Реферат

Реферат на тему Преобразования Лоренца постоянство скорости света и требование однородности времени

Работа добавлена на сайт bukvasha.net: 2015-06-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024


С. В. Мельничук

В работе обсуждается довольно устоявшегося раздела физики, а именно приложений преобразований Лоренца в кинематике весомой материи. Рассматривается проблема совместимости требований постоянства скорости света и однородности времени в преобразованиях Лоренца. Делается акцент на том, что первоосновы таких понятий как пространство и время будут отождествляться с состоянием системы отсчета (мерой пространственно-временных характеристик), а не результатами ее использования (координатами). Связывая понятие пространства с его мерой (стержни с метрической меткой), показано, что действие преобразований Лоренца приводит к анизотропии, как пространства, так и времени. Предлагается способ решения проблемы анизотропии времени, при переходе к описанию явлений макромира.

Инвариантность уравнений Максвелла при переходах между инерциальными системами отсчета

Введение

Выражения:

Преобразования Лоренца, постоянство скорости света и требование однородности времени(1)

были получены Лоренцем, как преобразования координат и времени, оставляющие инвариантными вид уравнений Максвелла во всех инерциальных системах отсчета, при условии постоянства скорости распространения электромагнитного поля. Решаемая им задача может быть сформулирована следующим образом. Рассматриваются две системы отсчета. Первая считается покоящейся, вторая движущейся относительно первой с постоянной скоростью Преобразования Лоренца, постоянство скорости света и требование однородности времени. Координаты событий и компоненты поля в покоящейся системе отсчета обозначают Преобразования Лоренца, постоянство скорости света и требование однородности времении Преобразования Лоренца, постоянство скорости света и требование однородности времени. Они считаются заданными или исходными. Координаты событий и компоненты поля в движущейся системе отсчета обозначают: Преобразования Лоренца, постоянство скорости света и требование однородности времении Преобразования Лоренца, постоянство скорости света и требование однородности времени. Они считаются искомыми. Согласно Максвеллу, записываются шесть уравнений для компонент свободного электромагнитного поля в покоящейся и движущейся системах отсчета:

Преобразования Лоренца, постоянство скорости света и требование однородности времени(2)

Где

Преобразования Лоренца, постоянство скорости света и требование однородности времени(3)

Требуется найти такую взаимосвязь всех штрихованных переменных с не штрихованными переменными, чтобы после их соответствующей подстановки, штрихованные уравнения перешли в не штрихованные, без изменяя своего вида.

Рассмотрим простой случай свободного электромагнитного поля в вакууме с плоским фронтом волны. Это поперечный волновой процесс, в котором вектора электрического и магнитного поля ортогональны друг другу, а так же направлению своего распространения. Следовательно, можно выбрать направление осей покоящейся системы координат таким образом, что компоненты электрического и магнитного поля будут иметь только по одной составляющей. Для определенности положим:

Преобразования Лоренца, постоянство скорости света и требование однородности времени(4)

т.е. электрическое поле направленно вдоль оси Преобразования Лоренца, постоянство скорости света и требование однородности времени, магнитное поле вдоль оси Преобразования Лоренца, постоянство скорости света и требование однородности времени. Ось Преобразования Лоренца, постоянство скорости света и требование однородности временисовпадает с направлением распространения электромагнитного поля. С учетом этого система (2) принимает вид:

Преобразования Лоренца, постоянство скорости света и требование однородности времени(5)

Является очевидным, что с математической точки зрения, данная система уравнений неразрешима однозначно. Для ее решения Лоренцу пришлось обратиться к ряду физических требований (автор не оспаривает их разумности), а именно: искомые преобразования для пространственно-временных переменных должны быть линейными, координаты событий вдоль направлений ортогональных направлению перемещения движущейся системы отсчета преобразуются тождественно. Поэтому решение, представленное Лоренцем, нельзя назвать строгим, в том плане, что вводимые ограничения не позволяют говорить об общем классе решений, оставляющих уравнения Максвелла инвариантными.

Решение поставленной задачи можно будет считать строгим, если его разбить на два этапа. Первый - поиск в рамках электромагнитной теории не зависимой от (5) задачи, приводящей к искомым преобразованиям координат и времени. Второй – на основании известных преобразований пространственно-временных переменных и уравнений Максвелла установить взаимосвязь между компонентами электромагнитного поля в движущихся друг относительно друга системах отсчета. Второй этап не вызывает затруднений при условии выполнимости первого этапа.

Принято считать, что одним из способов снятия проблемы первого этапа, является решение задачи о вспышке света представленной в работе [1]. Переходя к рассмотрению этой задачи, заметим общеизвестный факт, что преобразования Лоренца так же могут быть получены из требований инерциальности рассматриваемых систем отсчета (дробно линейные преобразования Лоренца-Фока). Из этого же требования вытекает постоянство скорости (света) объектов, координаты которых связывают эти преобразования в различных системах отсчета. Далее, основываясь на анализе преобразований Лоренца, будут установлены причинно-следственные связи природы не одновременности, в соответствии с этим очерчен круг проблем, в решении которых, требование постоянства скорости света определит свою особую роль.

Задача о вспышке света

В виду принципиальности рассматриваемого вопроса и для того, чтобы далее не возникало разночтений, задача формулируется полностью.

Пусть имеется две системы отсчета Преобразования Лоренца, постоянство скорости света и требование однородности времении Преобразования Лоренца, постоянство скорости света и требование однородности времениначала, которых совпадали в некий момент времени. Показания часов этих систем отсчета в этот момент времени считаем синхронизованными и равными нулю. Систему отсчета Преобразования Лоренца, постоянство скорости света и требование однородности времениусловимся считать покоящейся, а систему отсчета Преобразования Лоренца, постоянство скорости света и требование однородности временидвижущейся со скоростью Преобразования Лоренца, постоянство скорости света и требование однородности временив положительном направлении оси Преобразования Лоренца, постоянство скорости света и требование однородности временипокоящейся системы отсчета. Расположим в начале системы отсчета Преобразования Лоренца, постоянство скорости света и требование однородности времениточечный источник, который в момент Преобразования Лоренца, постоянство скорости света и требование однородности временидает сферически симметричную вспышку света. Эту систему отсчета считаем избранной, в том смысле, что источник света и ее начало покоятся друг относительно друга. Поскольку скорость света не зависит от выбора системы отсчета, то наблюдатель Преобразования Лоренца, постоянство скорости света и требование однородности временисистемы также должен видеть вспышку света как сферическую поверхность, центр которой находится в начале его системы отсчета. Вспышка может считаться сферической, если свет одновременно достигает равноудаленных точек пространства. Промежуток времени, в течение которого производится вспышка, полагается бесконечно малым, по сравнению с интервалом времени, по истечению которого происходит регистрация событий.

Наблюдатели в обеих системах отсчета следят за вспышкой с момента ее возникновения. Для них вспышка сопоставима с множеством событий, которые появляются одновременно из одной точки и начинают распространяться во всех направлениях с одинаковой скоростью. Эти события, перемещаясь в пространстве, существуют одновременно. Исходным требованием является то, чтобы для обоих наблюдателей, поверхность, образованная множеством появившихся событий, одновременно достигала равноудаленных точек от начал координат, их систем отсчета. Постановка задачи заключается в том, чтобы найти связь между координатами событий в этих системах отсчета. Таким образом:

Преобразования должны переводить световую сферу покоящейся системы отсчета в световую сферу движущейся системы отсчета.

Трактовка сути происходящих явлений в движущейся системе отсчета, с точки зрения покоящегося наблюдателя, основанная на найденных преобразованиях, не должна содержать противоречий.

Является очевидным, что при рассмотрении любого конкретного случая Преобразования Лоренца, постоянство скорости света и требование однородности временипроисходит геометризация задачи, т.е. фактор времени становится несущественным.

Математическим выражением пункта 1 является запись двух уравнений (см. например [2]):

Преобразования Лоренца, постоянство скорости света и требование однородности времени, (6)

где Преобразования Лоренца, постоянство скорости света и требование однородности времении Преобразования Лоренца, постоянство скорости света и требование однородности времени- координаты одного и того же события (показания приборов) покоящейся и движущейся систем отсчета, соответственно. Воспользовавшись, также как и Лоренц, его требованиями, принято искать преобразования в виде:

Преобразования Лоренца, постоянство скорости света и требование однородности времени, (7)

Преобразования Лоренца, постоянство скорости света и требование однородности времени, (8)

где связь между переменными обеих систем отсчета устанавливается с помощью коэффициентов, которые могут зависеть только от скорости относительного движения (однородность пространства и времени). Приравнивая уравнения (6) между собой и совершая в новое уравнение подстановку равенств (7) и (8) можно найти вид коэффициентов Преобразования Лоренца, постоянство скорости света и требование однородности времени. Преобразования (7) и (8) с найденными коэффициентами являются преобразованиями Лоренца (1).

Установив вид этих преобразований, Эйнштейн проверяет совместимость двух постулатов СТО следующим образом. Цитата из работы [1]:

“ Пусть в момент времени Преобразования Лоренца, постоянство скорости света и требование однородности временииз общего в этот момент для обеих систем начала координат посылается сферическая волна, которая распространяется в системе Преобразования Лоренца, постоянство скорости света и требование однородности временисо скоростью Преобразования Лоренца, постоянство скорости света и требование однородности времени. Если Преобразования Лоренца, постоянство скорости света и требование однородности времениесть точка, в которую приходит эта волна, то мы имеем

Преобразования Лоренца, постоянство скорости света и требование однородности времени

Преобразуем это уравнение с помощью записанных выше формул преобразования; тогда получим

Преобразования Лоренца, постоянство скорости света и требование однородности времени

И так, рассматриваемая волна, наблюдаемая в движущейся системе, также является шаровой волной, распространяющейся со скоростью Преобразования Лоренца, постоянство скорости света и требование однородности времени. Тем самым доказано, что наши два принципа совместимы” - конец цитаты.

Таким образом, на основании совпадения формы этих уравнений, сделан вывод, что преобразования Лоренца переводят сферическую поверхность в покоящейся системе отсчета в сферическую поверхность в движущейся системе отсчета. Тем самым было доказано соответствие преобразований (1) первому пункту исходных требований задачи о вспышке света и, является общепризнанным в физике. Однако, данное доказательство вызывает сомнение, исходя из рассуждений, которые приводятся ниже.

Если имеется сфера радиуса Преобразования Лоренца, постоянство скорости света и требование однородности времени(геометризация задачи) в покоящейся системе отсчета:

Преобразования Лоренца, постоянство скорости света и требование однородности времени(9)

то она может быть переведена в сферу движущейся системы отсчета только умножением радиуса заданной сферы на константу:

Преобразования Лоренца, постоянство скорости света и требование однородности времени(10)

где

Преобразования Лоренца, постоянство скорости света и требование однородности времени(11)

координаты этой же сферы относительно начала новой системы отсчета. Коэффициент пропорциональности Преобразования Лоренца, постоянство скорости света и требование однородности времениможет зависеть только лишь от скорости относительного движения рассматриваемых систем отсчета. В противном случае третье равенство (10) не может считаться уравнением сферы, т.к. величина, стоящая в правой части этого равенства, не будет являться постоянной величиной. Особо отметим, что (11) также оставляют инвариантными уравнения Максвелла, следовательно, также могут считаться решением задачи рассматриваемой Лоренцем.

В свою очередь, преобразования Лоренца формально могут быть получены путем следующих тождественных преобразований:

Преобразования Лоренца, постоянство скорости света и требование однородности времени(12)

Отсюда наглядно видно, что проводится изменения координат Преобразования Лоренца, постоянство скорости света и требование однородности времениточек сферы, а координаты Преобразования Лоренца, постоянство скорости света и требование однородности времениостаются без изменений. Это приводит к деформации поверхности сферы, что выражается соответствующей зависимостью Преобразования Лоренца, постоянство скорости света и требование однородности времениот Преобразования Лоренца, постоянство скорости света и требование однородности времени. Таким образом, из общих рассуждений вытекает, что преобразования Лоренца не являются преобразованиями сферы в сферу.

Чтобы проверить справедливость сделанного утверждения построим поверхность вспышки света в движущейся системе координат с использованием преобразований Лоренца. Для этого зададим промежуток времени Преобразования Лоренца, постоянство скорости света и требование однородности временипо часам покоящегося наблюдателя, в течение которого распространяется свет. Этот промежуток времени однозначно определит те координаты Преобразования Лоренца, постоянство скорости света и требование однородности времениточек пространства покоящейся системы, до которых дойдет сигнал. Воспользовавшись преобразованиями Лоренца (1), мы найдем координаты этих же событий в движущейся системе отсчета. И согласно Эйнштейну это должна быть сфера. Однако (1) являются неудобными для графического построения. Поэтому переведем их в полярную систему координат.

Пусть Преобразования Лоренца, постоянство скорости света и требование однородности времении Преобразования Лоренца, постоянство скорости света и требование однородности времениуглы, под которыми видно одно и тоже событие в покоящейся и движущейся системах отсчета, соответственно. Тогда:

Преобразования Лоренца, постоянство скорости света и требование однородности времени(13)

Подставим (13) в первое и четвертое равенство (1). Получим

Преобразования Лоренца, постоянство скорости света и требование однородности времени(14)

Поделив, первое равенство (14) на второе, установим связь между углами в движущейся и покоящейся системах отсчета:

Преобразования Лоренца, постоянство скорости света и требование однородности времени(15)

Преобразования Лоренца, постоянство скорости света и требование однородности времени(16)

Выражение (16) является обратным к (15). Умножив левую и правую стороны второго равенства (14) на Преобразования Лоренца, постоянство скорости света и требование однородности времении произведя замену Преобразования Лоренца, постоянство скорости света и требование однородности временина (16), получим выражение для преобразований Лоренца в полярной системе координат:

Преобразования Лоренца, постоянство скорости света и требование однородности времени, (17)

где, для любого конкретного случая Преобразования Лоренца, постоянство скорости света и требование однородности времени.

На рис.1 представлены два графика в полярной системе координат. График-1, это координаты событий в покоящейся системе отсчета. График-2, это координаты этих же событий в движущейся системе отсчета даваемые преобразованиями Лоренца (формула (17)). Графики построены при следующих параметрах: Преобразования Лоренца, постоянство скорости света и требование однородности времени. Подстановка координат сферы покоящейся системы отсчета для этих параметров в (1) так же приводит к графику-2 рис.1, показывая тем самым полную эквивалентность (1) и (17), что доказывает справедливость (17).

Анализ результатов

Из рис.1 видно, что координаты событий, даваемые формулой (17) ложатся не на сферу, а на поверхность эллипса. На основании этого можно заключить, что вывод Эйнштейна о сферичности получаемых результатов, для движущейся системы отсчета, сделан неверно. Преобразования (1) не удовлетворяют пункту 1 исходных требований поставленной задачи. Не смотря на то, что уравнения в цитате его работы совпадают по форме, они несут различное содержание. В первом уравнении цитаты координаты событий определяются только промежутком времени, который прошел с момента вспышки - это сфера. Переменные второго уравнения цитаты, т.е. координаты и промежуток времени, измеряемые наблюдателем движущейся системы отсчета, несамостоятельны. Они, посредством преобразований Лоренца, однозначно определяются переменными первого уравнения цитаты. Однако полученный эллипс не является нонсенсом для СТО. Более того, он находится в полном согласии с выводами СТО о сокращении стержней и не одновременности. Покажем это, выстроив логику покоящегося наблюдателя, проверяя тем самым пункт 2 исходных требований задачи.

Преобразования Лоренца, постоянство скорости света и требование однородности времени

Пусть с момента вспышки прошло Преобразования Лоренца, постоянство скорости света и требование однородности временисекунд. Тогда, по мнению покоящегося наблюдателя, движущийся наблюдатель и начало движущейся системы отсчета сместятся на расстояние Преобразования Лоренца, постоянство скорости света и требование однородности времени, относительно покоящейся системы отсчета. К этому моменту времени световой сигнал прошел вдоль положительного направления оси Преобразования Лоренца, постоянство скорости света и требование однородности временипуть Преобразования Лоренца, постоянство скорости света и требование однородности времени, а вдоль отрицательного направления, путь Преобразования Лоренца, постоянство скорости света и требование однородности времени. Координатами этих событий, для движущегося наблюдателя, были бы Преобразования Лоренца, постоянство скорости света и требование однородности времении Преобразования Лоренца, постоянство скорости света и требование однородности времени. Однако согласно СТО, покоящейся наблюдатель знает, что длина стержней расположенных вдоль оси Преобразования Лоренца, постоянство скорости света и требование однородности времени, каковыми являются измерительные линейки, в движущейся системе отсчета сокращается в Преобразования Лоренца, постоянство скорости света и требование однородности времени. Поскольку изменение длины линейки в некоторое число раз приводит к изменению измеряемых координат точек в обратное число раз, то измеренные одновременно движущимся наблюдателем координаты рассматриваемых событий увеличатся в Преобразования Лоренца, постоянство скорости света и требование однородности временираз. Следовательно, вместо указанных координат Преобразования Лоренца, постоянство скорости света и требование однородности времени, по мнению покоящегося наблюдателя, движущийся наблюдатель зафиксирует координаты

Преобразования Лоренца, постоянство скорости света и требование однородности времени(18)

Эти координаты в точности совпадают с (1), и они же являются точками пересечения оси Преобразования Лоренца, постоянство скорости света и требование однородности временис эллипсом (график -2 рис.1.). Аналогичные рассуждения можно провести для координат любых точек графика -1 рис.1. При этом Преобразования Лоренца, постоянство скорости света и требование однородности временикоординаты событий останутся неизменными, поскольку линейки (стержни) согласно СТО вдоль этого направления не деформируются (в этих рассуждениях содержится несущественный изъян, суть которого будет раскрыта ниже). Такого рода измерения, проведенные, по мнению покоящегося наблюдателя, движущимся наблюдателем, приводят к наблюдению движущимся наблюдателем эллипса (график -2 рис.1.). Следовательно, эллипс, с точки зрения покоящегося наблюдателя, является логическим продолжением вывода СТО о деформации стержней.

Покоящийся наблюдатель знает, что скорость света одинакова во всех инерциальных системах отсчета. Поэтому, чтобы наблюдателю движущейся системы узнать интервалы времени, через которые будут зафиксированы события, распространяющиеся вдоль оси Преобразования Лоренца, постоянство скорости света и требование однородности времени, ему необходимо поделить модули (18) на скорость света. При этом движущийся наблюдатель получит:

Преобразования Лоренца, постоянство скорости света и требование однородности времени(19)

Согласно (1) и как следствие (19), с точки зрения покоящегося наблюдателя, события одновременные в его системе отсчета (события находящиеся на поверхности сферы график-1 рис.1), не являются одновременными для движущегося наблюдателя (они находятся на поверхности эллипса график-2 рис.1 разновременных точек), что также находится в полном согласии со СТО. Однако, выстраивая далее логику, объясняющую суть происходящих явлений, с точки зрения покоящегося наблюдателя, мы приходим к следующему. Согласно исходной постановке задачи, с точки зрения покоящегося наблюдателя, в движущейся системе отсчета все часы на момент вспышки были синхронизованы. Следовательно, по его мнению, появление событий в движущейся системе отсчета можно считать одновременным. Далее, как мы выяснили, с точки зрения покоящегося наблюдателя, движущийся наблюдатель должен одновременно фиксировать координаты событий графика-1 рис.1. линейками деформированными согласно СТО. При этом он получает, что события, испущенные одновременно и зафиксированные одновременно, проводят различные интервалы времени, двигаясь в пространстве. Формулы (19) являются подтверждением сказанному. Если считать скорость света постоянной, единственно возможным логическим объяснением этого, с точки зрения покоящегося наблюдателя, является то, что время в движущейся системе отсчета имеет различную скорость хода в различных направлениях. Это природа не одновременности СТО. Сказанное находит свое математическое выражение в записи вида:

Преобразования Лоренца, постоянство скорости света и требование однородности времени(20)

которая легко может быть получена из преобразований Лоренца в полярной системе координат (17).

Выводы

Выражения (17) и (20), как прямое математическое следствие преобразований (1), являются основой для переосмысления логики приложений преобразований Лоренца в кинематике весомой материи. Обобщая полученные результаты можно сказать, что требования (7),(8) и как следствие деформация стержней (линеек) Преобразования Лоренца, постоянство скорости света и требование однородности времени, находятся в конфликте с нашим представлением об однородности времени. Факт (20) для макромира с недоумением можно принимать только лишь в исключительном случае, когда нет другой альтернативы. Случай с преобразованиями Лоренца не является таковым. Задача о вспышке света самодостаточна и может быть решена математически точно без привлечения дополнительных требований, даже если их источником, казалось бы, являются разумные и достаточно общие соображения.

Анизотропия (20) движущейся системы, является следствием вполне определенной деформации линеек этой системы. Поэтому, является разумным и методически правильным, сначала найти такую деформацию линеек движущегося наблюдателя, чтобы он, производя одновременные измерения, мог видеть световую сферу (обеспечивая тем самым выполнение требования однородности времени), а только потом измерять координаты этой сферы. Таким образом, задача о поиске преобразований координат, решение которой очевидно, исходя из (10) и (11), переходит в задачу о деформации меры пространственных характеристик (в данном случае линеек) движущейся системы отсчета.

Далее меру пространственно-временных характеристик будем понимать как физическую основу наблюдаемого мира, т.е. совокупность измерительных приборов (линейки, часы и т.д.), определяющих состояние и саму систему отсчета. Именно меру пространственно-временных характеристик будем отождествлять с понятиями пространства и времени, а не наблюдаемые с ее помощью координаты. Поэтому, говоря о пространстве времени, следует специально оговаривать, где речь идет о его мере, а где о результатах ее использования.

Понимая под состоянием пространства состояние меры пространства-времени, применение преобразований Лоренца приводит к неоднородности пространства, поскольку оно испытывает деформацию, переводящую поверхность смещенной сферы (график-1, рис.1) в поверхность эллипса (график-2, рис.1). Вид этой деформации представлен на рис.1, график-3. Заметим, что график-3, дает общую картину происходящих деформаций, частным случаем которой являются выводы СТО об изменении длины движущихся стержней.

Деформация меры линейных расстояний (линеек) с требованием перевода смещенной сферы (график-1) в несмещенную сферу для движущейся системы, по логике, является однотипной рассмотренному переводу смещенной сферы (график-1) в эллипс (график-2), поэтому такая постановка задачи может быть использована для выполнения требования однородности времени. Эта задача будет решена в следующей работе.

Список литературы

А. Эйнштейн. Собрание научных трудов. - М.: Наука, 1965. – С.7-35.

Китель Ч., Найт В., Рудерман М. Механика (Берклеевский .курс физики). - М.: Наука. -1983. – 448 с.


1. Реферат Анализ использования фонда рабочего времени 3
2. Реферат Сенсорный маркетинг 2
3. Реферат на тему Evolution Of The American Television Family Essay
4. Курсовая Особенности финансового контроля в РФ
5. Реферат Предпринимательские способности
6. Реферат на тему Охрана живого мира
7. Реферат Негативна людська діяльність
8. Курсовая Автоматизированные системы управления торговым предприятием
9. Реферат на тему Anorexia And Life Essay Research Paper It
10. Реферат на тему Euthanasia Essay Research Paper A considerable size