Реферат на тему Зоны Френеля
Работа добавлена на сайт bukvasha.net: 2014-08-13Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
АКАДЕМИЯ
Кафедра физики
Реферат на тему:
Тонкая структура электромагнитного поля в свободном пространстве и при наличии экранирующих препятствий
Содержание
Введение………………………………………………………………….…3
Принцип Гюйгенса - Френеля, зоны Френеля…………………………..4
Дифракция радиоволн на полуплоскости……………………………….8
Заключение……………………………………………………………….12
Литература………………………………………………………………..13
Введение
Необходимо отметить, что при распространении радиоволн в свободном пространстве различные его области не одинаково влияют на формирование электромагнитного поля в удаленной от излучателя точке приема. При этом всегда можно выделить некоторую область пространства, в которой распространяется основная часть передаваемой в заданном направлении энергии электромагнитных волн. Ее размеры и конфигурацию определяют исходя из известного из курса физики принципа Гюйгенса-Френеля.
Принцип Гюйгенса - Френеля, зоны Френеля.
Согласно принципу Гюйгенса, каждая точка фронта распространяющейся волны является источником новой сферической волны. При этом, если известно положение фронта волны S(t) в некоторый момент времени " t " (см. рис.1) и скорость волны " ![](https://bukvasha.net/img/17/dopb168572.zip)
", то положение фронта в последующий момент времени (t + ![](https://bukvasha.net/img/17/dopb168573.zip)
) можно определить поверхностью S(t+ ![](https://bukvasha.net/img/17/dopb168573.zip)
), огибающей все вторичные волны. Принцип Гюйгенса является чисто геометрическим и не указывает способа расчета амплитуды волны, огибающей вторичные волны. Поэтому, развивая указанный принцип, Френель предложил идею о когерентности вторичных волн и их интерференции, что позволяет определять полное поле в любой точке пространства как сумму элементарных волн, излучаемых "элементами Гюйгенса". Объединенные идеи Гюйгенса и Френеля известны в современной физике и электродинамике в качестве "Принципа Гюйгенса - Френеля".
![](https://bukvasha.net/img/17/dopb168575.zip)
Рис. 1
Использование данного принципа позволяет достаточно просто определить размеры и форму области пространства распространения прямой электромагнитной волны.
Из теории электромагнитного поля известно, что каждый элемент фронта волны (элемент Гюйгенса), созданный каким-либо первичным источником, является вторичным источником сферической волны с характеристикой направленности в виде кардиоиды.
Математически характеристика направленности указанного элемента описывается функцией ![](https://bukvasha.net/img/17/dopb168576.zip)
.
Если источник электромагнитного поля находится в некоторой точке А (рис. 2а), то полное поле в точке приема В можно определить, опираясь на вышеизложенное, воспользовавшись формулой Кирхгофа:
![](https://bukvasha.net/img/17/dopb168577.zip)
, (1)
где ![](https://bukvasha.net/img/17/dopb168578.zip)
- величина поля на элементе Гюйгенса, создаваемая первичным источником А;
r’’ - расстояние от элемента Гюйгенса до точки приема; ![](https://bukvasha.net/img/17/dopb168579.zip)
.
![](https://bukvasha.net/img/17/dopb168580.zip)
а) б)
Рис. 2
С учетом того, что:
![](https://bukvasha.net/img/17/dopb168582.zip)
,полное поле в точке В будет равно
![](https://bukvasha.net/img/17/dopb168583.zip)
. (2)
Поскольку форма поверхности не имеет значения, возьмем в качестве этой поверхности плоскость, расположенную на расстояниях r1 и r2 (r1+ r2 =r) от точек А и В перпендикулярно траектории прямой волны (см. рис. 2б). При этом фазы элементарных волн будут определяться соотношением ![](https://bukvasha.net/img/17/dopb168584.zip)
![](https://bukvasha.net/img/17/dopb168585.zip)
= k(r' + r''), а для центральной элементарной волны ![](https://bukvasha.net/img/17/dopb168586.zip)
= kr = k(r1 + r2).
Для упрощения анализа характера и степени вторичных элементарных источников электромагнитных волн, расположенных на поверхности S, на результирующее поле в точке В, разделим всю поверхность S на зоны Френеля.
Зона Френеля - это часть поверхности фронта электромагнитной волны, охватывающая вторичные источники, элементарные волны которых в точке В расходятся по фазе не более чем на 1800, при этом соседние зоны Френеля создают в точке В противофазные поля.
Математически размер зоны определяется выражением:
![](https://bukvasha.net/img/17/dopb168587.zip)
(3)
Если перемещать воображаемую поверхность S вдоль линии АВ, то окружности радиуса ![](https://bukvasha.net/img/17/dopb168588.zip)
опишут поверхности эллипсоидов вращения.
Области пространства между двумя соседними эллипсоидами вращения являются пространственными зонами Френеля (см. рисунок 3).
Несмотря на то, что площади зон Френеля
![](https://bukvasha.net/img/17/dopb168589.zip)
(4)
на плоскости S одинаковы, амплитуды, создаваемых ими полей в точке В убывают с ростом n, так как при этом ( ![](https://bukvasha.net/img/17/dopb168590.zip)
) - уменьшается, а r'(r'') - увеличивается. Поэтому результирующее поле в точке В в основном создается волнами вторичных излучателей, расположенных в пределах первых нескольких зон Френеля.
Как показывают расчеты и эксперимент, вследствие взаимной компенсации противофазных полей соседних зон Френеля результирующее поле в точке В определяется действием лишь вторичных излучателей, расположенных в пределах 1/3 первой зоны Френеля (n = 1/3) с радиусом
![](https://bukvasha.net/img/17/dopb168591.zip)
. (5)
Величина ![](https://bukvasha.net/img/17/dopb168592.zip)
имеет важное практическое значение, так как определяет размеры области существенной для распространения радиоволн.
![](https://bukvasha.net/img/17/dopb168594.zip)
Рис. 3
Результаты эксперимента (зависимость |Е/Есв| в очке В от относительной величины отверстия S/S1) показаны на рисунке 4.
![](https://bukvasha.net/img/17/dopb168595.zip)
Рис. 4
Из рисунка 4 следует, что напряженность поля при отсутствии экрана Есв равняется напряженности поля Е при наличии экрана с отверстием, имеющим площадь, равную S1/3, радиус которой - ![](https://bukvasha.net/img/17/dopb168596.zip)
. Экран практически не влияет на величину поля в точке приема при n > 8 (8 зон Френеля).
Дифракция радиоволн на полуплоскости.
Область, существенная для распространения радиоволн
Дифракция - огибание электромагнитной волной встречных препятствий.
Волновую теорию (принципы Гюйгенса-Френеля) можно использовать на практике для определения множителя ослабления электромагнитной волны на радиотрассе с препятствием.
Данную задачу можно решить достаточно просто, если препятствие в виде горы, холма и т.п. аппроксимировать плоскостью (рисунок 5).
![](https://bukvasha.net/img/17/dopb168597.zip)
Рис. 5
Опираясь на рисунок 5, определим напряженность поля в точке приема В, используя формулу (2). При этом интегрирование в данном выражении будет производиться лишь по полуплоскости, дополняющей экран (т.е. при Z ![](https://bukvasha.net/img/17/dopb168598.zip)
Н), так как поле ЕS на теневой стороне экрана равно нулю.
Путем ввода некоторых допусков и новых переменных, выражение (2) приводится к виду
![](https://bukvasha.net/img/17/dopb168599.zip)
. (6)
Тогда множитель ослабления на трассе с препятствием в виде полуплоскости определяется выражением
![](https://bukvasha.net/img/17/dopb168600.zip)
. (7)
Здесь параметр U0 равен отношению Н к радиусу ![](https://bukvasha.net/img/17/dopb168601.zip)
первой полузоны Френеля:
![](https://bukvasha.net/img/17/dopb168602.zip)
, (8)
где Н - величина просвета (расстояние между прямой, соединяющей точки приема и передачи и кромкой экрана (препятствия)).
График функции |F(U0)| изображен на рисунке 6.
![](https://bukvasha.net/img/17/dopb168603.zip)
Рис. 6
По данному графику легко определить область, существенную для распространения радиоволны. Анализ функции |F(U0)|, представленной на рисунке 6, показывает, что при Н = 0, т.е. когда траектория волны касается кромки экрана и все зоны Френеля оказываются наполовину прикрытыми, поле в точке приема составляет 0,5Есв. При увеличении просвета (Н > 0) между прямым лучом и кромкой экрана поле в точке приема быстро растет до величины, примерно равной полю в свободном пространстве. Это имеет место при Н = ![](https://bukvasha.net/img/17/dopb168604.zip)
.
Поэтому величину ![](https://bukvasha.net/img/17/dopb168604.zip)
, определяемую соотношением (5), называют радиусом области, существенной для распространения прямой волны.
Областью, существенной для РРВ, называют область пространства между передатчиком и приемником ЭМВ в виде параболоида вращения с радиусом в плоскости поперечного сечения, равным ![](https://bukvasha.net/img/17/dopb168604.zip)
, препятствия расположенные вне этой области не влияют на уровень сигнала в точке приема.
В зависимости от величины Н различают следующие виды радиорелейных трасс:
- закрытую, если Н < 0 (кромка экрана выше траектории волны);
- полуоткрытую, если 0 ![](https://bukvasha.net/img/17/dopb168605.zip)
Н < ![](https://bukvasha.net/img/17/dopb168592.zip)
;
- открытую, если Н ![](https://bukvasha.net/img/17/dopb168598.zip)
![](https://bukvasha.net/img/17/dopb168592.zip)
.
Поперечные размеры области существенной для распространения уменьшаются с уменьшением ![](https://bukvasha.net/img/17/dopb168606.zip)
, а также по мере приближения к одному из концов трассы. Наибольший радиус области соответствует середине радиотрассы
![](https://bukvasha.net/img/17/dopb168607.zip)
.
Заключение
Современный этап развития общества характеризуется использованием огромного количества радиоэлектронных средств, связанных с генерированием, передачей, приемом и преобразованием электромагнитных колебаний. Функционирование одних РЭС сопровождается созданием непреднамеренных помех электромагнитных помех для других РЭС. При этом возникает проблема обеспечения электромагнитной совместимости РЭС, так как в силу объективных свойств радиочастотного спектра, большой мощности радиопередатчиков и высокой восприимчивости современных радиоприемников ухудшаются возможности одновременного функционирования РЭС без существенного снижения качества и скорости передачи сообщений.
Литература
· "Электродинамика и распространение радиоволн" С.Сергеев, Орел, ВИПС
· «Основные закономерности распространения прямых радиоволн и работы радиолиний». Лазоренко, Орел, ВИПС
· «Радиопередающие устройства», Шагельдян В.В., Москва
Кафедра физики
Реферат на тему:
Тонкая структура электромагнитного поля в свободном пространстве и при наличии экранирующих препятствий
Содержание
Введение………………………………………………………………….…3
Принцип Гюйгенса - Френеля, зоны Френеля…………………………..4
Дифракция радиоволн на полуплоскости……………………………….8
Заключение……………………………………………………………….12
Литература………………………………………………………………..13
Введение
Необходимо отметить, что при распространении радиоволн в свободном пространстве различные его области не одинаково влияют на формирование электромагнитного поля в удаленной от излучателя точке приема. При этом всегда можно выделить некоторую область пространства, в которой распространяется основная часть передаваемой в заданном направлении энергии электромагнитных волн. Ее размеры и конфигурацию определяют исходя из известного из курса физики принципа Гюйгенса-Френеля.
Принцип Гюйгенса - Френеля, зоны Френеля.
Согласно принципу Гюйгенса, каждая точка фронта распространяющейся волны является источником новой сферической волны. При этом, если известно положение фронта волны S(t) в некоторый момент времени " t " (см. рис.1) и скорость волны "
Рис. 1
Использование данного принципа позволяет достаточно просто определить размеры и форму области пространства распространения прямой электромагнитной волны.
Из теории электромагнитного поля известно, что каждый элемент фронта волны (элемент Гюйгенса), созданный каким-либо первичным источником, является вторичным источником сферической волны с характеристикой направленности в виде кардиоиды.
Математически характеристика направленности указанного элемента описывается функцией
Если источник электромагнитного поля находится в некоторой точке А (рис. 2а), то полное поле в точке приема В можно определить, опираясь на вышеизложенное, воспользовавшись формулой Кирхгофа:
где
r’’ - расстояние от элемента Гюйгенса до точки приема;
а) б)
Рис. 2
С учетом того, что:
Поскольку форма поверхности не имеет значения, возьмем в качестве этой поверхности плоскость, расположенную на расстояниях r1 и r2 (r1+ r2 =r) от точек А и В перпендикулярно траектории прямой волны (см. рис. 2б). При этом фазы элементарных волн будут определяться соотношением
Для упрощения анализа характера и степени вторичных элементарных источников электромагнитных волн, расположенных на поверхности S, на результирующее поле в точке В, разделим всю поверхность S на зоны Френеля.
Зона Френеля - это часть поверхности фронта электромагнитной волны, охватывающая вторичные источники, элементарные волны которых в точке В расходятся по фазе не более чем на 1800, при этом соседние зоны Френеля создают в точке В противофазные поля.
Математически размер зоны определяется выражением:
Если перемещать воображаемую поверхность S вдоль линии АВ, то окружности радиуса
Области пространства между двумя соседними эллипсоидами вращения являются пространственными зонами Френеля (см. рисунок 3).
Несмотря на то, что площади зон Френеля
на плоскости S одинаковы, амплитуды, создаваемых ими полей в точке В убывают с ростом n, так как при этом (
Как показывают расчеты и эксперимент, вследствие взаимной компенсации противофазных полей соседних зон Френеля результирующее поле в точке В определяется действием лишь вторичных излучателей, расположенных в пределах 1/3 первой зоны Френеля (n = 1/3) с радиусом
Величина
Рис. 3
Результаты эксперимента (зависимость |Е/Есв| в очке В от относительной величины отверстия S/S1) показаны на рисунке 4.
Рис. 4
Из рисунка 4 следует, что напряженность поля при отсутствии экрана Есв равняется напряженности поля Е при наличии экрана с отверстием, имеющим площадь, равную S1/3, радиус которой -
Дифракция радиоволн на полуплоскости.
Область, существенная для распространения радиоволн
Дифракция - огибание электромагнитной волной встречных препятствий.
Волновую теорию (принципы Гюйгенса-Френеля) можно использовать на практике для определения множителя ослабления электромагнитной волны на радиотрассе с препятствием.
Данную задачу можно решить достаточно просто, если препятствие в виде горы, холма и т.п. аппроксимировать плоскостью (рисунок 5).
Рис. 5
Опираясь на рисунок 5, определим напряженность поля в точке приема В, используя формулу (2). При этом интегрирование в данном выражении будет производиться лишь по полуплоскости, дополняющей экран (т.е. при Z
Путем ввода некоторых допусков и новых переменных, выражение (2) приводится к виду
Тогда множитель ослабления на трассе с препятствием в виде полуплоскости определяется выражением
Здесь параметр U0 равен отношению Н к радиусу
где Н - величина просвета (расстояние между прямой, соединяющей точки приема и передачи и кромкой экрана (препятствия)).
График функции |F(U0)| изображен на рисунке 6.
По данному графику легко определить область, существенную для распространения радиоволны. Анализ функции |F(U0)|, представленной на рисунке 6, показывает, что при Н = 0, т.е. когда траектория волны касается кромки экрана и все зоны Френеля оказываются наполовину прикрытыми, поле в точке приема составляет 0,5Есв. При увеличении просвета (Н > 0) между прямым лучом и кромкой экрана поле в точке приема быстро растет до величины, примерно равной полю в свободном пространстве. Это имеет место при Н =
Поэтому величину
Областью, существенной для РРВ, называют область пространства между передатчиком и приемником ЭМВ в виде параболоида вращения с радиусом в плоскости поперечного сечения, равным
В зависимости от величины Н различают следующие виды радиорелейных трасс:
- закрытую, если Н < 0 (кромка экрана выше траектории волны);
- полуоткрытую, если 0
- открытую, если Н
Поперечные размеры области существенной для распространения уменьшаются с уменьшением
Заключение
Современный этап развития общества характеризуется использованием огромного количества радиоэлектронных средств, связанных с генерированием, передачей, приемом и преобразованием электромагнитных колебаний. Функционирование одних РЭС сопровождается созданием непреднамеренных помех электромагнитных помех для других РЭС. При этом возникает проблема обеспечения электромагнитной совместимости РЭС, так как в силу объективных свойств радиочастотного спектра, большой мощности радиопередатчиков и высокой восприимчивости современных радиоприемников ухудшаются возможности одновременного функционирования РЭС без существенного снижения качества и скорости передачи сообщений.
Литература
· "Электродинамика и распространение радиоволн" С.Сергеев, Орел, ВИПС
· «Основные закономерности распространения прямых радиоволн и работы радиолиний». Лазоренко, Орел, ВИПС
· «Радиопередающие устройства», Шагельдян В.В., Москва