Лекция Лекция по физике
Работа добавлена на сайт bukvasha.net: 2015-10-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Лекция 11
8.6.5 Интерферометр Фабри-Перо.
Угловое распределение амплитуды проходящей волны
d q q 1 2 3 4 |
На своем пути каждый последующий из пронумерованных лучей испытывает два дополнительных отражения от внутренних поверхностей пластин. Стало быть, их интенсивности различаются в r
2 раз. Интенсивность пропорциональна квадрату амплитуды и поэтому
; .
Далее, разность оптических путей соседних лучей равняется и разность фаз их колебаний в удаленной точке наблюдения
.
Таким образом, для амплитуды суммарных колебаний мы имеем выражение:
.
Начальную фазу колебаний первого луча мы положили равной нулю.
Для сложения этих колебаний перейдем к комплексным переменным - добавим мнимую часть, памятуя, что физический смысл имеет лишь реальная часть суммы, которую мы получим:
.
Итак, нам надо найти сумму членов бесконечной геометрической прогрессии, знаменатель которой . Таким образом,
.
Амплитуда суммарных колебаний равна модулю комплексного значения :
.
Воспользовавшись формулой Эйлера, произведем перемножение скобок под квадратным корнем в знаменателе:
.
r : E S 0,05 0,25 0,75 0 q |
Вспомним, что
|
.
Таким образом,
.
Как и ожидалось, с увеличением коэффициента отражения глубина минимумов увеличивается. Одновременно уменьшается ширина интерференционных полос. Предвидеть этот результат было не так просто.
9. Дифракция Фраунгофура
Дифракция рассматривает процессы отклонения направления распространения света от прямолинейного при встрече с некоторыми препятствиями или при отражении от них. В случае дифракции Фраунгофера рассматривается падение на препятствие плоской волны (бесконечно удаленный источник света) и подразумевается, что зона наблюдения удалена от препятствия на достаточно большое расстояние (находится на бесконечности). Коротко говоря, это “дифракция в параллельных лучах”.
Как Вы увидите, основные задачи дифракции Фраунгофера мы, собственно, уже решили. Просто мы говорили о волнах вообще, а словом дифракция обычно обозначают именно оптические явления, поведение в том или ином случае световой (электромагнитной) волны.
9.1. Дифракция на щели
Ранее мы получили такое выражение для углового распределения амплитуды от системы точечных источников, от “цепочки” источников длиной b:
.
Ввиду особой важности да и сложности понимания этого результата получим его еще раз - другим способом.
X b 0 q |
В связи с рассмотрением явлений дифракции формулируется принцип Гюйгенса-Френеля. Согласно этому принципу элементарный участок волнового фронта считается точечным источником вторичных волн, огибающая которого и является “новым” фронтом волны. В случае дифракции на щели в качестве таких источников выбираются узкие полоски (вдоль щели), которые являются источниками цилиндрических когерентных волн. Электромагнитные колебания в удаленной зоне наблюдения подсчитывается как сумма колебаний волн, пришедших от таких источников.
На этот раз мы проведем их сложение с помощью векторной диаграммы. Амплитуда вторичной волны пропорциональна ширине элементарной полоски: , а начальная фаза колебаний зависит от координаты выбранной полоски: . Таким образом, разность фаз колебаний от соседних элементарных полосок шириной D
x составит . На такой угол будут повернуты по отношению друг к другу соответствующие векторы на фазовой диаграмме.
E S R D j j D j D E0 |
При стремлении ширины полоски D
x к нулю образованная элементарными векторами ломаная превращается в дугу окружности радиуса R, угловой размер дуги
.
При изменении угла q угловые размеры дуги изменяется. Но длина дуги, равная сумме модулей (длин) элементарных векторов, считается постоянной:
.
Это позволяет нам определить радиус дуги и амплитуду суммарных колебаний (см. рисунок) при произвольном q
:
; .
Как видите, мы получили то же выражение, что и раньше. Но векторная диаграмма позволяет нам нагляднее представить причины обращения амплитуды суммарных колебаний в нуль и достижение максимумов.
При j
=
2
p
дуга превращается в окружность, амплитуда суммарных колебаний равна нулю. Максимумы достигаются при j
=
0 и, (приблизительно) при j
=
(
2k
+
1
)
p.
1 2 E S 3 E S = E0 E S = 0 |
Эти ситуации показаны на рисунке. При q
=0 все элементарные векторы лежат на прямой, амплитуда суммарных колебаний максимальна и равна E0. По мере увеличения угла наблюдения q и, соответственно, угла j амплитуда колебаний уменьшается и при j
=
2
p
обращается в нуль. Затем дуга скручивается в спираль и максимум достигается приблизительно в тот момент, когда она представляет собой полторы окружности (2, j
=
3
p). При этом амплитуда колебаний равна примерно диаметру окружности: . Затем спираль становится “двойной окружностью”, амплитуда колебаний снова обращается в нуль (3) и т.д.
9.2. Дифракционная решетка
b d q |
Такая решетка состоит из большого числа щелей шириной b, расположенных на расстоянии d друг от друга. Разумеется, b<d. Каждая щель может рассматриваться как источник цилиндрических волн, вызывающих электромагнитные колебания в некоторой удаленной зоне наблюдения. В этом случае оказывается справедливым результат, который мы получили для периодически расположенных точечных источников:
; .
|
|
E S 0 q E S 0 q |
Но этот результат мы получили для изотропных точечных источников, интенсивность излучения которых не зависит от направления. Теперь у нас источниками являются щели, у которых амплитуда волны существенно зависит от направления наблюдения. Поэтому в выражение для углового распределения амплитуды волны, рождаемой периодически расположенными источниками, надо вставить угловое распределение амплитуды волны самих источников, щелей:
.
Это довольно сложное выражение, но смысл его должен быть понятен. Он поясняется и рисунком. Вверху показано угловое распределение амплитуды волны, излучаемой изотропными источниками. Внизу - угловое распределение амплитуды после прохождени светом решетки. Там же показано угловое распределение амплитуды волны, излучаемой щелью. По рисунку можно оценить отношение ширины щели к периоду решетки b/d.
9.3. Дифракционная решетка как спектральный прибор
Очевидно, что дифракционная решетка может быть использована для разворачивания падающего на нее света в спектр, когда угловое положение максимума зависит от длины волны l. При q
=
0
наблюдается максимум для всех длин волн. Но (угловые) положения максимумов k-того порядка при k>1 различны для разных длин волн. Это следует из условия максимума . То, как “быстро” изменяется угол q, под которым наблюдается максимум, при изменении длины волны определяет угловую дисперсию решетки (это - определение термина)
.
Как видно, дисперсия возрастает с ростом порядка максимума k и с уменьшением периода решетки d. Обратите внимание, что в знаменателе стоит , который уменьшается с увеличением угла.
Естественно, чем больше угловая дисперсия, тем успешнее могут быть разрешены близкие по длине линии спектра, наблюдаться как отдельные линии. Попробуем разобраться с вопросом разрешения линий детальнее.
|
l d l q ( l ) d q |
|
Пусть в спектре имеется пара линий с близкими длинами волн l
1
и l
2
, разность длин волн d
l
=
l
2
-
l
1. Любая линия обладает некоторой “естественной” шириной, которая предполагается меньше разности длин вол самих линий: d
l
1
»
d
l
2
<
d
l.
Но даже если бы ширина каждой линии была равна нулю, при наблюдении излучения после дифракционной решетки каждой линии будет отвечать некоторая полоса (на рисунке внизу). Она определяется свойствами самой решетки и для разрешения близких по длине волны линий эта ширина должна быть меньше или равна .
В физике вводится величина, называемая разрешающей способностью:
.
В этом выражении d
l означает минимальную разность длин волн линий, которые могут наблюдаться в спектре как отдельные линии, и величина R является характеристикой спектрального прибора (например, дифракционной решетки).
Подсчитаем разрешающую способность дифракционной решетки. Для этой цели используется критерий Рэлея: линии считаются разрешенными, наблюдаются как отдельные линии, если при разложении в спектр максимум одной линии совпадает с минимумом другой. Ширина дифракционной полосы (отвечающей определенной линии) определяется положением ближайших к максимуму минимумов. Положение минимумов, в свою очередь, определяется выражениями
; k’¹
0,N,2N,...
Если k’ кратно количеству щелей N, то наблюдается максимум - знаменатель второго сомножителя выражения для распределения амплитуды колебаний в удаленной зоне наблюдения обращается в нуль:
.
Таким образом, максимум первой волны наблюдается при условии . Потребуем, чтобы при этом же угле наблюдался минимум второй волны:
;
.
Считая, что и поэтому пренебреая последним слагаемым в выписанном выражении, получаем:
; .
Таким образом, разрешающая способность тем выше, чем больше порядок интерференционного максимума, и чем больше количество щелей решетки.