Реферат на тему UnH1d Essay Research Paper The PhysicsOfScuba Diving
Работа добавлена на сайт bukvasha.net: 2015-06-18Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Untitled Essay, Research Paper
The Physics
Of
Scuba Diving Swimming with the Fish….
Have you ever wondered what it would be like to swim with the fish and explore the
underwater jungle that covers two-thirds of the earth’s surface? I have always been
interested in water activities; swimming, diving and skiing, and I felt that scuba was for
me. My first dive took place while on a family vacation. I came across a dive shop
offering introductory dives, which immediately caught my interest. After much convincing
(my parents), with my solemn assurance that I would be careful, I was allowed to
participate in a dive. I was ready, or so I thought. The slim basics such as breathing
were explained and I was literally tossed in. Sounds easy enough, right!, well WRONG!!.
From the moment I hit the water, my experience was much less than fun. I quickly sank to
the bottom into a new world, with unfamiliar dangers. I really wasn’t ready for this
experience. I was disorientated, causing me to panic, which shortened the length of my
dive, not to mention my air supply. Let’s just say I would not do that again.
To start exploring the underwater world, one must first master a few
skills. Certification is the first step of learning to dive. From qualified professionals
one must learn how to use the equipment, safety precautions, and the best places to dive.
This paper is designed to help give a general understanding of the sport and the
importance that physics plays in it.
Self-contained Underwater Breathing Apparatus, or SCUBA for short, is a hell of a lot of
fun. However, there is considerably more to Diving than just putting on a wetsuit and
strapping some compressed air onto ones back. As I quickly learned, diving safely requires
quite a bit more in terms of time, effort, and preparation. When one goes underwater, a
diver is introduced to a new and unfamiliar world, where many dangers exist, but can be
avoided with proper lessons and understanding. With this knowledge the water is ours to
discover.
The Evolution of Scuba Diving
Divers have penetrated the oceans through the centuries for the purpose of acquiring food,
searching for treasure, carrying out military operations, performing scientific research
and exploration, and enjoying the aquatic environment. Bachrach (1982) identified the
following five principal periods in the history of diving which are currently in use. Free
(or breath-hold) diving, bell diving, surface support or helmet (hard hat) diving, scuba
diving, and, saturation diving or atmospheric diving (Ketels, 4)
SCUBA DIVING
The development of self-contained underwater breathing apparatus provided the free moving
diver with a portable air supply which, although finite in comparison with the unlimited
air supply available to the helmet diver, allowed for mobility. Scuba diving is the most
frequently used mode in recreational diving and, in various forms, is also widely used to
perform underwater work for military, scientific, and commercial purposes.There were many steps in the development of a successful self-contained underwater system.
In 1808, Freiderich yon Drieberg invented a bellows-in-a-box device that was worn on the
diver’s back and delivered compressed air from the surface. This device, named Triton, did
not actually work but served to suggest that compressed air could be used in diving, an
idea initially conceived of by Halley in 1716. (Ketels, 9)In 1865, two French inventors, Rouquayrol and Denayrouse, developed a suit that
they described as "self-contained." In fact, their suit was not self contained
but consisted of a helmet-using surface-supported system that had an air reservoir that
was carried on the diver’s back and was sufficient to provide one breathing cycle on
demand. The demand valve regulator was used with surface supply largely because tanks of
adequate strength were not yet available to handle air at high pressure. This system’s
demand valve, which was automatically controlled, represented a major breakthrough because
it permitted the diver to have a breath of air when needed.
The Rouquayrol and Denayrouse apparatus was described with remarkable accuracy in Jules
Verne’s classic, Twenty Thousand Leagues Under The Sea, which was written in 1869, only 4
years after the inventors had made their device public (Ketels, 10).
Semi-Self-Contained Diving SuitThe demand valve played a critical part in the later development of one form of scuba
apparatus. In the 1920’s, a French naval officer, Captain Yves Le Prieur, began work on a
self-contained air diving apparatus that resulted in 1926 in the award of a patent, shared
with his countryman Fernez. This device was a steel cylinder containing compressed air
that was worn on the diver’s back and had an air hose connected to a mouthpiece. The diver
wore a nose clip and air-tight goggles that undoubtedly were protective and an aid to
vision but did not permit pressure equalization.
The major problem with Le Prieur’s apparatus was the lack of a demand valve, which
necessitated a continuous flow (and thus waste) of gas. In 1943, almost 20 years after
Fernez and Le Prieur patented their apparatus, two other French inventors, Emile Gagnan
and Captain Jacques-Yves Cousteau, demonstrated their "Aqua Lung."
This apparatus used a demand intake valve drawing from two or three cylinders, each
containing over 2500 psig. Thus it was that the demand regulator, invented over 70 years
earlier by Rouquayrol and Denayrouse and extensively used in aviation, came into use in a
self-contained breathing apparatus which did not emit a wasteful flow of air during
inhalation (although it continued to lose exhaled gas into the water). This application
made possible the development of modern open-circuit air scuba gear (Ketels,11).In 1939, Dr. Christian Lambertsen began the development of a series of three patented
forms of oxygen rebreathing equipment for neutral buoyancy underwater swimming. This
became the first self-contained underwater breathing apparatus successfully used by a
large number of divers. The Lambertsen Amphibious Respiratory Unit (LARU) formed the basis
for the establishment of U.S. military self-contained diving. This apparatus was
designated scuba (for self-contained underwater breathing apparatus) by its users.
Equivalent self-contained apparatus was used by the military forces of Italy, the United
States, and Great Britain during World War II and continues in active use today. (Ketels,
12).
A major development in regard to mobility in diving occurred in France during the 1930’s:
Commander de Carlieu developed a set of swim fins, the first to be produced since Borelli
designed a pair of claw-like fins in 1680. When used with Le Prieur’s tanks, goggles, and
nose clip, de Carlieu’s fins enabled divers to move horizontally through the water like
true swimmers, instead of being lowered vertically in a diving bell or in hard-hat gear.
The later use of a single-lens face mask, which allowed better visibility as well as
pressure equalization, also increased the comfort and depth range of diving equipment
(Tillman, 27).
Thus the development of scuba added a major working tool to the systems available to
divers. The new mode allowed divers greater freedom of movement and access to greater
depths for extended times and required much less burdensome support equipment. Scuba also
enriched the world of sport diving by permitting recreational divers to go beyond goggles
and breath-hold diving to more extended dives at greater depths.The physics of Scuba Diving
Upon entering the underwater world, one notices new and different sensations as one
ventures into a realm where everything looks, sounds and feels different than it does
above the water. These sensations are part of what makes diving so special.
Understanding why the underwater world is different helps you adapt and become accustomed
to the changes. In the following pages I will attempt to explain two factors that greatly
affect a diver under water: buoyancy and pressure.
Have you ever wondered why a large steel ocean liner floats, but a small steel nail sinks?
The answer is surprisingly simple. The steel hull of the ship is formed in a shape that
displaces much water. If the steel used to manufacture the ocean liner were placed in the
sea without being shaped into a large hull, it would sink like the nail. The ocean liner
demonstrates that whether an object floats depends not only on its weight, but on how much
water it displaces (Ascher, 51).
The principle of buoyancy can be simplified this way: An object placed in water is buoyed
up by the force equal to the weight of the quantity of water it displaces. The principle
of buoyancy is that if an object displaces an amount of water weighing more than its own
weight, it will float. If an object displaces an amount of water weighing less than its
own weight then it will sink. If an object displaces an amount of water equal to its own
weight it will neither float nor sink, but remain suspended. If an object floats, it is
said to be positively buoyant; if it sinks, it is negatively buoyant; and if it neither
floats nor sinks, it is neutrally buoyant (Kolezer, 16).
It is important for a diver to learn to use these principles of buoyancy so that the diver
can effortlessly maintain his/her position in the water. One must control buoyancy
carefully. When you are at the surface, you will want to be positively buoyant so that you
could conserve energy while resting or swimming. Under water, you will want to be
neutrally buoyant so that you are weightless and can stay off the bottom and avoid
crushing or damaging delicate corals and other aquatic life. Neutral buoyancy permits a
diver to move freely in all directions (Kolezer, 17).
Buoyancy control is one of the most important skills that a diver could master, but it is
also one of the easiest. A diver, controls his/her buoyancy using lead weight and a
buoyancy control device (BCD). The lead weight, which is incorporated into a weight
system, such as a weight belt is negatively buoyant. The BCD is a device that can be
partially inflated or deflated to control buoyancy (Kolezer, 19).
Another factor that affects the buoyancy of an object is the density of
water. The denser the water, the greater the buoyancy. Salt water (due to its dissolved
salts) is more dense than fresh water, so you’ll be more buoyant in salt water than
in fresh water – in fact, when floating motionless at the surface, most divers need to
exhale air from their lungs to sink. By exhaling, the volume of the lungs is decreased,
and less water is displaced, resulting in less buoyancy (Kolezer, 19).
Thus, we can see, that changing the volume of an object changes its buoyancy. Divers
primarily control buoyancy by changing the volume of air in their BCD’s.
Body air spaces and water pressure
Although usually not noticeable, air is constantly exerting pressure on
us. An example being as simplified as when walking against a strong wind, what is actually
felt its force pushing against our body. This demonstrates that air can exert pressure, or
weight. One doesn’t usually feel the air’s pressure because our body is
primarily liquid, distributing the pressure equally throughout our entire body. The few
air spaces in our body are- in the ears, sinuses and lungs- These are filled with air
equal in pressure to the external air. However, when the surrounding air pressure changes,
such as when you change altitude by flying or driving through mountains, some of us can
feel the change as a popping sensation in our ears (Tillman, 40).
Just as air exerts pressure on us at the surface, water exerts pressure
when a person is submerged. Because water is much denser than air, pressure changes under
water occur more rapidly, making one more aware of them.
The weight of the water above a person greatly compounds the amount of pressure one (ears,
lungs, and the air in ones lungs) is under. While it takes the entire height of the
atmosphere to contain a weight of air enough to give 1 atmosphere (1 ATM) of pressure (the
pressure one is used to be under as one walks around daily), it only takes 33 ft. of water
to make up an additional ATM of pressure. Of course, the air is still there too, so at a
depth of 33 feet, a diver is subjected to two Atmospheres of pressure, fully twice what
one is subjected to at the surface! (Resneck, 53)
A diver would have to go really, really deep before being in any danger of actually being
crushed by pressure. It’s what the pressure does to the gases in your body that can
be dangerous. Physics teaches us Boyle’s Law of gases, which suggests that the volume of a
gas is proportional to its pressure. Thus, when one goes to a depth of, say, 33 feet (1
extra ATM) and fills ones lungs with a breath of air from a tank and then ascend to the
surface without exhaling, the air in the lungs would expand to twice its volume, causing
massive trauma to the lungs. Other more subtle problems occur with gas under pressure,
such as the accumulation of residual nitrogen in the body’s tissues which can result in
Decompression Sickness (DCS), commonly known as the bends (Tillman, 44).As with air pressure, one doesn’t feel water pressure on most of ones body, but we
can feel it in our body’s air spaces. When water pressure changes corresponding with
a change in depth, it creates a pressure sensation one can feel. Through training and
experience a diver will learn to avoid the problems associated with water pressure and the
air spaces in our bodies.
As previously mentioned, pressure increases at a rate of one atmosphere
(ATM) for each additional 33 feet of depth underwater. The total pressure is twice as
great at 33 feet than at the surface, three times as great at 66 feet, and so on. This
pressure pushes in on flexible air spaces, compressing them and reducing their volume. The
reduction of the volume of the air spaces is proportional to the amount of pressure placed
upon it.
When the total pressure doubles, the air volume is halved. When the
pressure triples, the volume is reduced to one third, and so on (Tillman, 40).
The density of air in the air spaces is also affected by pressure. As
the volume of the air spaces is reduced due to compression, the density of the air
increases as it is squeezed into a smaller place. No air is lost; it is simply compressed.
Air density is also proportional to pressure, so that when the total pressure is doubled,
the air density is doubled. When the pressure is tripled the air density triples and so
on.
To maintain an air space as its original volume when pressure is
increased, more air must be added to the space. This is the concept of pressure
equalization, and the amount of air that must be added is proportional to the pressure
increased.
Air within an airspace expands as pressure is reduced. If no air has
been added to the air space, the air will simply expand to fill the original volume of the
air space upon reaching the surface (Ketels, 76).
If air has been added to an air space to equalize the pressure, this
air will expand as pressure is reduced during ascent. The amount of expansion is again
proportional to the pressure. In an open container, such as the bucket, the expanding air
will simply bubble out of the opening, maintaining it original volume during ascent. In a
closed flexible container, however, the volume will increase as the pressure is reduced.
If the volume exceeds the capacity of the container, the container may be ruptured by the
expanding air (Cramer, 51).
Now let’s take a look at how the relationship between pressure volume and density
affect a diver while diving. Previously it has been mentioned that air spaces are effected
by changes in pressure. The air spaces that a diver is concerned about are both the
natural ones in your body and those artificially created by wearing diving equipment.
The air spaces within a diver’s body that are most obviously
affected by increasing pressure are found in the ears and sinuses. The artificial air
spaces most affected by increasing pressure is the one created by a divers mask.
During descent, water pressure increases and pushes in your body’s
air spaces, compressing them. If pressure within these air spaces is not kept in balance
with this increasing water pressure, the sensation of pressure builds, becoming
uncomfortable and possibly even painful as the diver continues to descend. This sensation
is the result of a squeeze on the air spaces. A squeeze is not only a scuba phenomena but
may also be experienced in a swimmers ears when diving to the bottom of a swimming pool. A
squeeze, then is a pressure imbalance resulting in a pain or discomfort in a bodies air
space. In this situation, the imbalance is such that the pressure outside the air space is
greater than the pressure inside (Ketels, 76-77).
Squeezes are possible in several places: ears, sinuses, teeth, lungs and ones mask.
Fortunately, divers can easily avoid all these squeezes.
To avoid discomfort, pressure inside an air space must always equal the water pressure
outside the air spaces. This is accomplished by adding air to the air spaces during
descent, before discomfort occurs. This is called equalization.
Compared to the ear and sinus air spaces, the lungs are large and flexible. As a scuba
diver, one automatically equalizes the pressure in the lungs by continuously breathing
from the scuba equipment. When you skin dive, holding ones breath, the lungs can be
compressed with no consequence as long as they are filled with air when one begins to
descent. The lungs will be reduced in volume during decent and will re-expand during
ascent to nearly the original volume when one reaches the surface (some of the air from
the lungs is used to equalize the other body air spaces) (Ketels, 78).
In a healthy diver, blocking the nose and
attempting to gently blow through it with the mouth closed will direct air into the ear
and sinus air spaces. Swallowing and wiggling the jaw from side to side may be an
effective equalization technique. Some divers even attempt a combination of the previous
two methods.
As mentioned previously
along with squeezes, the lungs experience no harmful effects from the changes in pressure
when holding ones breath while skin diving. At the start of the skin dive, one takes a
breath and descends; the increasing water pressure compresses the air in the lungs. During
ascent, the air re-expands so that when reaching the surface, the lungs return to their
original volume (Ketels, 78).
When scuba diving, however, the situation is different. Scuba equipment allows one to
breathe under water by automatically delivering the air at a pressure equal to the
surrounding water pressure. This means the lungs will be at their normal volume while at
depth, full of air that will expand on ascent (Cramer, 51).
If a diver breaths normally, keeping the airway
to you lungs open, the expanding air escapes during ascent and your lungs remain at their
normal volume. But, by holding ones breath and then blocking the airway while ascending
the lungs would over expand, much like the sealed bag. Expanding air can cause lung
over-pressurization (lung rupture), the most serious injury that can occur to a diver. The
most important rule in scuba diving is to breath continuously and never hold your Breath.
Lung rupture will occur unless pressure is continuously equalized by breathing normally at
all times (Cramer, 52).
Other physical Phenomena’s
As an air-breathing creature, we have evolved to live on land. Above the water, we see,
hear and move about in a familiar and comfortable manner that seems normal because we have
adapted to an air environment.
Under water, though, one enters a new world, where seeing, hearing, staying warm and
moving are different. This is because water is 800 times more dense than air, affecting
light, sound and heat in ways that we aren’t used to.
Sight seeing is a big part of what diving is
all about. One dives for numerous reasons. A primary purpose is to see new environments,
aquatic life and natural phenomena. Since underwater sight seeing is important, like
buying a new camera, one must learn, how. Therefor when diving, one must know how the
liquid environment affects vision. To see clearly under water, a mask is needed
because the human eye cannot focus without any air space in front of it. A mask provides
the air space. Without the mask, you can see large objects, but they will be blurred and
indistinct because your eyes cannot bring the rays of light into sharp focus. Only by
wearing a mask can you see sharply (Ascher, 9).
Light travels at a different speed in water
than in air. When light enters the air in your mask from the water, the change in speed
causes its angle of travel to shift slightly. This causes a magnificent effect that makes
objects under water appear 25% larger and closer (Ascher, 52).
Water has other effects on light. As you
descend, there is less light. This is due to several facts: some light reflects off the
water’s surface, some is scattered by particles in the water, and some is absorbed by
the water itself. However, water does not absorb light uniformly.
White light, such as sunlight, is actually
composed of various colors mixed together. The colors are absorbed one by one as depth
increases: First red, followed by orange and yellow. Since each color is part of the total
light entering the water, less light remains as depth increases and each color is
absorbed. For these reason, deeper water is darker and less colorful. To see true colors,
divers sometimes carry underwater lights with them (Resneck, 151).
Underwater Hearing
The underwater world is not a silent world. One can hear many new and
interesting sounds, like snapping shrimp, grunting fish, and boat engines passing in the
distance. Since sound travels farther in water than in air, one is able to hear things
over much longer distances.
Sound also travels about four times faster in
water than in air and because of this, one may have trouble determining the direction a
sound is coming from (Cramer, 95).
Speech is virtually impossible under water
because ones vocal cords do not work in a liquid environment, not to mention the addition
of the tube in ones mouth. Communication by sound is usually limited to attracting the
attention of another diver by rapping on the tank with a solid object, such as a knife.
The diver will hear the rapping, but may not be able to tell where the sound is coming
from.
Heat loss in water.
Diving stops being enjoyable when the diver
gets cold. In fact, even a small loss of body heat has the potential to be a serious
health threat. For these reasons, understanding about heat loss is important.
In air, body heat is lost as it rises from the
skin into the air, as it is carried away by air currents, or as perspiration cools the
skin through evaporation. Water conducts heat away from your body twenty times faster than
air does, meaning that for a given temperature, water has a far greater cooling effect.
Even seemingly warm 86F water can become chilly after a while (Cramer, 91).
The loss of body heat in water can quickly lead
to a serious condition unless you use insulation to reduce the heat loss. Insulation
through the use of exposure suits is recommended for diving in water 75F or colder. Just
as one dresses according to the temperature and conditions to go outdoors, one must dress
appropriately for diving.
Motion in water
One of the best aspects of diving is that it
can be so relaxing. There’s little reason for hurrying. By learning how to move
without breathlessness, cramping or fatigue, you learn to relax during a dive.
Due to the greater density of water, resistance
to movement in water is much greater than in air. If you’ve ever tried to run
waist-deep water, you’ve experienced this. In overcoming this increased resistance
while diving, the best way to conserve energy is to move slowly and steadily. Avoid rapid
and jerky movements that waste energy. Simply take your time. After all this is a sport to
enjoy.
Conclusion
Several months after my vacation, I decided to give scuba diving a second chance. However,
this time I decided to do it right. I signed up to take a P.A.D.I. certification, which is
one of the many internationally recognized scuba associations. It was here, in a properly
structured course, consisting of both theoretical and practical (in water) sessions where
I was properly re-introduced to the sport.
Since my introductory dive from hell, I have had the chance to become quite the scuba
enthusiast. Partaking in numerous dives not only in warmer climates (preferably) but in
the colder Montreal waters as well, scuba diving has become part of my lifestyle. I
participate in and enjoy every opportunity to re-visit the underwater world that once
scared me away.
In this paper, I included some history of the evolution of the sport in order to point out
that there is more to this particular sport than jumping into the water. Scuba is a
complex sport and can not be enjoyed without some scientific knowledge. Scuba diving did
not simply evolve, but it is the result of numerous inventions and physical properties.
One could only imagine the difficulty that those historic divers (scientists) had in
creating this sport.
My objective in writing this paper was not to deter people away from the sport, but to
stress the importance of the knowledge that is required to properly and safely partake in
it. Like everything else in life, one must work towards a goal, and this is no different.
One will quickly see that the payoff is far greater than anything else ever experienced.
Recreational scuba is meant to be a very enjoyable and relaxing sport. The scenery is
magnificent and the sensations are truly indescribable.
Today, scuba diving is quickly becoming one of the expanding trades.
Whether for military, research, business, or recreation, hundreds of thousands of people
are heading for the depths, to experience the unknown. My advice for a new diver is to do
it right. Get the proper certification and make each dive a safe one.
When a diver is fully trained, and in good mental and physical condition, safe diving can
be one of the most enjoyable of experiences. The true beauty of the underwater world,
coupled with the marvelous almost-weightlessness of floating with neutral buoyancy is an
indescribable experience.Bibliography/Further Reading
Ascher, Scott M. Scuba Handbook for Humans. Iowa : Kendall/Hunt Publishing Company. 1975.
Cramer, John L. Ph.D. Skin and Scuba Diving: Scientific Principles and Techniques. N.Y.:
Bergwall Productions, Inc. 1975.
Ketels, Henry & McDowell, Jack. Safe Skin and Scuba Diving, adventure in the
underwater world. Canada : Little, Brown and Company (Canada) Ltd. 1975.
Koelzer, William. Scuba Diving, How to get started. Pennsylvania :Chilton Book Company.
1976.
Resneck, John Jr. Scuba, Safe and Simple. New Jersey : Prentice-Hall, Inc. 1975.
Tillman, Albert A. Skin and Scuba Diving. Iowa : Wm. C. Brown Company Publishers. 1966.