Лекция

Лекция Техническая теория. Специфика технического и технологического знания

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 13.1.2025





Лекция 6

Техническая теория. Специфика технического и технологического знания

ПЛАН

1.     Проблема соотношения естественных и технических наук.

2.     Технические науки и их специфика. Фундаментальные и прикладные исследования в технических науках.

3.     Структура технической теории и специфика технического знания

1. Проблема соотношения естественных и технических наук

В современной литературе по философии техники можно выделить следующие основные подходы к решению проблемы изменения соотношения науки и техники:

(1) техника рассматривается как прикладная наука;

(2) процессы развития науки и техники рассматриваются как автономные, но скоординированные процессы;

(3) современная наук рассматривается в ее ориентации на развитие техники.

Первоначально, с момента возникновения техники, в узком значении этого термина, - техника действительно во многом действительно выполняла функцию применения знаний, открытых в науке. Однако, со временем, по мере накопления собственно технических знаний, техника и технические науки образовали собственную сферу, отличающуюся от научной. Эта сфера получила такое быстрое развитие, что иногда действительно создается впечатление, что современная наука – служит технике. Однако наиболее взвешенный подход состоит в выделении обеих областей деятельности – научной и технической – и в исследовании их взаимовлияний. Иногда считают, что главное различие между наукой и техникой - лишь в широте кругозора и в степени общности проблем: технические проблемы более узки и более специфичны. Однако в действительности наука и техника составляют различные сообщества, каждое из которых различно осознает свои цели и систему ценностей. Современная техника немыслима без глубоких теоретических исследований, которые проводятся сегодня не только в естественных, но и в особых - технических - науках.

Если вплоть до конца XIX века регулярного применения научных знаний в технической практике не было, то это характерно для технических наук сегодня.Начиная с  XIX века наблюдается "сциентизация техники" сопровождающаяся "технизацией науки". В целом выделяют следующие этапы взаимодействия науки и техники, приведшие к развитию технических наук:

- В первый период (донаучный) последовательно формируются три типа технических знаний: практико-методические, технологические и конструктивно-технические;

- Во втором периоде происходит зарождение технических наук (со второй половины XVIII в. до 70-х гг. XIX в.) происходит, во-первых, формирование научно-технических знаний на основе использования в инженерной практике знаний естественных наук и, во-вторых, появление первых технических наук;

- Третий период - классический (до середины XIX века) характеризуется построением ряда фундаментальных технических теорий;

- Для четвертого этапа (настоящее время) характерно осуществление комплексных исследований, интеграция технических наук не только с естественными, но и с общественными науками.
2.    
Технические науки и их специфика. Фундаментальные и прикладные исследования в технических науках


Выявление специфики технических наук обычно осуществляется на основе их сопоставления с другими науками. К настоящему времени чаще всего выделяются естественные, гуманитарные, математические и технические науки, рассматриваемые как равноправные партнеры. Наиболее тесная связь наблюдается между техническими и естественными науками. Каждая техническая наука - это отдельная и относительно автономная дисциплина, обладающая рядом особенностей. Технические науки - часть науки и, хотя они не должны далеко отрываться от технической практики, не совпадают с ней. Техническая наука обслуживает технику, но является прежде всего наукой, т.е. направлена на получение объективного, поддающегося социальной трансляции знания.

Действительно, сегодня никого не удивит тот факт, что "целевые исследования, которые проводятся в промышленных лабораториях исследователями, получившими инженерное образование, приводят к важным научным прорывам или что ученые, работающие в университетах или академических центрах, приходят к важным технологическим открытиям". Поэтому технические науки должны в полной мере рассматриваться как самостоятельные научные дисциплины, наряду с общественными, естественными и математическими науками. Вместе с тем они существенно отличаются от последних по специфике своей связи с техникой.

Технические и естественные науки имеют одну и ту же предметную область инструментально измеримых явлений. Хотя они могут исследовать одни и те же объекты, но проводят исследование этих объектов различным образом.

Технические явления в экспериментальном оборудовании естественных наук играют решающую роль, а большинство физических экспериментов является искусственно созданными ситуациями. Объекты технических наук также представляют собой своеобразный синтез "естественного" и "искусственного". Искусственность объектов технических наук заключается в том, что они являются продуктами сознательной целенаправленной человеческой деятельности. Их естественность обнаруживается прежде всего в том, что все искусственные объекты в конечном итоге создаются из естественного (природного) материала. Естественнонаучные эксперименты являются артефактами, а технические процессы - фактически видоизмененными природными процессами. Осуществление эксперимента - это деятельность по производству технических эффектов и может быть отчасти квалифицирована как инженерная, т.е. как конструирование машин, как попытка создать искусственные процессы и состояния, однако с целью получения новых научных знаний о природе или подтверждения научных законов, а не исследования закономерностей функционирования и создания самих технических устройств.

Технические науки к началу ХХ столетия составили сложную иерархическую систему знаний - от весьма систематических наук до собрания правил в инженерных руководствах. К началу ХХ столетия технические науки, выросшие из практики, приняли качество подлинной науки, признаками которой являются систематическая организация знаний, опора на эксперимент и построение математизированных теорий. В технических науках появились также особые фундаментальные исследования.

Таким образом, естественные и технические науки - равноправные партнеры. Они тесно связаны как в генетическом аспекте, так и в процессах своего функционирования. Именно из естественных наук в технические были транслированы первые исходные теоретические положения, способы представления объектов исследования и проектирования, основные понятия, а также был заимствован самый идеал научности, установка на теоретическую организацию научно-технических знаний, на построение идеальных моделей, математизацию. В то же время нельзя не видеть, что в технических науках все заимствованные из естествознания элементы претерпели существенную трансформацию, в результате чего и возник новый тип организации теоретического знания. Кроме того, технические науки со своей стороны в значительной степени стимулируют развитие естественных наук, оказывая на них обратное воздействие.

Однако сегодня такой констатации уже недостаточно. Для определения специфики технического знания и технических наук необходимо анализировать их строение. В настоящее время научно-технические дисциплины представляют собой широкий спектр различных дисциплин - от самых абстрактных до весьма специализированных, которые ориентируются на использование знаний не только естественных наук (физики, химии, биологии и т.д.), но и общественных (например, экономики, социологии, психологии и т.п.). Относительно некоторых научно-технических дисциплин вообще трудно сказать, принадлежат ли они к чисто техническим наукам или представляют какое-то новое, более сложное единство науки и техники. Кроме того, некоторые части технических наук могут иметь характер фундаментального, а другие - прикладного исследования.

Прикладное исследование - это такое исследование, результаты которого адресованы производителям и заказчикам и которое направляется нуждами или желаниями этих клиентов, фундаментальное - адресовано другим членам научного сообщества. Современная техника является не только применением существующего научного знания, но имеет творческую компоненту. Поэтому в методологическом плане исследование в технической науке не очень сильно отличается от общенаучного. Для современной инженерной деятельности требуются не только краткосрочные исследования, направленные на решение специальных задач, но и широкая долговременная программа фундаментальных исследований в лабораториях и институтах, специально предназначенных для развития технических наук. В то же время современные фундаментальные исследования в технических науках более тесно связаны с приложениями.

Для современного этапа развития науки и техники характерно использование методов фундаментальных исследований для решения прикладных проблем. Тот факт, что исследование является фундаментальным, еще не означает, что его результаты неутилитарны. Работа же, направленная на прикладные цели, может быть весьма фундаментальной. Критериями их разделения являются в основном временной фактор и степень общности. Вполне правомерно сегодня говорить и о фундаментальном промышленном исследовании.

В научно-технических дисциплинах необходимо четко различать исследования, включенные в непосредственную инженерную деятельность и теоретические исследования, которые мы будем далее называть технической теорией.

Наибольшее различие между физической и технической теориями заключается в характере идеализации: физик может сконцентрировать свое внимание на наиболее простых случаях (например, исключить трение, сопротивление жидкости и т.д.), но все это для технической теории должно приниматься ею во внимание. Таким образом, техническая теория имеет дело с более сложной реальностью, поскольку не может исключить сложное взаимодействие физических факторов, имеющих место в машине. Техническая теория является менее абстрактной и идеализированной, она более тесно связана с реальным миром инженерии.

Техническую теорию создает особый слой посредников - "ученые-инженеры" или "инженеры-ученые". Ибо для того, чтобы информация перешла от одного сообщества (ученых) к другому (инженеров), необходима ее серьезная переформулировка и развитие. Так, Максвелл был одним из тех ученых, которые сознательно пытались сделать вклад в технику (и он действительно оказал на нее большое влияние). Но потребовались почти столь же мощные творческие усилия британского инженера Хэвисайда, чтобы преобразовать электромагнитные уравнения Максвелла в такую форму, которая могла быть использована инженерами. Таким посредником был, например, шотландский ученый-инженер Рэнкин - ведущая фигура в создании термодинамики и прикладной механики, которому удалось связать практику построения паровых двигателей высокого давления с научными законами. Для такого рода двигателей закон Бойля-Мариотта в чистом виде не применим. Рэнкин доказал необходимость развития промежуточной формы знания - между физикой и техникой. Действия машины должны основываться на теоретических понятиях, а свойства материалов выбираться на основе твердо установленных экспериментальных данных.

Технические теории в свою очередь оказывают большое обратное влияние на физическую науку и даже в определенном смысле на всю физическую картину мира. Например, (по сути, - техническая) теория упругости была генетической основой модели эфира, а гидродинамика - вихревых теорий материи. Разделение исследований в технических науках на фундаментальные и прикладные позволяет выделить и рассматривать техническую теорию в качестве предмета особого философско-методологического анализа и перейти к изучению ее внутренней структуры.

За последние десятилетия возникло множество технических теорий, которые основываются не только на физике и могут быть названы абстрактными техническими теориями (например, системотехника, информатика или теория проектирования), для которых характерно включение в фундаментальные инженерные исследования общей методологии. Для трактовки отдельных сложных явлений в технических разработках могут быть привлечены часто совершенно различные, логически не связанные теории. Такие теоретические исследования становятся по самой своей сути комплексными и непосредственно выходят не только в сферу "природы", но и в сферу "культуры". "Необходимо брать в расчет не только взаимодействие технических разработок с экономическими факторами, но также связь техники с культурными традициями, а также психологическими, историческими и политическими факторами". Таким образом, мы попадаем в сферу анализа социального контекста научно-технических знаний.

3. Структура технической теории и специфика технического знания

Первые технические теории строились по образцу физических, в которых,  наряду с концептуальным и математическим аппаратом, важную роль играют теоретические схемы, образующие своеобразный "внутренний скелет" теории.

Теоретические схемы представляют собой совокупность абстрактных объектов, ориентированных, с одной стороны, на применение соответствующего математического аппарата, а с другой, - на мысленный эксперимент, т.е. на проектирование возможных экспериментальных ситуаций. Они представляют собой особые идеализированные представления (теоретические модели), которые часто  выражаются графически. Примером их могут быть электрические и магнитные силовые линии, введенные М.Фарадеем в качестве схемы электромагнитных взаимодействий. Г. Герц использовал и развил далее эту теоретическую схему Фарадея для осуществления и описания своих знаменитых опытов. Например, он построил изображения так называемого процесса "отшнуровывания" силовых линий вибратора, что стало решающим для решения проблемы передачи электромагнитных волн на расстояние и появления радиотехники, и анализировал распределение сил для различных моментов времени. Герц назвал такое изображение "наглядной картиной распределения силовых линий". Представители научного сообщества всегда имеют подобное идеализированное представление объекта исследования и постоянно мысленно оперируют с ним. В технической же теории такого рода графические изображения играют еще более существенную роль.

Теоретические схемы выражают особое видение мира под определенным углом зрения, заданным в данной теории. Эти схемы, с одной стороны, отражают интересующие данную теорию свойства и стороны реальных объектов, а с другой, - являются ее оперативными средствами для идеализированного представления этих объектов, которое может быть практически реализовано в эксперименте путем устранения побочных влияний техническим путем. Так, Галилей, проверяя закон свободного падения тел, выбрал для бросаемого шарика очень твердый материал, что позволяло практически пренебречь его деформацией. Стремясь устранить трение на наклонной плоскости, он оклеил ее отполированным пергаментом. В качестве теоретической схемы подобным образом технически изготовленный объект представлял собой наклонную плоскость, т.е. абстрактный объект, соответствующий некоторому классу реальных объектов, для которых можно пренебречь трением и упругой деформацией. Одновременно он представлял собой объект оперирования, замещающий в определенном отношении реальный объект, с которым осуществлялись различные математические действия и преобразования.

Таким образом, абстрактные объекты, входящие в состав теоретических схем математизированных теорий представляют собой результат идеализации и схематизации экспериментальных объектов или более широко - любых объектов предметно-орудийной (в том числе инженерной) деятельности. Понятие диполя, вибратора, резонатора и соответствующие им схематические изображения, введенные Герцем, были необходимы для представления в теории реальных экспериментов. В настоящее время для получения электромагнитных волн и измерения их параметров используются соответствующие радиотехнические устройства, и следовательно, понятия и схемы, их описывающие, служат той же цели, поскольку по отношению к электродинамике эти устройства выполняют функцию экспериментальной техники. Однако, помимо всего прочего, эти устройства являются объектом конкретной инженерной деятельности, а их абстрактные схематические описания по отношению к теоретическим исследованиям в радиотехнике выполняют функцию теоретических моделей.

Особенность технических наук заключается в том, что инженерная деятельность, как правило, заменяет эксперимент. Именно в инженерной деятельности проверяется адекватность теоретических выводов технической теории и черпается новый эмпирический материал.

Абстрактные объекты технической теории обладают целым рядом особенностей. Прежде всего они являются "однородными" в том смысле, что собраны из некоторого фиксированного набора блоков по определенным правилам "сборки". Например, в электротехнике таковыми являются емкости, индуктивности, сопротивления; в теоретический радиотехнике - генераторы, фильтры, усилители и т.д.; в теории механизмов и машин - различные типы звеньев, передач, цепей, механизмов. Подобное строение абстрактных объектов является специфичным и обязательным для технической теории, делая их однородными в том смысле, что они сконструированы, во-первых, с помощью фиксированного набора элементов и, во-вторых, ограниченного и заданного набора операций их сборки. Любые механизмы могут быть представлены как состоящие из иерархически организованных цепей, звеньев, пар и элементов. Это обеспечивает, с одной стороны, соответствие абстрактных объектов конструктивным элементам реальных технических систем, а с другой создает возможность их дедуктивного преобразования на теоретическом уровне. Поскольку все механизмы оказываются собранными из одного и того же набора типовых элементов, то остается задать лишь определенные процедуры их сборки и разборки из идеальных цепей, звеньев и пар элементов. Эти идеализированные блоки соответствуют стандартизованным конструктивным элементам реальных технических систем. В теоретических схемах технической науки задается образ исследуемой и проектируемой технической системы.

Специфика технической теории состоит в том, что она ориентирована на конструирование технических систем. Научные знания и законы, полученные естественнонаучной теорией, требуют еще длительной "доводки" для применения их к решению практических инженерных задач, в чем и состоит одна из функций технической теории.

Теоретические знания в технических науках должны быть обязательно доведены до уровня практических инженерных рекомендаций. Выполнению этой задачи служат в технической теории правила соответствия, перехода от одних модельных уровней к другим, а проблема интерпретации и эмпирического обоснования в технической науке формулируется как задача реализации. Поэтому в технической теории важную роль играет разработка особых операций перенесения теоретических результатов в область инженерной практики.

Эмпирический уровень технической теории образуют конструктивно-технические, технологические и практико-методические знания, являющиеся результатом обобщения практического опыта при проектировании, изготовлении, отладке и т.д. технических систем. Это - эвристические методы и приемы, разработанные в самой инженерной практике, но рассмотренные в качестве эмпирического базиса технической теории.

Конструктивно-технические знания преимущественно ориентированы на описание строения (или конструкции) технических систем, представляющих собой совокупность элементов, имеющих определенную форму, свойства и способ соединения. Они включают также знания о технических процессах и параметрах функционирования этих систем.

Технологические знания фиксируют методы создания технических систем и принципы их использования.

Практико-методические знания, представляют собой практические рекомендации по применению научных знаний, полученных в технической теории, в практике инженерного проектирования. Это - фактически те же самые технологические и конструктивно-технические знания, только являющиеся уже не результатом обобщения практического опыта инженерной работы, а продуктом теоретической деятельности в области технической науки и поэтому сформулированы в виде рекомендаций для еще неосуществленной инженерной деятельности. В них также формулируются задачи, стимулирующие развитие технической теории.

Теоретический уровень научно-технического знания включает в себя три основные уровня, или слоя, теоретических схем: функциональные, поточные и структурные.

Функциональная схема фиксирует общее представление о технической системе, независимо от способа ее реализации, и является результатом идеализации технической системы на основе принципов определенной технической теории. Функциональные схемы совпадают для целого класса технических систем. Блоки этой схемы фиксируют только те свойства элементов технической системы, ради которых они включены в нее для выполнения общей цели. Каждый элемент в системе выполняет определенную функцию. Совокупность такого рода свойств, рассмотренных обособлено от тех нежелательных свойств, которые привносит с собой элемент в систему, и определяют блоки (или функциональные элементы) таких схем. Как правило, они выражают обобщенные математические операции, а функциональные связи, или отношения, между ними - определенные математические зависимости.

Функциональные схемы, например, в теории электрических цепей представляют собой графическую форму математического описания состояния электрической цепи. Каждому функциональному элементу такой схемы соответствует определенное математическое соотношение, - скажем, между силой тока и напряжением на некотором участке цепи или вполне определенная математическая операция (дифференцирование, интегрирование и т.п.). Порядок расположения и характеристики функциональных элементов адекватны электрической схеме.

Однако функциональные схемы могут быть и не замкнуты на конкретный математический аппарат. В этом случае они выражаются в виде простой декомпозиции взаимосвязанных функций, направленных на выполнение общей цели, предписанной данной технической системе. С помощью такой функциональной схемы строится алгоритм функционирования системы и выбирается ее конфигурация (внутренняя структура).

Поточная схема, или схема функционирования, описывает естественные процессы, протекающие в технической системе и связывающие ее элементы в единое целое. Блоки таких схем отражают различные действия, выполняемые над естественным процессом элементами технической системы в ходе ее функционирования. Такие схемы строятся исходя из естественнонаучных (например, физических) представлений.

Теория электрических цепей, к примеру, имеет дело не с огромным разнообразием конструктивных элементов электротехнической системы, отличающихся своими характеристиками, принципом действия, конструктивным оформлением и т.д., а со сравнительно небольшим количеством идеальных элементов и их соединений, представляющих эти идеальные элементы на теоретическом уровне. К таким элементам относятся прежде всего емкость, индуктивность, сопротивление, источники тока и напряжения. Для применения математического аппарата требуется дальнейшая идеализация: каждый из перечисленных выше элементов может быть рассмотрен как активный (идеальные источники тока или напряжения) или пассивный (комплексное - линейное омическое и нелинейные индуктивное и емкостное - сопротивления) двухполюсник, т.е. участок цепи с двумя полюсами, к которым приложена разность потенциалов и через которую течет электрический ток. Все элементы электрической цепи должны быть приведены к указанному виду. Причем в зависимости от режима функционирования технической системы одна и та же схема может принять различный вид. Режим функционирования технической системы определяется прежде всего тем, какой естественный (в данном случае физический) процесс через нее протекает, т.е. какой электрический ток (постоянный или переменный, периодический или непериодический и т.д.) течет через цепь. В зависимости от этого и элементы цепи на схеме функционирования меняют вид: например, индуктивность представляется идеальным омическим сопротивлением при постоянном токе, при переменном токе низкой частоты - последовательно соединенными идеальными омическим сопротивлением и индуктивностью (индуктивным сопротивлением), а при переменном токе высокой частоты ее поточная схема дополняется параллельно присоединяемым идеальным элементом емкости (емкостным сопротивлением). Для каждого вида естественного (физического) процесса применяется наиболее адекватный ему математический аппарат, призванный обеспечить эффективный анализ поточной схемы технической системы в данном режиме ее функционирования. Заметим, что для разных режимов функционирования технической системы может быть построено несколько поточных и функциональных схем. В предельно общем случае поточные схемы отображают не только естественные процессы, но и вообще любые потоки субстанции (вещества, энергии, информации). Причем в частном случае эти процессы могут быть редуцированы к стационарным состояниям, но последние могут рассматриваться как вырожденный частный случай процесса.

Структурная схема технической системы фиксирует те узловые точки, на которые замыкаются потоки (процессы функционирования). Это могут быть единицы оборудования, детали или даже целые технические комплексы, представляющие собой конструктивные элементы различного уровня, входящие в данную техническую систему, которые могут отличаться по принципу действия, техническому исполнению и ряду других характеристик. Такие элементы обладают кроме функциональных свойств свойствами второго порядка, т.е. теми, которые привносят с собой в систему определенным образом реализованные элементы, в том числе и нежелательными (например, усилитель - искажения усиливаемого сигнала). Структурная схема фиксирует конструктивное расположение элементов и связей (т.е. структуру) данной технической системы и уже предполагает определенный способ ее реализации. Такие схемы, однако, сами уже являются результатом некоторой идеализации, отображают структуру технической системы, но не являются ни ее скрупулезным описанием в целях воспроизведения, ни ее техническим проектом, по которому может быть построена такая система. Это - пока еще теоретический набросок структуры будущей технической системы, который может помочь разработать ее проект.

Структурные схемы в классических технических науках отображают в технической теории именно конструкцию технической системы и ее технические характеристики. В этом случае они позволяют перейти от естественного модуса рассмотрения технической системы, который фиксируется в его поточной схеме (в частности физического процесса), к искусственному модусу. Поэтому в частном случае структурная схема в идеализированной форме отображает техническую реализацию физического процесса. В классической технической науке такая реализация, во-первых, является всегда технической и, во-вторых, осуществляется всегда в контексте определенного типа инженерной деятельности и вида производства. В современных человеко-машинных системах такая реализация может быть самой различной, в том числе и нетехнической. В этом случае термины "технические параметры", "конструкция" и т.п. не годятся. Речь идет о конфигурации системы, их обобщенной структуре.

Таким образом, в технической теории на материале одной и той же технической системы строится несколько оперативных пространств, которым соответствуют различные теоретические схемы. В каждом таком "пространстве" используются разные абстрактные объекты и средства оперирования с ними, решаются особые задачи. Механизмы взаимодействия этих оперативных пространств могут быть раскрыты в результате анализа функционирования технической теории.

1. Шпаргалка Шпаргалка по Бухгалтерской и финансовой отчетности
2. Сочинение на тему Лексико-грамматические группы имен существительных
3. Реферат Характеристика современной системы кадровой документации 2
4. Реферат на тему Impressionism Essay Research Paper ImpressionismNisse ClarkPeriod 7Mr
5. Реферат Русские немцы на Алтае
6. Реферат Полиция Англии
7. Отчет по практике Отчет по практике в ОАО ОРМЕТО ЮУМЗ
8. Реферат на тему Объединение Германии
9. Реферат Транспорт 3
10. Реферат на тему Целебное расслабление