арифметических действий, свойства действий и следствия, вытекающие из них). Причем в каждом конкретном случае учащиеся осознают сам факт использования соответствующих теоретических положений, лежащих в основе вычислительного приема,  конструируют различные приемы для одного случая вычислений, используя различные теоретические положения. В начальном курсе математики предусмотрен такой порядок введения вычислительных приемов, при котором постепенно вводятся приемы, включающие большее число операций, а приемы, усвоенные ранее, включаются в новые в качестве основных операций.

Переориентация методической системы на приоритет развивающей функции по отношению к образовательной, характеризующейся изменением характера деятельности учащихся, личностно-ориентированным подходом к обучению, несколько ослабила внимание к развитию и закреплению вычислительных навыков у учащихся.

Учебники математики ориентированы на общие вычислительные навыки, и учитель может легко обучить алгоритму вычислений. Но в учебниках, к сожалению, нет «отработки частных способов вычислений», равно как нет и общих способов. [1]

Отмечается ухудшение качества вычислений учащихся, обучающихся и по обычным, и по развивающим учебникам. Особенно пострадала культура устного счета. «Стремление учителей изменить ситуацию приводит к тому, что одни учителя используют в работе два учебника: один выполняет развивающие функции, другой (традиционный) — нацелен на формирование вычислительных умений и навыков. Другие учителя увеличивают объем домашних заданий. Это приводит к перегрузкам школьников, провоцирует стрессовые ситуации, снижает интерес к математике».  [12, с.5]

Объектом исследования является математическое образование младших школьников.

Предмет исследования – задания, способствующие формированию у младших школьников вычислительных навыков.

Цель исследования – разработать совокупность заданий, способствующих эффективному и осознанному формированию вычислительных навыков.

В соответствии с целью исследования были определены следующие задачи:

1.   Изучить и охарактеризовать понятие «вычислительный навык», описать этапы его формирования.

2.   Выбрать типы заданий, направленных на формирование вычислительных навыков в начальной школе.

3.   Описать логику проведения констатирующего этапа эксперимента по выявлению уровня сформированности вычислительных навыков у учащихся 2 класса.

4.   Разработать совокупность заданий, способствующих эффективному и осознанному формированию вычислительных навыков.

В процессе работы были использованы следующие методы исследования:

1.  Теоретический: анализ и обобщение.

2.  Эмпирический: изучение и анализ психолого-педагогической литературы, учебников и программ по математике, педагогический эксперимент по изучению уровня сформированности вычислительных навыков.

3.  Методы математической обработки  информации, полученной в ходе эксперимента, и обобщение результатов.

4.  Методы презентации: таблицы, диаграммы.

Экспериментальная база: МОУ «Гимназия №13» г. Алексина, 2 «А» класс.
Глава 1. Теоретические основы формирования вычислительных навыков у младших школьников.

1.1.                      Понятие «вычислительный навык» и этапы его формирования.

Формирование вычислительных навыков - одна из главных задач, которая должна быть решена в ходе обучения детей в начальной школе.   Эти навыки должны формироваться осознанно и прочно, так как на их базе строится весь начальный курс обучения математике, который предусматривает формирование вычислительных навыков на основе сознательного использования приемов вычислений. Последнее становится возможным благодаря тому, что в программу включено знакомство с некоторыми важнейшими свойствами арифметических действий и вытекающими из них следствиями.

М.А. Бантова определила вычислительный навык как высокую степень овладения вычислительными приемами. «Приобрести вычислительные навыки — значит, для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия, и выполнять эти операции достаточно быстро». [5, с.39]

Вычислительные навыки рассматриваются как один из видов учебных навыков, функционирующих и формирующихся в процессе обучения. Они входят в структуру учебно-познавательной деятельности и существуют в учебных действиях, которые выполняются посредством определенной системы операций. Полноценный вычислительный навык обучающихся характеризуется следующими показателями: правильностью, осознанностью, рациональностью, обобщенностью, автоматизмом и прочностью. [5]

Правильность – ученик правильно находит результат арифметического действия над данными числами, т.е. правильно выбирает и выполняет операции, составляющие прием.

Осознанность – ученик осознает, на основе каких знаний выбраны операции и установлен порядок их выполнения. Это для ученика своего рода доказательство правильности выбора системы операции. Осознанность проявляется в том, что ученик в любой момент может объяснить, как он решал пример и почему можно так решать. Это, конечно, не значит, что ученик всегда должен объяснять решение каждого примера. В процессе овладения навыком объяснение должно постепенно свертываться.

Рациональностьученик, сообразуясь с конкретными условиями, выбирает для данного случая более рациональный прием, т. е. выбирает те из возможных операций, выполнение которых легче других и быстрее приводит к результату арифметического действия. Разумеется, что это качество навыка может проявляться тогда, когда для данного случая существуют различные приемы нахождения результата, и ученик, используя различные знания, может сконструировать несколько приемов и выбрать более рациональный. Как видим, рациональность непосредственно связана с осознанностью навыка.

Обобщенность –ученик может применить прием вычисления к большему числу случаев, т. е. он способен перенести прием вычисления на новые случаи. Обобщенность так же, как и рациональность, теснейшим образом связана с осознанностью вычислительного навыка, поскольку общим для различных случаев вычисления будет прием, основа которого - одни и те же теоретические положения.

Автоматизм (свернутость) – ученик выделяет и выполняет операции быстро и в свернутом виде, но всегда может вернуться к объяснению выбора системы операции. Осознанность и автоматизм вычислительных навыков не являются противоречивыми качествами. Они всегда выступают в единстве: при свернутом выполнении операции осознанность сохраняется, но обоснование выбора системы операции происходит свернуто в плане внутренней речи. Благодаря этому ученик может в любой момент дать развернутое обоснование выбора системы операции. Высокая степень автоматизации должна быть достигнута по отношению к табличным случаям (5+3, 8-5,9+6, 15-9, 7-6, 42:6). Здесь должен быть достигнут уровень, характеризующийся тем, что ученик сразу же соотносит с двумя данными числами третье число, которое является результатом арифметического действия, не выполняя отдельных операций. По отношению к другим случаям арифметических действий происходит частичная автоматизация вычислительных навыков: ученик предельно быстро выделяет и выполняет систему операций, не объясняя, почему выбрал эти операции и как выполнял каждую из них.

Прочностьученик сохраняет сформированные вычислительные навыки на длительное время.

Формирование вычислительных навыков, обладающих названными качествами, обеспечивается построением курса математики и использованием соответствующих методических приемов. [5]

Вместе с тем, ученик при выполнении вычислительного приёма должен отдавать отчёт в правильности и целесообразности каждого выполненного действия, то есть постоянно контролировать себя, соотнося выполняемые операции с образцом - системой операций. О сформированности любого умственного действия можно говорить лишь тогда, когда ученик сам, без вмешательства со стороны, выполняет все операции приводящие к решению. Умение осознано контролировать выполняемые операции позволяет формировать вычислительные навыки более высокого уровня, чем без наличия этого умения.

В целях формирования осознанных, обобщенных и рациональных навыков начальный курс математики строится так, что изучение вычислительного приема происходит после того, как учащиеся усвоят материал, являющийся теоретической основой этого вычислительного приема. Например, сначала ученики усваивают свойство умножения суммы на число, а затем это свойство становится теоретической основой приема внетабличного умножения. Так, при умножении 15 на 6 выполняется следующая система операций, составляющая вычислительный прием:

1) число 15 заменяем суммой разрядных слагаемых 10 и 5;

2) умножаем на 6 слагаемое 10, получится 60;

3) умножаем на 6 слагаемое 5, получится 30;

4) складываем полученные произведения 60 и 30, получится 90.

 Как видим, здесь применение свойства умножения суммы на число (термин «распределительный закон» в начальном курсе не вводится) определило выбор всех операций, поэтому и говорят, что прием внетабличного умножения основан на свойстве умножения суммы на число или что свойство умножения суммы на число — теоретическая основа приема внетабличного умножения.
Легко заметить, что кроме свойства умножения суммы на число здесь использованы и другие знания, а также ранее сформированные вычислительные навыки: знание десятичного состава чисел (замена числа суммой разрядных слагаемых), навыки табличного умножения и умножения числа 10 на однозначные числа, навыки сложения двузначных чисел. Однако выбор именно этих знаний и навыков диктуется применением свойства умножения суммы на число. Общеизвестно, что теоретической основой вычислительных приемов служат определения арифметических действий, свойства действий и следствия, вытекающие из них. Имея это в виду и принимая во внимание методический аспект, можно выделить группы приемов в соответствии с их общей теоретической основой, предусмотренной действующей программой по математике для начальных классов, что даст возможность использовать общие подходы в методике формирования соответствующих навыков.

Назовем эти группы приемов:       
1.       Приемы, теоретическая основа которых — конкретный смысл арифметических действий. К ним относятся: приемы сложения и вычитания чисел в пределах 10 для случаев вида а + 2, а + 3, а + 4, а + 0; приемы табличного сложения и вычитания с переходом через десяток в пределах 20; прием нахождения табличных результатов умножения, прием нахождения табличных результатов деления (только на начальной стадии) и деления с остатком, прием умножения единицы и нуля. Это первые приемы вычислений, которые вводятся сразу после ознакомления учащихся с конкретным смыслом арифметических действий. Они, собственно, и дают возможность усвоить конкретный смысл арифметических действий, поскольку требуют применения конкретного смысла. Вместе с тем эти первые приемы готовят учащихся к усвоению свойств арифметических действий.
Таким образом, хотя в основе некоторых из названных приемов и лежат свойства арифметических действий (так, прибавление двух по единице выполняется на основе использования свойства прибавления суммы к числу), эти свойства учащимся явно не раскрываются. Названные приемы вводятся на основе выполнения операций над множествами.

2.       Приемы, теоретической основой которых служат свойства арифметических действий. К этой группе относится большинство вычислительных приемов. Это приемы сложения и вычитания для случаев вида 53 ± 20, 47  ±  3, 30 – 6, 9 + 3, 12 – 3, 35 ± 7, 40 ± 23, 57 ± 32, 64 ± 18; аналогичные приемы для случаев сложения и вычитания чисел больших, чем 100, а также приемы письменного сложения и вычитания; приемы умножения и деления для случаев вида 14 × 5, 5 × 14, 81 : 3, 18 × 40, 180 : 20, аналогичные приемы умножения и деления для чисел больших 100 и приемы письменного умножения и деления.
Общая схема введения этих приемов одинакова: сначала изучаются соответствующие свойства, а затем на их основе вводятся приемы вычислений.

 3.       Приемы, теоретическая основа которых — связи  между  компонентами  и  результатами  арифметических действий. К ним относятся приемы для случаев вида 9 × 7, 21 : 3, 60 : 20, 54 : 18, 9 : 1, 0 : 6. При введении этих приемов сначала рассматриваются связи между компонентами и результатом соответствующего арифметического действия, затем на этой основе вводится вычислительный прием.

4.       Приемы, теоретическая основа которых  —  изменение результатов арифметических действий в зависимости от изменения одного из компонентов. Это приемы округления при выполнении сложения и вычитания чисел (46 + 19, 512 – 298) и приемы умножения и деления на 5, 25, 50. Введение этих приемов также требует предварительного изучения соответствующих зависимостей.
          5.       Приемы, теоретическая основа которых — вопросы нумерации чисел. Это приемы для случаев вида а ± 1, 10 + 6, 16 – 10, 16 – 6, 57 × 10, 1200 : 100; аналогичные приемы для больших чисел. Введение этих приемов предусматривается после изучения соответствующих вопросов нумерации (натуральной последовательности, десятичного состава чисел, позиционного принципа записи чисел).

6.       Приемы, теоретическая основа которых — правила. К ним относятся приемы для двух случаев: а × 1, а × 0. Поскольку правила умножения чисел на единицу и нуль есть следствия из определения действия умножения целых неотрицательных чисел, то они просто сообщаются учащимся и в соответствии с ними выполняются вычисления.

Целый ряд случаев может быть отнесен не только к указанной группе приемов, но и к другой. Например, случаи вида 46 + 19 можно отнести не только к четвертой группе, но и ко второй. Это зависит от выбора теоретической основы вычислительного приема. Как видим, все вычислительные приемы строятся на той или иной теоретической основе, причем в каждом случае учащиеся осознают сам факт использования соответствующих теоретических положений, лежащих в основе вычислительных приемов. Это — реальная предпосылка овладения учащимися осознанными вычислительными навыками.
Общность подходов к раскрытию вычислительных приемов каждой группы — есть залог овладения учащимися обобщенными вычислительными навыками. Возможность использования различных теоретических положений при конструировании различных приемов для одного случая вычисления (например, для случая сложения 46 + 19) является предпосылкой формирования рациональных гибких вычислительных навыков.

В ходе формирования вычислительных навыков М.А. Бантова выделяет следующие этапы:

1. Подготовка к введению нового приёма.

На этом этапе создается готовность к усвоению вычислительного приёма, а именно, учащиеся должны усвоить те теоретические положения, на которых основывается приём вычислений, а также овладеть каждой операцией, составляющей приём.
Например, можно считать, что ученики подготовлены к восприятию вычислительного приёма ±2, если они ознакомлены с конкретным смыслом действий сложения и вычитания, знают состав числа 2 и овладели вычислительными навыками сложения и вычитания вида ±1; готовностью к введению приёма внетабличного умножения (13 × 6) будет знание учащимся правила умножения суммы на число, знание десятичного состава чисел в пределах 100 и овладение навыками табличного умножения, навыками умноженная числа 10 на однозначные числа, навыками сложения двузначных чисел.
Центральное звено при подготовке к введению нового приёма - овладение учеником основными операциями.

2. Ознакомление с вычислительным приёмом.

На этом этапе ученики усваивают суть приёма:  какие операции надо выполнять, в каком порядке и почему именно так можно найти результат арифметического действия.
При введении большинства вычислительных приёмов важно использовать наглядность. В некоторых случаях это оперирование множествами. Например, прибавляя к 6 число 3, придвигаем к 6 квадратам 3 квадрата по одному.
В других случаях в качестве наглядности используется развернутая запись. Например, при введении приёма внетабличного умножения выполняется запись:

13 × 6=(10 + 3) × 6=10 × 6 + 3 × 6 = 60 + 18 = 78

Выполнение каждой операции важно сопровождать пояснениями вслух.
Сначала эти пояснения выполняется под руководством учителя, а потом самостоятельно учащимися.

3. Закрепление знаний приёма и выработка вычислительного навыка.

На этом этапе ученики должны твердо усвоить систему операций, составляющие приём, и быстро выполнить эти операции; то есть овладеть вычислительным навыком.
В процессе работы здесь важно предусмотреть этапы в становлении у учащихся вычислительных навыков:

1.      На первом этапе закрепляется знание приема: учащиеся самостоятельно выполняют все операции, составляющие прием, комментируя выполнение каждой из них вслух и одновременно производя развернутую запись 34 ×  5 = (30 + 4) × 5 = 30 × 5 + 4 × 5 = 3 × 10 × 5 + 20 = 3 × 5 × 10 + 20 = 15 × 10 + 20 = 150 + 20 = (100 + 50) + 20 = 100 + (50 + 20) = 100 + 70 = 170

2.      На втором этапе происходит частичное свертывание выполнения операций: учащиеся про себя выделяют операции и обосновывают выбор, порядок их выполнения, вслух же они проговаривают выполнение основных операций, т.е. промежуточных вычислений. Надо учить детей выделять основные операции в каждом вычислительном приёме. Развёрнутая запись не выполняется. Сначала проговаривание ведётся под руководством учителя, а затем самостоятельно. Проговаривание вслух помогает выделить основные операции, а выполнение про себя вспомогательных операций способствует их свёртыванию.

34 × 5 = (30 + 4) × 5 = 30 × 5 + 4 × 5 = 150 + 20 = 170

3.      На третьем этапе происходит полное свертывание выполнения операций: учащиеся про себя выделяют и выполняют все операции, т.е. здесь происходит свёртывание и основных операций. Учитель предлагает детям выполнять про себя и промежуточные вычисления, а называть или записывать только окончательный результат.  34 × 5 = 170


4.      На четвёртом этапе наступает предельное свёртывание выполнения операций. Учащиеся выполняют все операции в свёрнутом плане, предельно быстро, т.е. они овладевают вычислительными навыками. Это достигается в результате выполнения достаточного числа тренировочных упражнений.

На всех этапах формирования вычислительного навыка решающую роль играют задания на применение вычислительных приёмов, причём содержание заданий должно подчиняться целям, которые ставятся на соответствующем этапе. Важно, чтобы было достаточное число заданий, чтобы они были разнообразными как по форме, так и по числовым данным. Надо иметь в виду, что свёртывание выполнение операций не у всех учащихся происходит одновременно, поэтому важно время от времени возвращаться к полному объяснению и развёрнутой записи приёма. Продолжительность каждого этапа определяется сложностью приёма, подготовленностью учащихся и целями, которые ставятся на каждом этапе. Правильное выделение этапов позволит учителю управлять процессом усвоения учащимися вычислительного приёма, постепенного свёртывания выполнения операций, образования вычислительных навыков.

В системе Л. В. Занкова формирование навыков проходит три принципиально различных этапа, при этом учитель может использовать два пути: прямой и косвенный.

Прямой путь в чистом виде предполагает сообщение учащимся образца, алгоритма выполнения операции, на основании которого школьники многократно ее выполняют. В результате такой репродуктивной деятельности достигается запоминание предложенного алгоритма и вырабатывается запланированный навык.
Косвенный путь предполагает, прежде всего, включение учеников в продуктивную творческую деятельность, в самостоятельной поиск алгоритма выполнения операции.
В системе общего развития Л.В. Занкова главным является именно косвенный путь формирования вычислительных навыков, прямой же использует учитель тогда и в той мере, как это необходимо, так как в чистом виде ни один из путей использовать нельзя.
[15]

Первый этап – осознание основных положений, лежащих в фундаменте выполнения операции, создание алгоритма ее выполнения. На этом обязательно прослеживается, оценивается и создается каждый шаг в рассуждениях детей, устные рассуждения переводятся в запись математическими знаками. Отсюда вытекает характерный признак этого этапа - подробная запись выполнения операции, с которой в данный момент работают ученики. На этом этапе практически не используется прямой путь. Он возникает только при выполнении промежуточных, знакомых детям операций. Результатом этого этапа является выработка алгоритма выполнения операции и его осознание.

284 × 25 = 284 × (20 + 5) = 284 × 20 + 284 × 5 = 284 × (2 × 10) + 1420 = (284 × 2) × 10 + 1420 = 568 × 10 + 1420 = 5680 + 1420 = 7100.

На этом этапе почти не используем прямой путь, если только при выполнении знакомых детям операций, т.е. промежуточных (умножение на однозначное число, на единицу с нулями и выполнение сложения).
В результате деятельности на этом этапе появляется алгоритм выполнения операции.


Главным направлением второго этапа является формирование правильного выполнения операции. Для достижения этой цели  необходимо не только использование выработанного на первом этапе алгоритма выполнения операции, но, может быть, в еще большей степени, свободная ориентация в ее нюансах, умение предвидеть. К чему приведет то или иное изменение компонентов операции. В силу этого на втором этапе используются оба пути формирования навыков, однако косвенный путь продолжает быть ведущим, прямой же используется в качестве подчиненного. Ученикам даются такие задания, которые ставят детей в позицию активного творческого поиска, где они используют свои знания в нестандартном преобразованном виде.
Например, даем задание: изменить в произведении 284
× 25 одну цифру так, чтобы значение произведения стало пятизначным числом.
В результате найденных преобразований каждый ученик получает от 6 – до 12 произведений, изменяя цифру во втором или в первом множителе:
284
× 35, 284 × 45, 284 × 55,  284 × 65, 284 × 75 (85, 95, 55)
384
× 25, 484 × 25 (584, 684, 784, 884,984) × 25.

От учащихся не требуется нахождения и составления всех возможных решений. Мы объединяем все случаи, которые нашли разные ученики, анализируем, находим с ними определенную закономерность, отыскиваем пропущенные варианты.
Важная особенность таких заданий – возможность индивидуализации их выполнения каждым учеником, так как нет жестких установок на количество требуемых решений, а только рекомендации: «Постарайся найти не одно решение».
Третий этап формирования навыка нацелен на достижение высокого темпа выполнения операции. Именно на этом этапе на первый план выходит прямой путь формирования навыка. Главная задача учителя – построить работу так, чтобы дети хотели выполнять необходимые вычисления и получали от этого удовольствие.


Формирование вычислительных умений и навыков - это сложный длительный процесс, его эффективность зависит от индивидуальных особенностей ребенка, уровня его подготовки и организации вычислительной деятельности.

На современном этапе развития образования необходимо выбирать такие способы организации вычислительной деятельности школьников, которые способствуют не только формированию прочных вычислительных умений и навыков, но и всестороннему развитию личности ребенка.

При выборе способов организации вычислительной деятельности необходимо ориентироваться на развивающий характер работы, отдавать предпочтение обучающим заданиям. Используемые вычислительные задания должны характеризоваться вариативностью формулировок, неоднозначностью решений, выявлением разнообразных закономерностей и зависимостей, использованием различных моделей (предметных, графических, символических), что позволяет учитывать индивидуальные особенности ребенка, его жизненный опыт, предметно-действенное и наглядно-образное мышление и постепенно водить ребенка в мир математических понятий, терминов и символов.
1.2.           Задания, направленные на формирование вычислительных навыков в начальной школе.

На уроке математики формирование вычислительных навыков занимает большое место. Одной из форм работы по формированию вычислительных навыков являются задания. Овладение вычислительными навыками имеет большое образовательное, воспитательное и практическое значение:

- образовательное значение
:
устные вычисления помогают усвоить многие вопросы теории арифметических действий, а также лучше понять письменные приемы;

- воспитательное значение: устные вычисления способствуют развитию мышления, памяти, внимания, речи, математической зоркости, наблюдательности и сообразительности;

- практическое значение: быстрота и правильность вычислений необходимы в жизни, особенно когда письменно выполнить действия не представляется возможным (например, при технических расчетах у станка, в поле, при покупке и продаже). [17]

В своей работе учителя придерживаются определенных принципов. Один из них (наиболее важный) можно сформулировать следующим образом: работа в классе на каждом уроке должна выполняться всем классом, а не учителем и группой успевающих учеников. То есть необходимо создать такую ситуацию - ситуацию «успеха», при которой каждый ученик смог бы почувствовать себя полноценным участником учебного процесса. Ведь одна из задач учителя заключается не в доказательстве незнания или слабого знания ученика, а во вселении веры в ребенка, что он может учиться лучше, что у него получается. Нужно помочь ребенку поверить в собственные силы, мотивировать его на учебу.

Рассмотрим основные типы заданий:

1.            
Задания с использованием сравнений:


Для активизации познавательной деятельности учащихся при формировании вычислительных можно использовать метод наблюдений. В процессе наблюдения учащиеся сравнивают, анализируют, делают выводы. Полученные таким образом знания являются более осознанными и тем самым лучше усваиваются.

В качестве примера рассмотрим изучение такого вопроса, как изменение суммы в зависимости от изменения одного из слагаемых. В основе познания учениками данной зависимости лежит прием сравнения.

Задание 1. Решите примеры и сравните их:

2 + 1,   2 + 2.

Необходимо обращать внимание учеников на то, что в одном  и в другом примере стоит знак «+», а первые слагаемые одинаковы. Эти примеры схожи. Затем выявляются различия: в первом примере второе слагаемое равно 1, во втором 2, сумма в первом примере равна 3, а во втором – 4.

Ребята  отмечают, что во втором примере прибавляем большее (2 > 1), поэтому и получаем большую сумму.

Переходя к сравнению выражений подбираем такие выражения, в которых ученики смогут усмотреть различные признаки различия и сходства.

Задание 2. На доске записаны примеры:

5 + 3,   4 + 3,   8 – 3,   6 + 3,   7 – 3,   9 – 3

Угадайте сходство или различие записанных выражений. Ученики обычно указывают такие признаки сходства, как знак действия, затем обращают внимание на то, что в первой группе прибавляется число 3, а во второй – вычитается число 3. Затем целесообразно поставить вопрос: «Что произойдет с ответами примеров в первой группе и во второй? Почему ответы в первой группе больше, чем ответы во второй?»

Очень полезно задание и такое:

Задание 3. Что вы замечаете в данных примерах?

1 + 1,   2 + 1,   3 + 1,   4 + 1,   6 + 1,   7 + 1

Ученики должны обратить внимание не только на тот факт, что во всех примерах знак «+» и второе слагаемое везде равно 1, но и на то, что последовательность 1, 2, 3, 4 …  нарушена, т.к. пропущен пример 5 + 1.

Подобные задания способствуют развитию математической наблюдательности  учеников, их умению видеть сходства и различия, выявлять определенные закономерности. В процессе выполнения таких заданий уясняется смысл понятия «сравнить».

Так же могут предлагаться задания с ошибками, которые требуют исправления:

Задание 4. Найди ошибку:



Могут предлагаться задания, у которых уже дан знак отношения  и  одно  из выражений, а другое выражение надо составить или дополнить:

8 · (10 + 2)=8 · 10 + …

Выражения таких заданий могут включать различный числовой материал: однозначные, двузначные, трехзначные числа и величины. Выражения могут быть с разными действиями.

        Главная роль таких заданий – способствовать усвоению  теоретических знаний об арифметических  действиях,  их  свойствах,  о  равенствах,  о неравенствах и др. Также они помогают выработке вычислительных навыков.

2.            
Задания на классификацию и систематизацию знаний.


Умение выделять признаки предметов и устанавливать между ними сходство и различие - основа заданий на классификацию. Из курса математики известно, что при разбиении множества на классы необходимо выполнять следующие условия:

 1) ни одно из подмножеств не пусто;

2) подмножества попарно не пересекаются;

3) объединение всех подмножеств составляет данное множество.

Предлагая детям задания на классификацию, эти условия необходимо учитывать.

Задание 1. Найди значения разностей

742 - 531                           898 - 769

374 - 223                           586 - 218

457 -132                            465  -427

По какому признаку распределены разности по этим столбикам?

3.            
Задания на выявление общего и различного.


Выделение существенных признаков математических объектов, их свойств и отношений - основная характеристика таких заданий. Благодаря им учащиеся могут самостоятельно «открывать» математические свойства и способы действий (правила), которые в математике строго доказываются.

Задание 1. Рассмотрите рисунок и попробуйте быстро подсчитать, сколько окон в доме.



Дети могут предложить следующие способы: 3+3+3+3, 4+4+4 или 3*4=12; 4*3=12.

Учитель предлагает сравнить полученные равенства, т. е. выявить их сходство и различие. Отмечается, что оба произведения одинаковые, а множители переставлены.

Вывод: «Если множители переставить, то произведение не изменится» или «От перестановки множителей значение произведения не изменится».

4.            
Задания с многовариантными решениями.


  Многовариантные задания - это система упражнений, выполнение которых поможет глубоко и осознано усвоить правило и выработать необходимый вычислительный навык на его основе.

Задание 1. Запиши число 30 тремя одинаковыми цифрами и знаками действий.

Постарайся найти несколько разных решений.

Задание 2. Какое число надо прибавить к 25, чтобы получить круглое?

5.            
Задания с элементами занимательности.


Такие задания, в основном, направлены на отработку вычислительных навыков. Элемент занимательности увлекает детей, они стремятся выполнить все действия правильно и посмотреть к чему это приведет.

"Магические или занимательные квадраты" - это занимательная форма тренировки в сложении вычитания и размещения чисел. Решение магических квадратов увлекает школьников всех возрастов.

6.            
Задания на нахождение значений математических выражений.


Предлагается в той или иной форме математическое выражение, требуется  найти его  значение.  Эти  задания  имеют  много  вариантов.  Можно  предлагать числовые математические выражения и буквенные (выражение с переменной),  при этом  буквам  придают  числовые  значения  и   находят   числовое   значение полученного выражения, например:

- найдите разность чисел 100 и 9.

- найдите значение выражения С – К, если С = 100, К = 9.

Выражения могут предлагаться в разной словесной форме:

- из 100 – 9; 100 минус 9

- уменьшаемое 100, вычитаемое 9, найдите разность

- найти разность чисел 100 и 9

- уменьшить 100 на 9 и т.д.

Эти формулировки использует не только учитель, но и ученики.

Выражения могут быть даны с ошибками, которые детям предстоит найти:

Задание 1. Найди ошибки в выражениях:



Выражения  могут  включать  одно  и  более  действий.  Выражения  с несколькими действиями могут включать  действия  одной  ступени  или  разных ступеней, например:

47 + 24 – 56

72 : 12 · 9

400 – 7 · 4 и др.

Могут быть со скобками или без скобок: (90 – 42) : 3, 90 – 42 : 3. Как  и  выражения в одно действие, выражения  в  несколько  действий  имеют  разную  словесную формулировку, например:

- из 90 вычесть частное чисел 42 и 3

- уменьшаемое 90, а вычитаемое выражено частным чисел 42 и 3.

Выражения могут быть заданы в разной области чисел:  с  однозначными числами

(7 – 4), с двузначными (70 – 40, 72 – 48), с трехзначными  (700 – 400,  720 – 480) и т.д., с натуральными числами и величинами (200 – 15, 2м – 15см).  Однако, как правило, приёмы устных  вычислений  должны  сводиться  к  действиям  над числами в пределах 100. Так, случай  вычитания  четырехзначных  чисел  7200 – 4800 сводится к вычитанию двузначных чисел (72сотни – 48сотен) и значит  его можно предлагать для устных вычислений.

Выражения можно давать и в форме таблицы:

Задание 2. Заполни таблицы:

Уменьшаемое

12

14

15

17

28

Вычитаемое

10

      10

10

10

10

       Разность












Так же такие задания могут быть представлены в виде раз личных «цепочек»:

Задание 3: Реши цепочки:




Основное значение заданий на нахождение значений выражений    выработать у учащихся твердые вычислительные навыки, а также они способствуют  усвоению вопросов теории арифметических действий.

Могут предлагаться задания, у которых уже дан знак отношения  и  одно  из выражений, а другое выражение надо составить или дополнить:

8 · (10 + 2)=8 · 10 + …

Выражения таких заданий могут включать различный числовой материал: однозначные, двузначные, трехзначные числа и величины. Выражения могут быть с разными действиями.

        Главная роль таких заданий – способствовать усвоению  теоретических знаний об арифметических  действиях,  их  свойствах,  о  равенствах,  о неравенствах и др. Также они помогают выработке вычислительных навыков.

7.                          
Комбинаторные задачи.


Комбинаторика - один из разделов современной математики.

Комбинаторные задачи служат средством развития мышления детей, воспитания у них умения применять полученные знания в различных ситуациях посредством выработки навыков и повторения пройденного. Умение выполнять разбиение множеств, составлять комбинации по определенным признакам и классифицировать лежит в основе разнообразных сфер человеческой деятельности.

Задание 1. При умножении двух однозначных чисел получилось число 16

Чему были равны множители?

Найди всевозможные решения.

Задание 2. На складе находилось 7 полных бочонков меда, 7 наполовину заполненных медом и 7 пустых бочонков. Как распределить все бочонки между тремя покупателями так, чтобы каждый получил одинаковое количество меда и бочонков. (мед не нужно перекладывать из одного бочонка в другой.)

Использование на уроках математики заданий различного типа возбуждает у детей интерес, стимулирует их к активной деятельности и позволяет более прочно сформировать вычислительные навыки.
Глава 2. Организация практической работы по формированию вычислительных навыков у учащихся 2  класса на уроках математики.

2.1. Изучение уровня сформированности вычислительных навыков у учащихся 2 класса.

Опытно-экспериментиальная работа проводилась в МОУ «Гимназия №13» г. Алексина, в 2 «А» классе. В ней принимали участие 17 человек.

Цель констатирующего этапа – определить уровень сформированности вычислительных навыков у детей младшего школьного возраста.

Задачи этапа:

 - определить критерии и показатели уровня сформированности вычислительных навыков у младших школьников;

 - подобрать диагностический инструментарий;

 - провести наблюдение за учащимися;

 - провести анализ полученных данных.

Важным условием диагностики уровня сформированности вычислительных навыков является определение критериев сформированности навыков и их показателей.

Для нашей работы в качестве таких критериев мы взяли объем (количество) и качество. Рассмотрим эти критерии и их показатели.

Таблица1

Диагностический инструментарий для определения уровня сформированности вычислительных навыков.

Критетии

Показатели

Диагностический инструментарий

Объем (количество)

Количество усвоенных вычислительных приемов

Самостоятельная работа;

наблюдение

Качество

а) осознанность выполнения операций

б)правильность (соответствие сформированных навыков учащихся требуемым нормам

Наблюдение
Самостоятельная работа

Диагностировались следующие вычислительные приемы:

                  - сложение двузначных чисел без перехода через разряд;

- вычитание двузначных чисел без перехода через разряд;

- сложение двузначных чисел с переходом через разряд;

- вычитание двузначных чисел с переходом через разряд;

- сложение трехзначных чисел без перехода через разряд;

-  вычитание трехзначных чисел без перехода через разряд.

Характеристика уровней:

Низкий уровень (0 – 13) – ученик часто неверно находит результат арифметических действий, неправильно выбирает и выполняет операции; ребенок не осознает порядок выполнения операций; количество усвоенных приемов – менее трех.

Средний уровень (14 – 21) – ребенок иногда допускает ошибки в промежуточных операциях; осознает, на основе каких знаний выбраны операции, но не может самостоятельно объяснить, почему решал так, а не иначе; количество усвоенных приемов – 3 – 4.

Высокий уровень (22 – 25) – ученик правильно находит результат арифметического действия над данными числами; осознает, на основе каких знаний выбраны операции, может объяснить решение примера. Количество усвоенных приемов – 5 – 6.

Для выявления уровня сформированности у учащихся вычислительных навыков были использованы методы исследования, выбор которых был  обусловлен поставленными задачами. Нами была разработана самостоятельная работа, направленная на изучение уровня сформированности вычислительных навыков и на выявление количества усвоенных приемов. Учитывая, что по результатам одной самостоятельной работы нельзя сделать конкретных выводов об уровне сформированности вычислительных навыков в экспериментальном классе, нами было проведено наблюдение, целью которого стало не только выявление количества и качества усвоенных приемов..

 Таблица 2

Примеры заданий для самостоятельной работы

Задания

Проверяемый вычислительный навык или прием

1.     
Сравни выражения не вычисляя их значения:


54 + 2 … 48 + 2             

89 – 9 …. 89 – 1               

234 + 48 … 48 + 234


Осознанность вычислительных действий (могут ли не вычисляя значение выражений дать верный ответ)

2.      Реши письменно примеры, подробно записывая ход своих рассуждений:

45 – 28                27 + 39              

67 – 29               45 + 47


Сложение и вычитание двузначных чисел с переходом через разряд

3.   Реши:

89 – 18                  81 + 26

385 – 314              884 + 111


 Сложение и вычитание двузначных и трехзначных чисел без перехода через разряд;


   4. От крышки стола отпилили угол. Сколько осталось углов?


Осознанность вычислительных действий



За задание №1 учащиеся могли получить 3 балла (по 1 баллу за каждый пример). Задание №2 оценивалось в 8 баллов (по 2 балла за правильно решенное выражение). За задание №3 учащиеся максимально могли получить 8 балла (2 балла за решенное выражение). За задание №4 давалось 2 балла. Таким образом, максимально учащиеся могли заработать 21 балл. За вычислительные ошибки снималось по 1 баллу.

Полученные  результаты оценивалась по трем уровням: высокий (19 – 21 баллов), средний (11 – 18 баллов), низкий (0-10 баллов).

Таблица 3.

Результаты самостоятельной работы.

Ф.И.

Осознанность вычислительных действий (макс. 5)


Сложение двузначных чисел без перехода через разряд

(макс. 2)

Вычитание двузначных чисел без перехода через разряд

(макс. 2)

Сложение двузначных чисел с переходом через разряд (макс. 4)

Вычитание двузначных чисел с переходом через разряд

(макс. 4)

Сложение трехзначных чисел без перехода через разряд

(макс. 2)

Вычитание трехзначных чиселбез перехода через разряд

(макс. 2)

Общий балл

макс. 21)

Виктория Б.

5

2

2

4

4

2

2

21

Роман. В.

1

2

0

2

0

2

0

7

Марина Г.

3

2

2

2

0

2

2

     13

Кристина Г.

5

2

2

4

2

2

2

19

Кирилл Е.

4

2

2

3

3

2

2

18

Андрей З.

3

2

2

2

2

2

0

     13

Полина И.

5

2

2

4

4

2

2

     21

Кирилл К.

3

2

0

3

0

2

2

     12

Антон К.

3

2

2

2

2

2

2

     14

Дарья К.

5

2

2

4

4

2

2

     21

София Л.

1

2

0

2

0

0

0

5

Яна М.

4

2

3

3

2

2

2

18

Никита Н.

5

2

2

3

0

2

2

16

Илья С.

5

2

2

2

0

2

2

15

Анна С.

3

2

2

4

2

2

2

     17

Диана Т.

5

2

2

2

2

2

2

     17

Валерия Ч.

4

2

2

3

3

2

2

     18

        В ходе проверки самостоятельных работ выяснилось, что с заданием №1 справились почти все учащиеся, кроме Софии Л. и Романа В., которые при выполнении №1 нарушили правило выполнения задания, т.е. они дали верный ответ, предварительно вычислив значения выражений. С заданием №4 не справились семеро учеников – Марина Г., Кирилл К., Антон К., София Л., Роман В., Анна С., Андрей З. Остальные учащиеся правильно выполнили №4. При выполнении задания №2 большинство детей допускали ошибки в примерах на вычитание двузначных чисел с переходом через разряд. С этим заданием полностью справились только трое учеников – Полина И., Дарья К. и Виктория Б. Восемь учащихся допускали вычислительные ошибки при вычитании двузначных чисел без перехода через разряд (снимался 1 балл за ошибку). Остальные учащиеся не усвоили правило вычитания суммы из числа. При выполнении примеров на сложение двузначных чисел с переходом через разряд ошибки допускали София Л., Роман В., Андрей З, Кирилл К., Марина Г., Валерия Ч., Антон К., Никита Н., Диана Т. и Илья С. С заданием №3 правильно справились почти все учащиеся. Вычислительные ошибки допускали София Л., Роман В., Андрей З.

Таким образом, по результатам самостоятельной работы низкий уровень сформированности вычислительных навыков наблюдался у Софии Л. и  Романа В., высокий уровень выявился у четверых  учащихся – Виктория Б., Кристина Г., Полина И. и Дарья К. У остальных учащихся – средний уровень сформированности вычислительных навыков. 

Кроме самостоятельной работы, нами использовался метод наблюдения. Его целью было пронаблюдать за работай детей у доски, их рассуждениями. Максимально учащиеся могли получить 4 балла. Наблюдение проводилось на уроках математики с 10 ноября по 1 декабря 2010 года.

Таблица 4.

Протокол наблюдения



п/п

ФИ детей

Параметры наблюдения

Общий балл

Правильно выполняет вычисления

Объясняет решение примера

Не всегда может объяснить выбор операции

Допускает ошибки в вычислениях

Вычисления выполняет неправильно

Не может объяснить выбор операции

1

Виктория Б.

2

2





4

2

Роман В.



1

1



2

3

Марина Г.


2


1



3

4

Кристина Г.

2

2





4


5

Кирилл Е.


2


1



3

6

Андрей З.



         1

1



2

7

Полина И.

2

2





4

8

Кирилл К.



          1

1



2

9

Антон К.



         1

1



2

10

Дарья К.

2

2





4

11

София Л.




1


0

1

12

Яна М.


2


1



3

13

Никита Н.


2


1



3

14

Илья С.



         1

1



2

15

Анна С.


2


1



3

16

Диана Т.


2


       1



3

17

Валерия Ч.


2


        1



3

0 – показатель отсутствует;

1 – 2  – показатель присутствует частично;

3 – 4  – показатель присутствует.

В результате наблюдения за работой учащихся на уроке математики выяснилось, что показатель сформированности вычислительных навыков присутствует  у семерых учащихся (высокий уровень) – Виктория Б., Кирилла Е., Кристина Г., Полина И., Дарья К., Диана Т. И Валерия Ч. Эти учащиеся правильно выполняют вычисления, могут объяснить ход своих рассуждений. Показатель сформированности вычислительных навыков отсутствует только у Софии Л. (низкий уровень) – она постоянно допускает вычислительные ошибки, связанные почти со всеми вычислительными приемами (исключение составляет только прием сложения без перехода через разряд), не может объяснить выбор вычислительной операции, даже если выбор правильный.  У остальных учащихся показатель сформированности навыков присутствует частично (средний уровень). Большинство учащихся – пять человек – правильно объясняют выбор вычислительной операции, но допускают вычислительные ошибки, чаще всего связанные с приемами сложения и вычитания двузначных чисел с переходом через разряд.  Четверо учащихся – Андрей З., Кирилл К., Антон К. и Илья С. – часто допускают вычислительные ошибки, связанные со сложением и вычитанием с переходом через разряд и не всегда могут объяснить выбор вычислительной операции.

Таким образом, на констатирующем этапе эксперимента, мы установили, что у двоих учащихся класса низкий уровень сформированности знаний, у одиннадцати учащихся –  средний уровень и только у четверых  вычислительный навык сформирован на высоком уровне.

Результаты покажем в таблице 5 и на рисунке 1.

Таблица 5

№ п/п

Ф.И.

Общее количество баллов

Уровень

1

Виктория Б.

25

Высокий

2

Роман В.

9

Низкий

3

Марина Г.

16

Средний

4

Кристина Г.

23

Высокий

5

Кирилл Е.

21

Средний

6

Андрей З.

15

Средний

7

Полина И.

25

Высокий

8

Кирилл К.

14

Средний

9

Антон К.

16

Средний

10

Дарья К.

25

Высокий

11

София Л.

6

Низкий

12

Яна М.

21

                   Средний

13

Никита Н.

19

Средний

14

Илья С.

17

Средний

15

Анна С.

19

Средний

16

Диана Т.

20

Средний

17

Валерия Ч.

21

Средний

Рисунок 1




Из диаграммы видно, что детей с низким уровнем сформированности вычислительных навыков- 12 %, со среднем уровнем - 65 %, с высоким - 24%.


Таким образом, на основе полученных результатов, можем сделать вывод о том, что в данном классе сформированность вычислительных навыков на среднем уровне. Большинство учащихся допускают в вычислениях ошибки, связанные со сложением и вычитанием с переходом через разряд, а так же не всегда могут объяснить решение примера. Осознанность вычислительных действий сформирована в достаточной степени – большинство учащихся данного  класса могут объяснить выбор операций при решении примера, так же почти все дети могут сравнивать выражения с одинаковым слагаемым, уменьшаемым или вычитаемым не вычисляя их значение. Всего шестеро учащихся  класса выполняют вычисления правильно, без ошибок, что говорит о необходимости совершенствования вычислительных навыков. Поэтому необходимо разработать совокупность заданий, направленных на совершенствование и развитее необходимых вычислительных навыков, и включить их в учебный процесс 2 класса.

2.2. Реализация заданий, направленных на формирование вычислительных навыков у младших школьников.

На основе результатов, полученных в ходе констатирующего эксперимента, нами была разработана совокупность заданий, направленных на улучшение качества сформированных знаний и увеличение количества усвоенных вычислительных приемов. Задания включались в уроки математики на различных этапах их проведения.

Таблица 6

Программа включения заданий на формирование вычислительных навыков в уроки математики

Тема урока

Вид задания

Формируемый вычислительный прием

Сложение трехзначных чисел с переходом через разряд

Нахождение значений выражений. Задания на классификацию

Сложение  и вычитание двузначных чисел без перехода через разряд и с переходом

Вычитание трехзначных чисел с переходом через разряд

Нахождение значений выражений и сравнений этих значений

Вычитание двузначных чисел без перехода через разряд и с переходом.

Обратные операции

Нахождение значения выражений

Многовариантные задания

Сложение двузначных чисел с переходом через разряд и без перехода

Осознанность

Длина ломаной. Периметр

Сравнение выражений с переменной.

Нахождение значения выражений по цепочке.

Осознанность вычислительных действий.

Сложение с переходом через разряд и без перехода.

Порядок выполнения действий в выражениях

Нахождение значения выражений

Сложение и вычитание двузначных чисел с переходом через разряд

Виды алгоритмов.

Нахождение значения выражений (по алгоритму)

Сложение двузначных чисел с переходом через разряд и без перехода

Угол. Прямой угол.

Нахождение значений выражений с элементом занимательности

Сложение и вычитание с переходом через разряд

Свойства сложения

Нахождение значений выражений с элементом занимательности

Сложение двузначных чисел с переходом через разряд.

Сложение двузначных и трехзначных чисел без перехода через разряд

Осознанность

Вычитание суммы из числа

Нахождение значения выражений

Вычитание двузначных чисел из трехзначных с переходом через разряд.

Сложение двузначных чисел с переходом через разряд

Вычитание числа из суммы.

Задания с многовариантными решениями  с элементом занимательности

Сложение и вычитание двузначных чисел с переходом через разряд

Приведем примеры включения заданий в уроки математики:

На уроке по теме «Сложение трехзначных чисел с переходом через разряд» на этапе актуализации знаний учитель предлагает учащимся следующее задание:

      Найдите значение выражений:

34 + 12               84 + 15           56 + 27        67 + 32

48 – 29                23 – 14           92 – 35        75 - 38

  Разделите данные выражения на две группы. По какому признаку вы разделили данные выражения?

При разделении данных выражений, учащиеся будут выделять вычислительные приемы, на которых они основаны. При этом они повторяют приемы сложения и вычитания с переходом через разряд и без перехода и осознают правила, на которых они основаны. Выполняя такие задания, дети определяют, какие из них относятся к группе вычислений с переходом через разряд, а какие без перехода. Такие задания подготавливают детей к более сложной работе (сложение трехзначных чисел с переходом через разряд).

На уроке по теме «Обратные операции» на этапе закрепления учитель предлагает учащимся следующее задание:

Найдите значение выражений.

42 + 30                     57 + 12                  67 + 19              24 + 78

К каждому равенству напишите все возможные равенства с обратным действием. Какое это действие?

Выполняя такое задание, у детей закрепляется вычислительный навык сложения с переходом через разряд и без перехода. Так же формируется осознанность, т.к. при выполнении такого задания, детям нужно записать выражения с обратными действиями, что требует от детей понимания взаимосвязи между компонентами и результатом действий сложения и вычитания.

       На уроке по теме «Виды алгоритмов» на этапе изучения нового материала учитель включает следующие задания:

Пользуясь алгоритмом сложения двузначных чисел, вычисли суммы:

25 + 32 + 14               16 + 28 + 50

43 + 34 + 70               81 + 39 + 87

Выполняя подобное задание, дети отрабатывают прием сложения двузначных чисел с переходом через разряд и без перехода. Действуя строго по алгоритму, дети более прочно усваивают данные приемы, т.к. неверные вычисления приводят к неверному решению алгоритма, и значит решать придется сначала. Многократное повторение вычислительных действий способствует более прочному усвоению вычислительного приема.

На уроке по теме «Свойства сложения» на этапе работы по новой теме учитель предлагает детям найти равные выражения и вычислить их значение удобным способом.

           

Какие свойства сложения были использованы для упрощения вычислений?

При работе с подобным заданием перед детьми стоит не только задача вычислить значение выражений, но и упростить процесс вычислений, используя свойства сложений, которые лежат в основе вычислительных приемов сложения с переходом через разряд и без перехода. Дети повторяют и закрепляют эти приемы. В результате многократного использования данных приемов, дети более прочно и осознано усваивают их.

На уроке по теме «Вычитание числа из суммы» на этапе закрепления учитель может предложить детям поиграть в «Лабиринт». Детям предлагается найти все возможные варианты «выхода» из лабиринта.



Выполнение этого задания требует от детей внимательных и осознанных вычислений. Т. к. решений может быть несколько, детям предстоит не один раз пройти «лабиринты», находя то верные, то неверные пути, что приводит к закреплению приемов сложения  и вычитания с переходом через разряд и без перехода.

Включение подобных заданий в уроки математики, на разных этапах их проведения, позволяет сформировать у учащихся более прочные и осознанные вычислительные навыки. Частое повторение одного и того же вычислительного приема способствует улучшению качества и количества сформированных вычислительных приемов.
Заключение.

Формирование вычислительных навыков - одна из главных задач, которая должна быть решена в ходе обучения детей в начальной школе, поскольку вычислительные навыки необходимы при изучении арифметических действий. Школа всегда уделяла большое внимание проблеме формирования прочных и осознанных вычислительных умений и навыков, так как содержательную основу начального математического образования оставляют понятия числа и четырех арифметический действий.  Программы по математике включают большой интересный материал по проблеме формирования прочных навыков вычислений, однако, по-прежнему некоторые вопросы понимания  и отработки навыка арифметических вычислений  являются для младших школьников довольно сложными.

В процессе работы по теме «Формирование вычислительных навыков у младших школьников на уроках математики» нами было охарактеризовано понятии «вычислительный навык» и выделены этапы его формирования (подготовка к введению нового приема, ознакомление с вычислительным приемом, закрепление знаний приема и выработка вычислительного навыка). Так же нами были выбраны и рассмотрены типы заданий, направленных на формирование вычислительных навыков (задания с использованием сравнений, задания на классификацию и систематизацию знаний, задания на выявление общего и различного, задания с многовариантными решениями, задания с элементами занимательности, комбинаторные задачи). Нами было отмечено, что использование выбранных типов заданий на уроках математики возбуждает у детей интерес к предмету, стимулирует их к активной деятельности и позволяет более прочно сформировать вычислительные навыки.

В ходе проведенной нами опытно-экспериментальной работы по изучению уровня сформированности вычислительных навыков у учащихся 2 «А» класса, мы выяснили, что вычислительные навыки в экспериментальном классе сформированы на среднем уровне, а так же, что большинство детей способны объяснить логику выполнения той или иной операции и обосновать свой выбор вычислительного приема. Однако, нами было установлено, что многие дети довольно часто допускают ошибки при вычислении в приемах на сложение и вычитание с переходом через разряд.

Основываясь на результатах, полученных в ходе проведения экспериментальной работы, нами была разработана система заданий, способствующих совершенствованию вычислительных навыков, а так же направленных на увеличение количества сформированных вычислительных приемов. Эти задания включались в уроки математики на различных этапах их проведения.

Результатом такой работы стало формирование у учащихся экспериментального класса более прочных и осознанных вычислительных навыков. так же эти задания способствовали увеличению количества сформированных вычислительных приемов.

Таким образом, в процессе выполнения работы намеченная программа исследования     была выполнена, поставленные задачи решены, цель исследования, состоявшая в обосновании выбора педагогических условий, способствующих формированию литературоведческих знаний о былинах у младших школьников, достигнута.
Список литературы.

1.      Актуальные проблемы методики обучения математике в начальных классах / Под ред. М.И.Моро, А.М. Пышкало. — М.: Педагогика, 1977. — 248 с.

   2. Аргинская, И.И., Ивановская, Е.И Математика 2 класс. Часть 1. – С.:,  Издательство                       «Корпорация Федоров», 2010 – 128 с.


3.      Бадма – Гаряева, М.В. Развитие вычислительных навыкову учащихся 1 класса // Начальная школа – 1999 –  №11 – с.21 – 23

4.      Бантова, М. А., Бельтюкова, Г. В. Методика преподавания математики в нач. классах: Учеб. пособие для уч-ся школ. отд-ний пед. уч-щ / Под ред. М. А. Бантовой. - 3-е изд. - М.: Просвещение,1984. - 335 с.

5.      Бантова, М. А. Система формирования вычислительных навыков // Начальная

      школа – 1993 - №11 – с. 38 – 43

6.      Бахир, В. К. Развивающее обучение // Начальная школа – 1997 - №5    с. 26 – 31

7.      Давыдов, В. В. Проблемы развивающего обучения:  опыт  теоретического  и

      экспериментального психологического исследования.    М.:  Педагогика, 1986 – 239 с.

8.      Давыдов, В. В. Содержание и строение учебной деятельности школьников. – М., 1978 – 321 с.

9.      Давыдов, В.В. Теория развивающего обучения. – М.: ИНТОР, 1996 – 544 с.

10.  Давыдов, В. В.  Что такое учебная деятельность  //  Начальная  школа  – 1999 - №7 – с. 12 – 18

11.  Зимняя, И. А. Педагогическая психология. –  Ростов   на  Дону:  Феникс, 1997 – 476 с.

12.  Ильина, О. Н. Проблема формирования вычислительных навыков младших школьников в современных условиях // Интернет журнал СахГУ «Наука, образование, общество». – 2006. - 3 февраля. URL статьи: http://journal.sakhgu.ru.

13.   Истомина, Н.Б. Методика обучения математике в начальных классах. – М., 1997

14.   Клецкина, А.А. Организация вычислительной деятельности младших школьников в системе развивающего обучения // Автореферат диссертации  на соискание ученой степени канд. пед. наук. — М., 2001. — 20 с.

15.  Лавлинская, Е.Ю. Методика формирования вычислительного навыка по системе общего развития Занкова Л.В. – В.: Панорама, 2006.- с.176.

16.   Мельникова, Н. А. Развитие вычислительной культуры учащихся // Математика в школе.- 2001.- №18.- С. 9-14.

17.   Менчинская, Н. А. Моро М. И. Вопросы методики и психологии обучения арифметики в начальных классах.- М.: Просвещение, 1965.- 224 с.

18.   Методика начального обучения математике: Учеб. пособие для студентов пед. ин-тов по спец-ти «Педагогика и методика начального обучения» // Под ред. Л. Н. Скаткина. –  М.: просвещение, 1972.- 320с.

19.  Моро, М.И., Бантова, М.А., Бельтюкова, Г.В.  Математика 2 класс. В 2 ч. Ч.1 – М.: Просвещение, 2009 – 96 с.: ил.

20.  Моро, М.И., Бантова, М.А., Бельтюкова, Г.В.  Математика 2 класс. В 2 ч. Ч.1 – М.: Просвещение, 2009 – 96 с: ил.

21.  Петерсон, Л.Г. Математика. 2 класс. Часть 1. – М.: Издательство «Юнента», 2005. 80 с.: ил.

22.  Петерсон, Л.Г. Математика. 2 класс. Часть 2. – М.: Издательство «Юнента», 2005. 112 с.: ил.

23.  Реализация  межпредметных  и  внутрипредметных  связей  в  обучении  и воспитании младших школьников: Межвузовский сборник научных трудов. 

      Л., 1984 – 132 с.

24.  Репкина,  Г.В.  Заика  Е.В.  Оценка  уровня  сформированности  учебной деятельности. Томск: Пеленг, 1993 – 62 с.

25.  Федотова, Л. Повышение вычислительной культуры учащихся // Математика в школе. - 2004. - №35. - С. 3-7.

26.  Федотова, Л. Повышение вычислительной культуры учащихся // Математика в школе. - 2004. - №43. - С. 2-5.
ПРИЛОЖЕНИЕ
 

1. Реферат Конфликты - понятие и сущность
2. Реферат Особенности рынка ссудного капитала
3. Диплом Дослідження особливостей залежності заряду перемикання від прямого струму для епітаксіальних
4. Контрольная работа Безопасность сырья и продуктов
5. Курсовая Планирование и оптимизация оборотного капитала
6. Кодекс и Законы Визитные картички как средство делового общения
7. Курсовая Аналіз забезпечення сільськогосподарських підприємств Запорізької області кредитними ресурсами
8. Диплом на тему Комплекс программного обеспечения для поддержки принятия решения по подбору персонала
9. Сочинение на тему Грибоедов а. с. - Москва в изображении л. с. грибоедова
10. Реферат на тему Alteration Of The Vision Essay Research Paper