| | | Ростопчин Владимир Васильевич, Клименко В.И., ООО “Техкомтех” Авиационные ракетно-космические системы приобретают все большую популярность по нескольким причинам. Одна из них: возможность перенести площадку старта космического разгонщика в нужное место и сэкономить на инфраструктуре. Вторая: возможность использования боевых ракет в качестве космических разгонщиков для выведения полезной нагрузки в космос. И в том и в другом случаях предполагается использование существующих самолетов для размещения космического разгонщика. Возникает вопрос - какую систему выбрать, какими критериями оценки при этом руководствоваться? Часть 1. Современные самолеты-носители и самолеты-разгонщики В рамках настоящей статьи целесообразно принять следующее пояснение к используемой терминологии: - ракетно-космическая система (РКС): ракета - космический разгонщик с полезной нагрузкой, контейнером и другим оборудованием, обеспечивающим функционирование РКС; - самолет-носитель (СН) авиационной ракетно-космической системы (АРКС): самолет, обеспечивающий размещение РКС на внешней подвеске или на борту самолета и доставку ее в точку старта с заданными значениями высоты и скорости полета. Как правило, самолеты-носители являются дозвуковыми бомбардировщиками или транспортными самолетами, которые позволяют, главным образом, увеличить высоту старта ракеты (до 12000 м) при относительно небольших величинах скорости полета (800..850 км/ч) [1]; - самолет-разгонщик (СР) АРКС: самолет, обеспечивающий размещение РКС на внешней подвеске или на борту самолета и доставку ее в точку старта с заданным значением высоты и сообщающий ракете при отделении некоторый уровень кинетической энергии. Самолеты-разгонщики обычно являются сверхзвуковыми бомбардировщиками или специально созданными самолетами, которые позволяют в широком диапазоне по скорости и углу тангажа осуществлять отделение РКС, выполняя роль своеобразной возвращаемой первой ступени [1]. Способ отделения РКС от СН (СР) может оказывать существенное влияние на эффективность применяемой РКС. Однако, сам способ отделения РКС от СН (СР) определяется компоновочными возможностями самолета [1]. Применение АРКС до настоящего времени пока еще не вышло за рамки экспериментально-исследовательских работ [1, 2, 3], поэтому, приводимые разработчиками, основные данные элементов и систем в целом постоянно меняются. Особенности и различия, существующих и разрабатываемых АРКС определяются, прежде всего, характеристиками транспортного или боевого самолета, способного обеспечить после относительно небольших доработок транспортировку и старт РКС. В настоящее время в качестве СН АРКС рассматриваются: бомбардировщик B-52G (L-1011) и Ан-124, а как самолет-разгонщик (СР): Ту-160. Основные характеристики самолетов [4, 5] приведены в табл.1: Таблица 1 Параметры | ЛА | B-52G | Ан-124 | Ту-160 | Нормальная взлетная масса, кг | 221357,0 | - | - | Максимальная взлетная масса, кг | 229066,0 | 405000,0 | 275000,0 | Практический потолок, м | 16750,0 | >13000,0 | 18000,0 | Максимальная скорость, км/ч (М) Н=6100 м Н>11000 м | 1070,0 (0,95) 1014,0 (0,95) | - - | - 2230,0 (2,21) | Крейсерская скорость, км/ч | 909,0 (Н=11000) | 800,0…850,0 (Н=11000) | - | Максимальная полезная нагрузка, кг | 27216,0 | >150000,0 | 45000,0 | Тяговооруженность | 0,28 | 0,23 | 0,36 | Размещение РКС | на внешней подвеске | в фюзеляже | на внешней подвеске | Место размещения РКС и ее масса определяются компоновкой применяемого самолета. Например, разместить на самолете B-52G РКС массой более 20 т на специальном балочном держателе, расположенном на крыле, сложно [2]. Габаритные размеры ракетно-космической системы и особенности фюзеляжа самолета не позволяют разместить ее в фюзеляжном отсеке без существенной переделки самолета. Размещение РКС на внешней подвеске потребовало перейти к применению РДТТ вместо ЖРД. Это обусловлено затруднениями с обеспечением необходимых климатических условий для транспортировки РКС с ЖРД. Особенности известных программ АРКС Программа “Пегас” В этой АРКС самолетом-носителем является доработанный вариант стратегического дозвукового бомбардировщика В-52G [8,2,9] (или L-1011). Самолет-носитель доставляет РКC на высоту 12000 м. В горизонтальном полете на скорости, соответствующей числу М=0,8 осуществляется сброс РКС “Пегас”. После отделения РКС осуществляет управляемый полет со снижением в течение 5 с до момента запуска РДТТ первой ступени [7]. Через указанное время происходит запуск маршевого двигателя и РКС переводится в полет с кабрированием и поперечной перегрузкой 2,5. Управление РКС на стартовом участке траектории до запуска двигателя первой ступени обеспечивает хвостовая юбка. Хвостовая юбка состоит из двух половинок, плотно охватывающих сопло первой ступени и сложенные хвостовые рули управления. Под верхней половиной юбки располагаются силовые приводы рулей управления. РКС имеет ограничение по скоростному напору (q=45,5 кН/м2). На высоте 63 км РКС достигает скорости, соответствующей числу М=8,7. После выгорания топлива первой ступени она отделяется и включается РДТТ второй ступени, обеспечивающий выведение РКС на высоту до 168 км и разгон до скорости 5,4 км/с. На высоте 112 км происходит сброс носового обтекателя и начинается баллистическая фаза полета. В конце баллистической фазы РКС выходит на высоту 463 км. Затем включается двигатель третьей ступени. В общей сложности после 534 с полета после отделения от СН обеспечивается выведение ракетно-космической системой полезной нагрузки массой 270…410 кг на круговые орбиты высотой 463 км и различными наклонениями при скорости 7,6 км/с. Первые полеты с РКС были выполнены в 1989 г. За время с 1989 г. система претерпела ряд изменений: - модифицирована РКС и самолет-носитель заменен на L-1011. РКС “Pegassus-XL” с массой полезной нагрузки до 480 кг и общей массой РКС 23,6 т; - модифицирована РКС “Pegassus-XLS” с массой полезной нагрузки до 800 кг и общей массой РКС 38,6 т; - модифицирована РКС “Pegassus-Turbo” с массой полезной нагрузки 1020 кг, общей массой РКС 32,0т. РКС стала четырехступенчатой: в дополнение к имеющимся РДТТ устанавливаются два ТРДФ. ТРДФ работают 1800…1900с. Начальные условия полета с ТРДФ Н=11,5 км, М=0,8, конечные условия Н=30 км, М=4,0 [9,3]. Проект “Воздушный старт” Ограничения по массе выводимой полезной нагрузки в проектах типа “Пегас” и наличие современного транспортного самолета Ан-124 послужили отправной точкой для создания АРКС “Воздушный старт” [8]. Грузоподъемность самолета обеспечивает транспортировку к точке старта РКС “Полет” массой до 80 т. При этом предполагается вывод полезной нагрузки от 2020 до 2690 кг в зависимости от наклонения на круговую орбиту высотой 200 км. Основные параметры РКС “Полет” приведены в табл.2. Проект “Воздушный старт” имеет отличительные особенности в способе отделения РКС от СН. РКС размещается в грузовой кабине самолета-носителя головной частью против полета (донной частью вперед). Перед десантированием РКС производится сброс давления в грузовой кабине и открытие грузового люка. Десантирование РКС может осуществляться двумя способами: из транспортно-пускового контейнера (ТПК) и в составе транспортно-пусковой платформы (ТПП). При десантировании РКС из ТПК в объеме контейнера за донной частью РКС создается избыточное давление (примерно 10132 Н/м2), осуществляется расцепка механизмов крепления РКС, контейнера и осуществляется ее выброс из грузовой кабины самолета-носителя со скоростью 20…25 м/с. При этом относительный угол тангажа РКС составляет примерно 0о, а угол атаки -180о (РКС движется донышком вперед по потоку). В момент выхода РКС осуществляется ввод в действие стабилизирующего парашюта. Он не только обеспечивает создание необходимой продольной перегрузки, но и участвует в развороте РКС на некоторый угол тангажа. Основные параметры РКС “Полет” Таблица 2 № п/п | Параметр | Значение | Массовые характеристики | 1 | Стартовая масса, кг | 80000,0 | 2 | Рабочий запас топлива блока первой ступени, кг | 46500,0 | 3 | Конечная масса блока первой ступени, кг | 58000,0 | 4 | Рабочий запас топлива блока второй ступени, кг | 23000,0 | 5 | Конечная масса блока второй ступени, кг | 2850,0 | 6 | Масса головного обтекателя, кг | 800,0 | Характеристики маршевой двигательной установки | Блок первой ступени | 7 | Компоненты топлива | Жидкий О2+СПГ | 8 | Маршевые двигатели | 4 х РД – 0143А | 9 | Тяга в вакууме, кН | 4 х 343.35 | 10 | Удельный импульс тяги в вакууме, с | 360,0 | Блок второй ступени | 11 | Компоненты топлива | Жидкий О2+СПГ | 12 | Маршевый двигатель | РД – 0143 | 13 | Тяга в вакууме, кН | 343,35 | 14 | Удельный импульс тяги в вакууме, с | 370,0 | Энергетические возможности ракетно-космической системы | 15 | Масса ПН на круговой орбите Нкр=200, I=90о, кг | 2020,0 | 16 | Масса ПН на круговой орбите Нкр=700, I=90о, кг | 1161,0 | 17 | Масса ПН на круговой орбите Нкр=1500, I=90о, кг | 1110,0 | Габаритные размеры ракетно-космической системы | 18 | Длина, м | 24,0 | 19 | Диаметр блоков первой и второй ступеней, м | 3,0 | 20 | Диаметр головного обтекателя, м | 2,7 | Ограничения | 21 | Максимальный скоростной напор, Н/м2 | 11772,0 | 22 | Максимальная поперечная перегрузка, ед. | 4,5 | Показатели надежности | 23 | Надежность | 0,99 | Через 6 с после начала десантирования РКС (за это время РКС успевает развернуться относительно своего центра масс до требуемого угла тангажа) производится запуск маршевой двигательной установки и отстрел стабилизирующего парашюта со связями. При десантировании РКС в составе ТПП после открытия грузового люка сначала вводится в действие вытяжная парашютная система (ВПС). При достижении заданного тягового усилия от ВПС происходит автоматическое открытие удерживающих замковых устройств и РКС на ТПП вытаскивается из грузовой кабины самолета. В начале перемещения РКС с ТПП относительно грузовой кабины самолета происходит расстыковка связей РКС с бортом самолета. После отделения ТПП с РКС и разворота на заданный угол тангажа по команде от бортовой системы управления РКС производится отделение ТПП с парашютом от РКС и запуск ее маршевой ДУ. В обоих вариантах десантирования перед началом процесса десантирования РКС самолет-носитель осуществляет маневр в вертикальной плоскости “горка”. Процесс десантирования начинается в момент завершения маневра при поперечной перегрузке близкой к 0,1. Это уменьшает силы трения при движении РКС относительно пола грузовой кабины самолета. В последнее время рассматривается ракета “Штиль-3А” вместо ракеты “Полет”. Проект “Бурлак - Диана” При разработке требований к АРКС “Бурлак - Диана” разработчики проекта руководствовались основными принципами [10,11]: минимальные затраты при создании системы; минимальные сроки создания системы; наибольшая эффективность применения. Реализовать подобную, в значительной степени противоречивую, совокупность принципов возможно только в том случае, если использовать наиболее эффективные и готовые, реально существующие элементы АРКС: самолет-разгонщик и РКС. В качестве СР выбран доработанный вариант самолета Ту-160 [5]. Этот самолет является единственным в мире, способным выйти на сверхзвуковой режим полета с РКС на внешней подвеске. Доработанный самолет теряет качество тяжелого бомбардировщика-носителя стратегических крылатых ракет большой дальности. На СР подвешивается РКС “Бурлак”, которая представляет собой двухступенчатый аналог (по общей массе и массе полезной нагрузки) РКС “Пегас-турбо”. Основные данные вариантов РКС “Бурлак” приведены в табл.3. Основной особенностью АРКС “Бурлак-Диана” является возможность пуска РКС на дозвуковом режиме полета самолета по типу проекта “Пегас”. Таблица 3 Описание | Конструкция | МКБ “Радуга” | Обозначение | “Бурлак” | “Бурлак-М” | “Бурлак-Диана” | Проект | 1991 | | 1994 | Система управления | инерциальная | Органы управления | газовые рули | Геометрические и массовые характеристики | Длина, м | общая | 15,3 | 20,2 | 22,5 | I ступени | 10,5 | | | II ступени | 5,5 | | | Размах крыла, м | 5,2 | | 5,0 | Размах оперения, м | 4,7 | 4,7 | 1,9 | Диаметр корпуса, м | 1,3 | 1,6 | 1,6 | Стартовая масса, кг | общая | 20000,0 | 32000,0 | 28500,0 | I ступени | | | 18000,0 | II ступени | | | 9400,0 | Масса пустой, кг | I ступени | | | 1800,0 | II ступени | | | 900,0 | Силовая установка | Двигатель | I ступени | ЖРД Р0.201 (РД-0244) | ГПВРД | ЖРД Р0.201 (РД-0244) | II ступени | ЖРД Р0.202 (РД-0242) | Тяга двигателя, кгс (кН) | I ступени | 46000,0 | | 46000,0 (451,0) | II ступени | 10000,0 (98,0) | Время работы, с | | | 336,0 | Топливо ЖРД | гидразин (UDMH) | Окислитель | азотный тетроксид N2O4 | Летные данные | Скорость пуска, км/ч (М=) | Н=9-11 км | | | (0,8) | Н=12-13 км | | | 1700 (1,7) | Высота орбиты, км | круговой | 200-1000 | эллиптической | 200 x 8500 | Наклонение орбиты, град | 0-90 | Полезная нагрузка | Тип | Легкие ИСЗ | Габариты, м | 1,9(1,3)x1,2x1,2 | 1,9x1,2x1,2 | 3,5x1,4 | Объем, м3 | 1,6-1,75 | | Вес ПН, кг | круговые полярные орбиты (h=200 км) | 300-700 | 300-700 | 775 | круговые экваториальные орбиты (h=200 км) | 500-700 | 1100 | 1100 | круговые полярные орбиты (h=1000 км) | 150 | | 550 | круговые экваториальные орбиты (h=1000 км) | 220 | | 825 | эллиптические полярные орбиты | 150 | | | эллиптические экваториальные орбиты | 220 | | | После отделения РКС от самолета происходит раскладка киля, отделение заднего обтекателя, наддув баков и стабилизация полета с помощью автономной гидросистемы. Через 5 с после отделения от самолета производится запуск первой ступени и перевод гидросистемы на работу от ЖРД. В течение 15 с производится формирование начального участка траектории полета РКС. В течение 130 с производится увеличение скорости и набор высоты. После набора высоты 30…40 км происходит переход на газодинамическую стабилизацию и выключение первой ступени. Затем производится первое включение второй ступени и осуществляется полет по расчетной траектории с набором высоты продолжительностью 60..110 с. При достижении заданных параметров полета производится выключение двигательной установки второй ступени и осуществляется пассивный баллистический полет с периодической коррекцией углового положения. Продолжительность пассивного полета составляет от 100 до 3000 с. Затем, в течение 20…50с производится включение и перевод второй ступени на заданную орбиту, доразгон до заданной скорости и ее выключение. После этого производится отделение полезной нагрузки и перевод второй ступени сначала на орбиту с сокращенным временем существования, а затем в полет по траектории схода. Таким образом, приведенные данные показывают, что основное отличие проектов АРКС заключается в способе отделения РКС от самолета-носителя (самолета-разгонщика). В свою очередь, способ отделения РКС в значительной степени определяется типом используемого СН и его возможностями по размещению РКС. Более совершенным и дешевым вариантом АРКС на базе Ту-160 является система, использующая боевую ракету “Штиль – 3А”. В этом случае появляется возможность экономии не только материальных ресурсов, но и времени. В этом варианте АРКС осуществляется реализация старта РКС на сверхзвуковом режиме полета. Анализ данных открытой печати, специальных изданий и отдельных публикаций позволил сделать следующие выводы: 1. Ни один из существующих проектов АРКС, в силу различных причин, не является результатом выполнения целевых поисковых научно-исследовательских работ. 2. Энергетические возможности АРКС в значительной степени зависят от уровней потерь на характерных участках траектории полета РКС. 3. Тип используемого самолета и его летно-технические характеристики с РКС на борту оказывают определяющее влияние на условия старта РКС и показатели транспортной эффективности АРКС: максимальную абсолютную (относительную) массу выводимой полезной нагрузки или максимальную высоту круговой орбиты в целом. Список литературы Кобелев В.Н., Милованов А.Г., Волхонский А.Е. Введение в аэрокосмическую технику/Под ред. проф. д.т.н. В.Н. Кобелева.-М.: МГАТУ, 1996.-267 с. НОВОСТИ ЗАРУБЕЖНОЙ НАУКИ И ТЕХНИКИ, Серия: АВИАЦИОННАЯ И РАКЕТНАЯ ТЕХНИКА. Крылатая авиационная ракета-носитель “Пегас”. ЦАГИ имени проф. Н.Е.Жуковского, № 20, 1989, стр. 22-29. Flight International, 9-15/IV 1997, vol. 151, № 4569, pg. 23. Tachenbuch der Luftflotten 1983/84/ Warplanes of the World. Bernard & Graefe Verlag, Koblenz, 1983.-560 pg. Зуенко Ю.А., Коростелев С.А. Боевые самолеты России.-М.: Элакос, 1994.-192 с. Летающий космодром. “Наука и жизнь”, №11, 1999г.-с. 49. Патент RU № 2026798 кл. 6 В 64 D 5/00, F 42 В 15/00. Ракета-носитель, сбрасываемая с самолета-носителя, и способ ее запуска в воздухе и управление полетом. Летающий космодром. “Наука и жизнь”, №11, 1999г.-с. 49. Air et Cosmos, 11/VI 88 № 1194, рg.18. Исследование технических, эксплуатационных и производственных аспектов концепции ДИАНА-БУРЛАК. МКБ “Радуга”, 1994. Аванпроект АКК “Бурлак”. Информационно-управляющая система. О-42842 ГосНИИАС, 1992. |