| Министерство
науки и образования
Украины
Институт
социального
управления
экономики и
права
Кафедра
специализированных
компьютерных
систем
Пояснительная
записка
ІСУЕП
04254.009
до курсового
проекта
с дисциплины:
«Архитектура
ЭВМ»
на тему:
«Архитектура
Flash-памяти»
Проверил: |
Подготовил: |
проф.
Романкевич
О.М.
ст.
преп.
Рудаков
К.С.
|
студент III
курса
группы КС-14
Крывонижко
К.Н.
|
_____________
(оценка)
«___»
________
«___» ________
_____________
_____________
(подпись)
(подпись)
г. Черкассы
2004
Содержание
Введение 3-4
Что
такое
flash-память?....................................................................5-9
Организация
flash-памяти…………………………………………10-14
Архитектура
флэш-памяти………………………………………..14-18
Карты
памяти
(флэш-карты)………………………………………19-28
Вывод………………………………………………………………..29
Литература..........................................................................................30
1.Введение
Технология
флэш-памяти
появилась около
20-ти лет назад.
В конце 80-х годов
прошлого столетия
флэш-память
начали использовать
в качестве
альтернативы
UV-EPROM. С этого момента
интерес к флэш-памяти
с каждым годом
неуклонно
возрастает.
Внимание, которое
уделяется
флэш-памяти,
вполне объяснимо
– ведь это самый
быстрорастущий
сегмент полупроводникового
рынка. Ежегодно
рынок флэш-памяти
растет более
чем на 15%, что
превышает
суммарный рост
всей остальной
полупроводниковой
индустрии.
Сегодня
флэш-память
можно найти
в самых разных
цифровых устройствах.
Её используют
в качестве
носителя
микропрограмм
для микроконтроллеров
HDD и CD-ROM, для хранения
BIOS в ПК. Флэш-память
используют
в принтерах,
КПК, видеоплатах,
роутерах,
брандмауэрах,
сотовых телефонах,
электронных
часах, записных
книжках, телевизорах,
кондиционерах,
микроволновых
печах и стиральных
машинах... список
можно продолжать
бесконечно.
А в последние
годы флэш становится
основным типом
сменной памяти,
используемой
в цифровых
мультимедийных
устройствах,
таких как mp3-плееры
и игровые приставки.
А все это стало
возможным
благодаря
созданию компактных
и мощных процессоров.
Однако при
покупке какого-либо
устройства,
помещающегося
в кармане, не
стоит ориентироваться
лишь на процессорную
мощность, поскольку
в списке приоритетов
она стоит далеко
не на первом
месте.
Начало этому
было положено
в 1997 году, когда
флэш-карты
впервые стали
использовать
в цифровых
фотокамерах.
При выборе
портативных
устройств самое
важное, на мой
взгляд - время
автономной
работы при
разумных массе
и размерах
элемента питания.
Во многом это
от памяти, которая
определяет
объем сохраненного
материала, и,
продолжительность
работы без
подзарядки
аккумуляторов.
Возможность
хранения информации
в карманных
устройствах
ограничивается
скромными
энергоресурсами
Память, обычно
используемая
в ОЗУ компьютеров,
требует постоянной
подачи напряжения.
Дисковые накопители
могут сохранять
информацию
и без непрерывной
подачи электричества,
зато при записи
и считывании
данных тратят
его за троих.
Хорошим выходом
оказалась
флэш-память,
не разряжающаяся
самопроизвольно.
Носители на
ее основе называются
твердотельными,
поскольку не
имеют движущихся
частей. К сожалению,
флэш-память
- дорогое удовольствие:
средняя стоимость
ее мегабайта
составляет
2 доллара, что
в восемь раз
выше, чем у SDRAM, не
говоря уж о
жестких дисках.
А вот отсутствие
движущихся
частей повышает
надежность
флэш-памяти:
стандартные
рабочие перегрузки
равняются 15 g,
а кратковременные
могут достигать
2000 g, т. е. теоретически
карта должна
превосходно
работать при
максимально
возможных
космических
перегрузках,
и выдержать
падения с
трёхметровой
высоты. Причем
в таких условиях
гарантируется
функционирование
карты до 100 лет.
Многие производители
вычислительной
техники видят
память будущего
исключительно
твердотелой.
Следствием
этого стало
практически
одновременное
появление на
рынке комплектующих
нескольких
стандартов
флэш-памяти.
2.Что
такое flash-память?
Флэш-память
- особый вид
энергонезависимой
перезаписываемой
полупроводниковой
памяти.
Энергонезависимая
- не требующая
дополнительной
энергии для
хранения данных
(энергия требуется
только для
записи).
Перезаписываемая
- допускающая
изменение
(перезапись)
хранимых в ней
данных.
Полупроводниковая
(твердотельная)
- не содержащая
механически
движущихся
частей (как
обычные жёсткие
диски или CD),
построенная
на основе
интегральных
микросхем
(IC-Chip).
В отличие
от многих других
типов полупроводниковой
памяти, ячейка
флэш-памяти
не содержит
конденсаторов
– типичная
ячейка флэш-памяти
состоит всего-навсего
из одного транзистора
особой архитектуры.
Ячейка флэш-памяти
прекрасно
масштабируется,
что достигается
не только благодаря
успехам в
миниатюризации
размеров
транзисторов,
но и благодаря
конструктивным
находкам, позволяющим
в одной ячейке
флэш-памяти
хранить несколько
бит информации.
Флэш-память
исторически
происходит
от ROM
(Read Only Memory) памяти, и
функционирует
подобно RAM (Random Access
Memory). Данные флэш
хранит в ячейках
памяти, похожих
на ячейки в
DRAM. В отличие от
DRAM, при отключении
питания данные
из флэш-памяти
не пропадают.
Замены памяти
SRAM и DRAM флэш-памятью
не происходит
из-за двух
особенностей
флэш-памяти:
флэш работает
существенно
медленнее и
имеет ограничение
по количеству
циклов перезаписи
(от 10.000 до 1.000.000 для
разных типов).
Надёжность/долговечность:
информация,
записанная
на флэш-память,
может храниться
очень длительное
время (от 20 до
100 лет), и способна
выдерживать
значительные
механические
нагрузки (в
5-10 раз превышающие
предельно
допустимые
для обычных
жёстких дисков).
Основное преимущество
флэш-памяти
перед жёсткими
дисками и носителями
CD-ROM состоит в том,
что флэш-память
потребляет
значительно
(примерно в
10-20 и более раз)
меньше энергии
во время работы.
В устройствах
CD-ROM, жёстких дисках,
кассетах и
других механических
носителях
информации,
большая часть
энергии уходит
на приведение
в движение
механики этих
устройств.
Кроме того,
флэш-память
компактнее
большинства
других механических
носителей.
Флэш-память
исторически
произошла от
полупроводникового
ROM,
однако ROM-памятью
не является,
а всего лишь
имеет похожую
на ROM организацию.
Множество
источников
(как отечественных,
так и зарубежных)
зачастую ошибочно
относят флэш-память
к ROM. Флэш никак
не может быть
ROM хотя бы потому,
что ROM (Read Only Memory) переводится
как "память
только для
чтения". Ни о
какой возможности
перезаписи
в ROM речи быть
не может! Небольшая,
по началу, неточность
не обращала
на себя внимания,
однако с развитием
технологий,
когда флэш-память
стала выдерживать
до 1 миллиона
циклов перезаписи,
и стала использоваться
как накопитель
общего назначения,
этот недочет
в классификации
начал бросаться
в глаза. Среди
полупроводниковой
памяти только
два типа относятся
к "чистому"
ROM - это Mask-ROM
и PROM.
В отличие от
них EPROM,
EEPROM
и Flash
относятся к
классу энергонезависимой
перезаписываемой
памяти (английский
эквивалент
- nonvolatile read-write memory или NVRWM).
ROM:
ROM (Read Only Memory) -
память только
для чтения.
Русский эквивалент
- ПЗУ (Постоянно
Запоминающее
Устройство).
Если быть совсем
точным, данный
вид памяти
называется
Mask-ROM (Масочные
ПЗУ). Память
устроена в
виде адресуемого
массива ячеек
(матрицы), каждая
ячейка которого
может кодировать
единицу информации.
Данные на ROM
записывались
во время производства
путём нанесения
по маске (отсюда
и название)
алюминиевых
соединительных
дорожек литографическим
способом. Наличие
или отсутствие
в соответствующем
месте такой
дорожки кодировало
"0" или "1". Mask-ROM
отличается
сложностью
модификации
содержимого
(только путем
изготовления
новых микросхем),
а также длительностью
производственного
цикла (4-8 недель).
Поэтому, а также
в связи с тем,
что современное
программное
обеспечение
зачастую имеет
много недоработок
и часто требует
обновления,
данный тип
памяти не получил
широкого
распространения. Преимущества: 1.
Низкая стоимость
готовой
запрограммированной
микросхемы
(при больших
объёмах производства). 2.
Высокая скорость
доступа к ячейке
памяти. 3. Высокая
надёжность
готовой микросхемы
и устойчивость
к электромагнитным
полям. Недостатки: 1.
Невозможность
записывать
и модифицировать
данные после
изготовления. 2.
Сложный производственный
цикл.
PROM
- (Programmable ROM), или
однократно
Программируемые
ПЗУ. В качестве
ячеек памяти
в данном типе
памяти использовались
плавкие перемычки.
В отличие от
Mask-ROM,
в PROM появилась
возможность
кодировать
("пережигать")
ячейки при
наличии специального
устройства
для записи
(программатора).
Программирование
ячейки в PROM
осуществляется
разрушением
("прожигом")
плавкой перемычки
путём подачи
тока высокого
напряжения.
Возможность
самостоятельной
записи информации
в них сделало
их пригодными
для штучного
и мелкосерийного
производства.
PROM практически
полностью
вышел из употребления
в конце 80-х
годов. Преимущества:
1. Высокая
надёжность
готовой микросхемы
и устойчивость
к электромагнитным
полям. 2. Возможность
программировать
готовую микросхему,
что удобно для
штучного и
мелкосерийного
производства. 3.
Высокая скорость
доступа к ячейке
памяти. Недостатки:
1. Невозможность
перезаписи 2.
Большой процент
брака 3. Необходимость
специальной
длительной
термической
тренировки,
без которой
надежность
хранения данных
была невысокой
NVRWM:
EPROM Различные
источники
по-разному
расшифровывают
аббревиатуру
EPROM - как Erasable Programmable ROM или
как Electrically Programmable ROM (стираемые
программируемые
ПЗУ или электрически
программируемые
ПЗУ). В EPROM перед
записью необходимо
произвести
стирание
(соответственно
появилась
возможность
перезаписывать
содержимое
памяти). Стирание
ячеек EPROM выполняется
сразу для всей
микросхемы
посредством
облучения чипа
ультрафиолетовыми
или рентгеновскими
лучами в течение
нескольких
минут. Микросхемы,
стирание которых
производится
путем засвечивания
ультрафиолетом,
были разработаны
Intel в 1971 году, и носят
название UV-EPROM
(приставка UV
(Ultraviolet) - ультрафиолет).
Они содержат
окошки из кварцевого
стекла, которые
по окончании
процесса стирания
заклеивают. Достоинство:
Возможность
перезаписывать
содержимое
микросхемы Недостатки:
1. Небольшое
количество
циклов перезаписи. 2.
Невозможность
модификации
части хранимых
данных. 3. Высокая
вероятность
"недотереть"
(что в конечном
итоге приведет
к сбоям) или
передержать
микросхему
под УФ-светом
(т.н. overerase - эффект
избыточного
удаления,
"пережигание"),
что может уменьшить
срок службы
микросхемы
и даже привести
к её полной
негодности.
EEPROM (EEPROM
или Electronically EPROM) - электрически
стираемые ППЗУ
были разработаны
в 1979 году в той
же Intel. В 1983 году
вышел первый
16Кбит образец,
изготовленный
на основе
FLOTOX-транзисторов
(Floating Gate Tunnel-OXide - "плавающий"
затвор с туннелированием
в окисле). Главной
отличительной
особенностью
EEPROM (в т.ч. Flash)
от ранее рассмотренных
нами типов
энергонезависимой
памяти является
возможность
перепрограммирования
при подключении
к стандартной
системной шине
микропроцессорного
устройства.
В EEPROM появилась
возможность
производить
стирание отдельной
ячейки при
помощи электрического
тока. Для EEPROM стирание
каждой ячейки
выполняется
автоматически
при записи в
нее новой
информации,
т.е. можно изменить
данные в любой
ячейке, не
затрагивая
остальные.
Процедура
стирания обычно
существенно
длительнее
процедуры
записи. Преимущества
EEPROM по сравнению
с EPROM: 1. Увеличенный
ресурс работы. 2.
Проще в обращении. Недостаток:
Высокая стоимость
Flash (полное
историческое
название Flash Erase
EEPROM): Изобретение
флэш-памяти
зачастую
незаслуженно
приписывают
Intel, называя при
этом 1988 год. На
самом деле
память впервые
была разработана
компанией
Toshiba в 1984 году, и уже
на следующий
год было начато
производство
256Кбит микросхем
flash-памяти в
промышленных
масштабах. В
1988 году Intel разработала
собственный
вариант флэш-памяти. Во
флэш-памяти
используется
несколько
отличный от
EEPROM
тип ячейки-транзистора.
Технологически
флэш-память
родственна
как EPROM,
так и EEPROM.
Основное отличие
флэш-памяти
от EEPROM заключается
в том, что стирание
содержимого
ячеек выполняется
либо для всей
микросхемы,
либо для определённого
блока (кластера,
кадра или страницы).
Обычный размер
такого блока
составляет
256 или 512 байт, однако
в некоторых
видах флэш-памяти
объём блока
может достигать
256КБ. Следует
заметить, что
существуют
микросхемы,
позволяющие
работать с
блоками разных
размеров (для
оптимизации
быстродействия).
Стирать можно
как блок, так
и содержимое
всей микросхемы
сразу. Таким
образом, в общем
случае, для
того, чтобы
изменить один
байт, сначала
в буфер считывается
весь блок, где
содержится
подлежащий
изменению
байт, стирается
содержимое
блока, изменяется
значение байта
в буфере, после
чего производится
запись измененного
в буфере блока.
Такая схема
существенно
снижает скорость
записи небольших
объёмов данных
в произвольные
области памяти,
однако значительно
увеличивает
быстродействие
при последовательной
записи данных
большими
порциями. Преимущества
флэш-памяти
по сравнению
с EEPROM:
1. Более
высокая скорость
записи при
последовательном
доступе за
счёт того, что
стирание информации
во флэш производится
блоками. 2.
Себестоимость
производства
флэш-памяти
ниже за счёт
более простой
организации. Недостаток:
Медленная
запись в произвольные
участки памяти.
3.Организация
flash-памяти
Ячейки
флэш-памяти
бывают как на
одном, так и на
двух транзисторах.
В
простейшем
случае каждая
ячейка хранит
один бит информации
и состоит из
одного полевого
транзистора
со специальной
электрически
изолированной
областью ("плавающим"
затвором - floating
gate), способной
хранить заряд
многие годы.
Наличие или
отсутствие
заряда кодирует
один бит информации.
При
записи
заряд помещается
на плавающий
затвор одним
из двух способов
(зависит от
типа ячейки):
методом инжекции
"горячих"
электронов
или методом
туннелирования
электронов.
Стирание
содержимого
ячейки (снятие
заряда с "плавающего"
затвора) производится
методом тунеллирования.
Как
правило, наличие
заряда на транзисторе
понимается
как логический
"0", а его отсутствие
- как логическая
"1". Современная
флэш-память
обычно изготавливается
по 0,13- и 0,18-микронному
техпроцессу.
Общий
принцип работы
ячейки флэш-памяти.
Рассмотрим
простейшую
ячейку флэш-памяти
на одном n-p-n транзисторе.
Ячейки подобного
типа чаще всего
применялись
во flash-памяти с
NOR
архитектурой,
а также в микросхемах
EPROM.
Поведение
транзистора
зависит от
количества
электронов
на "плавающем"
затворе. "Плавающий"
затвор играет
ту же роль, что
и конденсатор
в DRAM, т. е. хранит
запрограммированное
значение. Помещение
заряда на "плавающий"
затвор в такой
ячейке производится
методом инжекции
"горячих"
электронов
(CHE - channel hot electrons), а снятие
заряда осуществляется
методом квантомеханического
туннелирования
Фаулера-Нордхейма
(Fowler-Nordheim [FN]).
|
При
чтении, в отсутствие
заряда на
"плавающем"
затворе, под
воздействием
положительного
поля на управляющем
затворе, образуется
n-канал в подложке
между истоком
и стоком, и
возникает
ток. |
|
Наличие
заряда на
"плавающем"
затворе меняет
вольт-амперные
характеристики
транзистора
таким образом,
что при обычном
для чтения
напряжении
канал не появляется,
и тока между
истоком и стоком
не возникает. |
|
При
программировании
на сток и управляющий
затвор подаётся
высокое напряжение
(причём на
управляющий
затвор напряжение
подаётся
приблизительно
в два раза выше).
"Горячие"
электроны из
канала инжектируются
на плавающий
затвор и изменяют
вольт-амперные
характеристики
транзистора.
Такие электроны
называют
"горячими"
за то, что обладают
высокой энергией,
достаточной
для преодоления
потенциального
барьера, создаваемого
тонкой плёнкой
диэлектрика.
|
|
При
стирании высокое
напряжение
подаётся на
исток. На управляющий
затвор (опционально)
подаётся высокое
отрицательное
напряжение.
Электроны
туннелируют
на исток. |
Эффект
туннелирования
- один из эффектов,
использующих
волновые свойства
электрона. Сам
эффект заключается
в преодолении
электроном
потенциального
барьера малой
"толщины". Для
наглядности
представим
себе структуру,
состоящую из
двух проводящих
областей, разделенных
тонким слоем
диэлектрика
(обеднённая
область). Преодолеть
этот слой обычным
способом электрон
не может - не
хватает энергии.
Но при создании
определённых
условий (соответствующее
напряжение
и т.п.) электрон
проскакивает
слой диэлектрика
(туннелирует
сквозь него),
создавая ток.
Важно отметить,
что при туннелировании
электрон оказывается
"по другую
сторону", не
проходя через
диэлектрик.
Такая вот
"телепортация".
Различия
методов тунеллирования
Фаулера-Нордхейма
(FN) и метода инжекции
"горячих"
электронов:
Channel FN tunneling - не требует
большого напряжения.
Ячейки, использующие
FN, могут быть
меньше ячеек,
использующих
CHE.
CHE injection (CHEI) - требует
более высокого
напряжения,
по сравнению
с FN. Таким образом,
для работы
памяти требуется
поддержка
двойного питания.
Программирование
методом CHE осуществляется
быстрее, чем
методом FN.
Следует
заметить, что,
кроме FN и CHE, существуют
другие методы
программирования
и стирания
ячейки, которые
успешно используются
на практике,
однако два
описанных нами
применяются
чаще всего.
Процедуры
стирания и
записи сильно
изнашивают
ячейку флэш-памяти,
поэтому в новейших
микросхемах
некоторых
производителей
применяются
специальные
алгоритмы,
оптимизирующие
процесс стирания-записи,
а также алгоритмы,
обеспечивающие
равномерное
использование
всех ячеек в
процессе
функционирования.
Некоторые
виды ячеек
флэш-памяти
на основе
МОП-транзисторов
с "плавающим"
затвором:
Stacked Gate Cell - ячейка
с многослойным
затвором. Метод
стирания -
Source-Poly FN Tunneling, метод записи
- Drain-Side CHE Injection.
SST Cell, или SuperFlash Split-Gate
Cell (Silicon Storage Technology - компания-разработчик
технологии)
- ячейка с расщеплённым
затвором. Метод
стирания - Interpoly
FN Tunneling, метод записи
- Source-Side CHE Injection.
Two Transistor Thin Oxide Cell - двухтранзисторная
ячейка с тонким
слоем окисла.
Метод стирания
- Drain-Poly FN Tunneling, метод записи
- Drain FN Tunneling.
Другие виды
ячеек:
Кроме наиболее
часто встречающихся
ячеек с "плавающим"
затвором, существуют
также ячейки
на основе
SONOS-транзисторов,
которые не
содержат плавающего
затвора. SONOS-транзистор
напоминает
обычный МНОП
(MNOS) транзистор.
В SONOS-ячейках
функцию "плавающего"
затвора и окружающего
его изолятора
выполняет
композитный
диэлектрик
ONO. Расшифровывается
SONOS (Semiconductor Oxide Nitride Oxide Semiconductor) как
Полупроводник-Диэлектрик-Нитрид-Диэлектрик-Полупроводник.
Вместо давшего
название этому
типу ячейки
нитрида в будущем
планируется
использовать
поликристаллический
кремний.
Многоуровневые
ячейки (MLC - Multi Level Cell).
В
последнее время
многие компании
начали выпуск
микросхем
флэш-памяти,
в которых одна
ячейка хранит
два бита. Технология
хранения двух
и более бит в
одной ячейке
получила название
MLC (multilevel cell - многоуровневая
ячейка). Достоверно
известно об
успешных тестах
прототипов,
хранящих 4 бита
в одной ячейке.
В настоящее
время многие
компании находятся
в поисках предельного
числа бит, которое
способна хранить
многоуровневая
ячейка.
В технологии
MLC используется
аналоговая
природа ячейки
памяти. Как
известно, обычная
однобитная
ячейка памяти
может принимать
два состояния
- "0" или "1". Во
флэш-памяти
эти два состояния
различаются
по величине
заряда, помещённого
на "плавающий"
затвор транзистора.
В отличие от
"обычной"
флэш-памяти,
MLC способна
различать более
двух величин
зарядов, помещённых
на "плавающий"
затвор, и, соответственно,
большее число
состояний. При
этом каждому
состоянию в
соответствие
ставится определенная
комбинация
значений бит.
Во
время записи
на "плавающий"
затвор помещается
количество
заряда, соответствующее
необходимому
состоянию. От
величины заряда
на "плавающем"
затворе зависит
пороговое
напряжение
транзистора.
Пороговое
напряжение
транзистора
можно измерить
при чтении и
определить
по нему записанное
состояние, а
значит и записанную
последовательность
бит.
Основные
преимущества
MLC микросхем:
Более
низкое соотношение
$/МБ
При
равном размере
микросхем и
одинаковом
техпроцессе
"обычной" и
MLC-памяти, последняя
способна хранить
больше информации
(размер ячейки
тот же, а количество
хранимых в ней
бит - больше)
На
основе MLC создаются
микросхемы
большего,
чем на основе
однобитных
ячеек, объёма
Основные
недостатки
MLC:
Снижение
надёжности,
по сравнению
с однобитными
ячейками, и,
соответственно,
необходимость
встраивать
более сложный
механизм коррекции
ошибок (чем
больше бит на
ячейку - тем
сложнее механизм
коррекции
ошибок)
Быстродействие
микросхем на
основе MLC зачастую
ниже, чем у
микросхем на
основе однобитных
ячеек
Хотя
размер MLC-ячейки
такой же, как
и у однобитной,
дополнительно
тратится место
на специфические
схемы чтения/записи
многоуровневых
ячеек
Технология
многоуровневых
ячеек от Intel (для
NOR-памяти) носит
название StrtaFlash,
аналогичная
от AMD (для NAND) - MirrorBit
3.2
Архитектура
флэш-памяти.
Существует
несколько типов
архитектур
(организаций
соединений
между ячейками)
флэш-памяти.
Наиболее
распространёнными
в настоящее
время являются
микросхемы
с организацией
NOR и
NAND.
NOR
(NOT OR, ИЛИ-НЕ) |
|
Ячейки
работают сходным
с EPROM
способом.
Интерфейс
параллельный.
Произвольное
чтение и запись.
Преимущества:
быстрый произвольный
доступ, возможность
побайтной
записи.
Недостатки:
относительно
медленная
запись и стирание.
Из
перечисленных
здесь типов
имеет наибольший
размер ячейки,
а потому плохо
масштабируется.
Единственный
тип памяти,
работающий
на двух разных
напряжениях.
Идеально
подходит для
хранения кода
программ (PC BIOS,
сотовые телефоны),
идеальная
замена обычному
EEPROM.
|
Основные
производители:
AMD, Intel,
Sharp, Micron, Ti, Toshiba, Fujitsu, Mitsubishi, SGS-Thomson,
STMicroelectronics, SST, Samsung, Winbond, Macronix, NEC, UMC.
|
Программирование:
методом инжекции
"горячих"
электронов Стирание:
туннеллированием
FN
|
NAND
(NOT AND, И-НЕ) |
|
Доступ
произвольный,
но небольшими
блоками (наподобие
кластеров
жёсткого диска).
Последовательный
интерфейс.
Не так хорошо,
как AND
память подходит
для задач,
требующих
произвольного
доступа.
Преимущества:
быстрая запись
и стирание,
небольшой
размер
блока.
Недостатки:
относительно
медленный
произвольный
доступ, невозможность
побайтной
записи.
Наиболее
подходящий
тип памяти
для приложений,
ориентированных
на блочный
обмен: MP3 плееров,
цифровых камер
и в качестве
заменителя
жёстких дисков.
|
Основные
производители:
Toshiba, AMD/Fujitsu, Samsung, National |
Программирование:
туннеллированием
FN Стирание:
туннеллированием
FN
|
AND
(И) |
|
Доступ
к ячейкам памяти
последовательный,
архитектурно
напоминает
NOR и
NAND,
комбинирует
их лучшие
свойства.
Небольшой
размер блока,
возможно быстрое
мультиблочное
стирание. Подходит
для потребностей
массового
рынка.
|
Основные
производители:
Hitachi и Mitsubishi Electric. |
Программирование:
туннеллированием
FN Стирание:
туннеллированием
FN
|
DiNOR
(Divided bit-line NOR, ИЛИ-НЕ с
разделёнными
разрядными
линиями) |
|
Тип
памяти, комбинирующий
свойства NOR
и NAND.
Доступ к ячейкам
произвольный.
Использует
особый метод
стирания данных,
предохраняющий
ячейки от
пережигания
(что способствует
большей долговечности
памяти). Размер
блока в DiNOR всего
лишь 256 байт.
|
Основные
производители:
Mitsubishi Electric, Hitachi, Motorola. |
Программирование:
туннеллированием
FN Стирание:
туннеллированием
FN
|
Примечания:
В настоящее
время чаще
всего используются
память с архитектурой
NOR и
NAND.
Hitachi выпускает
многоуровневую
AND-память
с NAND-итерфейсом
(SuperAnd или AG-AND [Assist Gate-AND])
|
Доступ
к флэш-памяти
Существует
три основных
типа доступа:
обычный
(Conventional): произвольный
асинхронный
доступ к ячейкам
памяти.
пакетный
(Burst): синхронный,
данные читаются
параллельно,
блоками по 16
или 32 слова.
Считанные
данные передаются
последовательно,
передача
синхронизируется.
Преимущество
перед обычным
типом доступа
- быстрое последовательное
чтение данных.
Недостаток
- медленный
произвольный
доступ.
страничный
(Page): асинхронный,
блоками по 4
или 8 слов. Преимущества:
очень быстрый
произвольный
доступ в пределах
текущей страницы.
Недостаток:
относительно
медленное
переключение
между страницами.
Примечание:
В последнее
время появились
микросхемы
флэш-памяти,
позволяющие
одновременную
запись и стирание
(RWW - Read While Write или Simultaneous R/W) в
разные банки
памяти.
5.
Карты
памяти (флэш-карты)
Наиболее
распространенные
типы карт памяти:
CompactFlash
(CF) (I,II), MultiMedia Card, SD Card, Memory Stick, SmartMedia,
xD-Picture Card, PC-Card (PCMCIA или ATA-Flash).
Существуют
и другие портативные
форм-факторы
флэш-памяти,
однако встречаются
они намного
реже перечисленных
здесь.
Флэш-карты
бывают двух
типов: с параллельным
(parallel)
и с последовательным
(serial)
интерфейсом.
Параллельный:
Последовательный:
PC-Card
(PCMCIA) или ATA Flash
Интерфейс:
параллельный
Самым
старым и самым
большим по
размеру следует
признать PC Card
(ранее этот тип
карт назывался
PCMCIA [Personal Computer Memory Card International Association]).
Карта снабжена
ATA контроллером.
Благодаря этому
обеспечивается
эмуляция обычного
жесткого диска.
В настоящее
время флэш-память
этого типа
используется
редко. PC Card бывает
объемом до 2GB.
Существует
три типа PC Card ATA (I, II
и III). Все они отличаются
толщиной (3,3 5,0 и
10,5 мм соответственно).
Все три типа
обратно совместимы
между собой
(в более толстом
разъеме всегда
можно использовать
более тонкую
карту, поскольку
толщина разъема
у всех типов
одинакова –
3,3 мм). Питание
карт - 3,3В и 5В. ATA-flash
как правило
относится к
форм фактору
PCMCIA Type I.
Тип |
Длина |
Ширина |
Толщина |
Использование |
Type I |
85,6 мм |
54 мм |
3,3 мм |
Память
(SRAM, DRAM, Flash и т. д) |
Type II |
85,6 мм |
54 мм |
5 мм |
Память,
устройства
ввода-вывода
(модемы, сетевые
карты и т. д) |
Type III |
85,6 мм |
54 мм |
10,5 мм |
Устройства
хранения данных,
жёсткие диски |
PC-Card
Flash бывают двух
типов: PCMCIA
Linear Flash Card
и ATA
Flash Card (Flash Disk).
Linear встречается
намного реже
ATA flash и не совместим
с последним.
Отличие между
ними состоит
в том, что ATA Flash
содержит в себе
схему, позволяющую
эмулировать
обычный HDD, автоматически
помечать испорченные
блоки, и производить
автоматическое
стирание блоков.
Compact Flash (CF)
Интерфейс:
параллельный,
50-ти контактный,
соответствует
стандарту
PCMCIA ATA. Стандарт
разработан
компанией
SanDisk в 1994 году. Разработчики
формата Compact Flash
поставили цель:
сохранить все
преимущества
карт ATA Flash, преодолев
их основной
недостаток
- большие размеры.
Конструкция
карт CompactFlash обеспечивает
эмуляцию жёсткого
диска с АТА
интерфейсом.
Разъёмы Compact Flash
расположены
на торце карты,
электрически
и функционально
повторяя назначение
контактов
PCMCIA. Таким образом,
чтобы установить
CompactFlash в слот PCMCIA достаточно
простейшего
адаптера CF-PCMCIA,
повторяющего
своими размерами
обычную PC-Card. Карты
бывают двух
типов: I и II (первого
и второго типа).
Карты типа II
толще карт типа
I на 2 мм, других
существенных
отличий между
этими картами
нет. CF I можно
использовать
в устройствах,
снабженных
разъемами CF II
и CF I. CF II можно использовать
только в устройствах
с разъемами
CF II (т.е. CF II типа обратно
совместим с
CF I типа). Compact Flash II типа
были разработаны
тогда, когда
возникла
необходимость
в картах большого
объема. Сейчас
необходимости
в картах CF II отпала,
так как CF I догнали
по объему карты
CF II, так что карты
второго типа
постепенно
теряют популярность.
Карты Compact Flash поддерживают
два напряжения:
3.3В и 5В. В отличие
от карт SmartMedia, которые
существуют
в двух версиях
(трёх- и пяти-
вольтовой),
любая карта
CF способна работать
с любым из двух
видов питания.
16
июня 2003
года была утверждена
спецификация
v2.0.
Скорость передачи
данных согласно
новой спецификации
может достигать
16MB/s, при этом
обеспечивается
обратная совместим
ость - карты,
выпущенные
по спецификации
2.0, будут работать
в старых устройствах,
но с меньшей
скоростью.
Произведенные
по современным
технологиям
чипы флэш-памяти
могут оперировать
на скоростях
5-7 MB/s, так что теоретический
предел в 16 MB/s оставляет
солидный запас
для роста. В
ближайшее время
будут приняты
дополнения,
позволяющие
CF работать в
режиме DMA, а в 2004
году - Ultra DMA 33, что
позволит работать
картам CompactFlash с
быстродействием
до 33 MB/s. Сегодня
теоретический
предел емкости
для CF составляет
137 GB. Следует заметить,
что будущее
CF вполне определенно
благодаря тому,
что в этом типе
карт реализовываются
давние наработки
ATA, успешно прошедшие
испытание
временем на
компьютерных
жестких дисках.
SmartMedia
(SSFDC
– Solid
State Floppy Disk Card)
Интерфейс:
параллельный,
22-х
контактный.
Разработана
в 1995 году компаниями
Toshiba и Samsung.
8
из 22-х контактов
карты используются
для передачи
данных, остальные
используются
для питания
микросхемы,
управления
и несут на себе
другие вспомогательные
функции. Толщина
карты всего
лишь 0,76мм. SmartMedia
- единственный
формат флэш-карт
(из тех, которые
мы здесь рассматриваем),
не имеющий
встроенного
контроллера.
Карты
SmartMedia бывают как
на одном, так
и на двух чипах
NAND.
Существует
две разновидности
SmartMedia: 5-и и 3-х вольтовые
(внешне отличаются
маркировкой
и тем, с какой
стороны у карты
скошен угол:
у 5В SmartMedia он скошен
слева, а у 3,3В -
справа). На карте
имеется специальное
углубление
(в форме кружочка).
Если в это место
приклеить
соответствующей
формы токопроводящий
стикер, то карта
будет защищена
от записи. По
сравнению с
другими картами
флэш-памяти,
в которых
используется
полупроводниковая
память, размещённая
на печатной
плате вместе
с контроллером
и другими
компонентами,
SmartMedia устроена
очень просто.
Карта собирается
без пайки и,
кроме микросхемы
NAND-памяти, не
содержит в себе
никакой другой
микроэлектроники.
xD-Picture Card
Интерфейс:
параллельный,
22-х контактный.
Анонсирован
в 30 июля 2002 года
компаниями
Fujifilm и Olympus.
По
словам
разработчиков,
XD следует расшифровывать
как eXtreme
Digital.
Теоретически
емкость карт
xD может достигать
8ГБ. Сообщается,
что скорость
записи данных
на xD будет достигать
3 Мбайт/с, а скорость
чтения - 5 Мбайт/с.
Размеры карты:
20 х 25 х 1,7 мм. Контакты
у XD расположены,
так же как и у
SmartMedia, на лицевой
части карты.
На вопросы
пользователей,
не будет ли
проблем с такими
контактами,
представители
компании объясняют,
что с контактами
такой конструкции
нужно быть
очень бережным
и протирать
их сухой тряпочкой
в случае загрязнения
или попадения
на них влаги
(единственные
карты с таким
"свойством",
не считая SM). Как
и
SmartMedia, xD не содержит
контроллера.
Карта разработана
в качестве
замены SmartMedia и
продается по
сравнимой со
SmartMedia цене (возможно,
из-за отсутствия
встроенного
контроллера),
благо чипы для
xD-Picture Card производятся
Toshiba. Теоретический
предел емкости
– 8GB.
MMC (MultiMedia
Card)
Интерфейс:
последовательный,
7-ми контактный.
Разработана
в
1997 году
компаниями
Hitachi, SanDisk и
Siemens Semiconductors (Infineon Technologies). Карты
MMC содержат 7
контактов,
реально из
которых используется
6, а седьмой
формально
считается
зарезервированным
на будущее. По
стандарту MMC
способна работать
на частотах
до 20МГц. Карточка
состоит из
пластиковой
оболочки и
печатной платы,
на которой
расположена
микросхема
памяти, микроконтроллер
и разведены
контакты.
Назначение
контактов MMC:
1
контакт на
передачу данных
(в SPI - Data out) 1 контакт
на передачу
команд (в SPI - Data in) 1
часы 3 на питание
(2 земли и 1 питание) 1
зарезервирован
(в SPI режиме - chip
select)
По
протоколу MMC
данные и команды
могут передаваться
одновременно.
MultiMedia Card работает
с напряжением
2.0В - 3.6В, однако
спецификацией
предусматриваются
карты с пониженным
энергопотреблением
- Low Voltage MMC (напряжение
1.6В - 3.6В). Для совсем
уж мобильных
устройств
Hitachi выпускаются
укороченные
карты MMC длиной
всего 18мм, вместо
обычных 32-х.
Карты
MMC могут работать
в двух режимах:
MMC и SPI (Serial Peripheral Interface). Режим
SPI является частью
протокола MMC и
используется
для коммуникации
с каналом SPI,
который обычно
используется
в микроконтроллерах
Motorola и других
производителей.
Стандарт SPI
определяет
только разводку,
а не весь протокол
передачи данных.
По этой причине
в MMC SPI используется
подмножество
команд протокола
MMC. Режим SPI предназначен
для использования
в устройствах,
которые используют
небольшое
количество
карт памяти
(обычно одну).
С точки зрения
приложения
преимущество
использования
режима SPI состоит
в возможности
использования
уже готовых
решений, уменьшая
затраты на
разработку
до минимума.
Недостаток
состоит в потере
производительности
на SPI системах,
по сравнению
с MMC. Кроме описанного
нами обычного
MMC, существуют
еще несколько
стандартов
карт MMC, такие
как: RS-MMC, HS-MMC, CP-SMMC, PIN-SMMC.
Утвержденный
MMCA (MMC Association – ассоциация
производителей
MMC) в конце 2002 года
стандарт RS-MMC
(Redused Size MMC) отличается
от обычной MMC
только габаритами
– карта приблизительно
в два раза меньше
обычного MMC. Размеры
карт RS-MMC - 24 x 18 x 1.4 мм,
вес 0,8 г. HS
-MMC
– высокоскоростная
(High Speed) MMC-карта у которой
не 7, а 13 контактов.
Размеры карты
как у обычной
MMC. В режиме x8 (52Mhz)
скорость передачи
данных в теории
может достигнуть
52MBps. Форматы CP-SMMC и
PIN-SMMC мы рассмотрим
позднее, в разделе
SDMI-совместимые
карты памяти.
SD Card
Интерфейс:
последовательный,
9-ти контактный.
Формат разработан
компаниями
Matsushita, SanDisk, Toshiba в 2000 году.
SD-Card
работает с
напряжением
2,0В - 3,6В, однако
спецификацией
предусматриваются
SDLV-карты (SD Low Voltage) с
пониженным
энергопотреблением
(напряжение
1,6В - 3,6В), кроме того,
спецификацией
предусмотрены
карты толщиной
1,4мм (как у MMC),
без переключателя
защиты от записи.
Фактически
карточки SD являются
дальнейшим
развитием
стандарта MMC.
Флэш-карты SD
обратно совместимы
с MMC (в устройство
с разъемом SD
можно вставить
MMC, но не наоборот).
Основные
отличия от MMC:
По сравнению
с MMC, в SD на 2 контакта
больше. Оба
новых контакта
используются
как дополнительные
линии передачи
данных, а тот
контакт, который
в MMC был декларирован
как зарезервированный,
в SD используется
для передачи
данных. Таким
образом, по
сравнению с
MMC, где данные
передаются
по одному-единственному
контакту, в SD
данные могут
передаваться
по 4-м контактам
одновременно
(число линий,
по которым
передаются
данные, может
быть равно 1,
2 и 4, причём количество
используемых
линий можно
динамически
изменять). Эта
особенность
переводит
карту из разряда
карт с чисто
последовательным
интерфейсом
в разряд карт
с последовательно-параллельным
интерфейсом.
В отличие
от MMC, SD изначально
соответствует
соглашениям
SDMI (т.е. карты SD
содержат т.н.
механизм защиты
авторских
прав). Скорее
всего, именно
по этой причине
карты и получили
свое название:
SD-Card - SecureDigital Card. Множество
значений слова
Secure находится
в диапазоне
глаголов [охранять,
обезопасить,
запирать,
овладевать,
достигать,
брать под стражу]
и прилагательных
[спокойный,
безопасный,
надёжный,
застрахованный].
Digital, видимо, следует
понимать как
цифровой, а
как правильно
перевести всё
вместе я предлагаю
подумать вам
самим.
На карточке
присутствует
переключатель
защиты от записи
- write protection switch (как на
дискетах)
MMC по спецификации
работает на
частотах до
20МГц, SD на частотах
до 25МГц.
В режиме SPI
карты SD работают
по протоколу
SD-Card, а не по протоколу
MMC.
Добавлен
один дополнительный
внутренний
регистр, часть
остальных
несколько
отличаются
от аналогичных
в MMC.
Обычно карточка
несколько
толще и тяжелее
MMC.
За счёт более
толстой пластиковой
оболочки, улучшена
стойкость
карты к статическим
разрядам (ESD
Tolerance).
Несколько
удивляет отсутствие
прямой совместимости
между этими
двумя видами
карт (т.е. то, что
SD неспособна
работать по
протоколу MMC).
Если внимательно
рассматривать
спецификации
обоих типов
карт и не обращать
внимания на
то, что SD может
быть толще MMC,
то отсутствие
такой совместимости
даже удивляет,
поскольку
реализовать
её было несложно,
да и выглядело
бы это очень
естественно.
Что наводит
на мысль о том,
что, хотя подобную
совместимость
можно было
реализовать
без особых
трудностей,
SD намеренно
разработана
не как расширение
спецификации
MMC, а как отдельный
конкурирующий
стандарт.
Sony
Memory Stick:
Интерфейс:
последовательный,
10-ти контактный.
Разработана
в 1998 году компанией
Sony. Особенных
технических
инноваций в
MemoryStick не заметно,
разве что
переключатель
защиты от записи
(Write Protection Switch) выполнен
действительно
грамотно, да
контакты хорошо
упрятали. До
недавнего
времени голубые
"палочки памяти"
использовалась
исключительно
в цифровой
фото-, аудио- и
видео- технике
фирмы Sony. В настоящее
время Sony активно
продвигает
свой формат,
и лицензирует
технологию
другим производителям.
На
питание у MemoryStick
отведено 4 из
10 контактов,
еще 2 контакта
зарезервированы,
один контакт
используется
для передачи
данных и команд,
один для синхронизации,
один для сигнализации
состояния шины
(может находится
в 4-х состояниях),
а
один (sic!) для определения
того, вставлена
карта, или нет.
Карта работает
в полудуплексном
режиме. Максимальная
частота, на
которой может
работать карта
- 20МГц. Зарезервированные
контакты (по
непроверенным
данным) используются
в устройствах
на базе интерфейса
MemoryStick (фотокамерах
для Clie [PEGA-MSB1], модулей
GPS [PEGA-MSC1]и bluetooth [PEGA-MSG1]). Существует
разновидность
Memory Stick - Memory Stick Magic Gate (сокращенно
MG). От
обычного Memory
Stick, MG отличается
лишь цветом
(цвет карточки
- белый) и поддержкой
механизма
"защиты авторских
прав" - Magic Gate (об этой
технологии
подробнее будет
сказано в разделе
“SDMI-совместимые
карты памяти”).
Благодаря
поддержке этой
технологии
карточка и
получила свое
название. Механизм
защиты, реализованной
в MG, соответствует
соглашениям
SDMI. Пытаясь угнаться
за малым весом
и размерами
конкурирующих
форматов (SD/MMC),
в 2000 году Sony разработала
ещё один формат
- Memory Stick Duo. От обычного
MemoryStick, Duo отличается
меньшими размерами
и весом. При
использовании
MemoryStick Duo в устройствах,
предназначенных
для обычных
MemoryStick, требуется
специальный
адаптер. Также
существует
модификация
этого формата
флэш-памяти
- Memory Stick Duo MG. Карточки
Duo появились в
продаже с июля
2002 года. На январской
выставке Consumer
Electronics Show 2003 была представлена
карта MemoryStick Pro, разработанная
Sony совместно
с SanDisk. Новая модификация
карт Sony имеет
те же размеры
и такое же количество
контактов, как
и у обычных
MemoryStick. Однако карта
не совместима
со старыми
MemoryStick (в разъеме,
предназначенном
для обычных
MemoryStick, карточка
MemoryStick Pro работать
не будет, однако
обратная поддержка
реализована
– в разъеме для
карточек Pro, обычный
MemoryStick читается).
Технически
карточки Pro
отличаются
от обычных
MemoryStick тем, что работают
на более высокой
частоте (40MHz), а
данные передаются
по четырем
линиям, вместо
одной. Кроме
того, все карточки
Pro “в нагрузку”
поддерживают
MagicGate. Пропускная
способность
интерфейса
160Mbps, или 20MB/s (4
линии x
40
MHz), однако с таким
быстродействием
карточка долго
работать не
может – на такой
скорости способен
работать только
внутренний
кэш, а по его
заполнении
карточка будет
работать с
пропускной
способностью
15mbps.
Вывод:
«Война стандартов»
на рынке флэш-карт
продолжается
уже не первый
год, и конца ей
не видно. Производители
разрабатывают
все новые форматы
карт, в то время
как старые до
сих не желают
исчезать. Практически
можно говорить
лишь о смерти
устаревшего
достаточно
давно стандарта
SmartMedia, хотя какая
ж это смерть,
если карты
продолжают
выпускаться
(пусть и остановившись
в развитии),
выходят новые
устройства,
рассчитанные
именно на этот
стандарт, да
и старых на
руках сохраняется
немало. Однако
некоторые
тенденции уже
просматриваются.
В частности,
продолжают
терять свою
долю карты
CompactFlash: еще не так
давно они (и
поддерживающие
их устройства)
на рынке доминировали
(по разным оценкам,
доля формата
составляла
порядка 70-80%), в то
время как сейчас
они уже потеряли
лидирующие
позиции. Новым
победителем,
как многие и
предсказывали,
становится
SecureDigital. Эти карты
меньше, что
упрощает их
применение,
интерфейс
проще, конструкция
надежней, скорости
постоянно
растут. Единственное,
что мешает SD
одержать
безоговорочную
победу — ориентация
многих производителей
техники на свои
форматы. Впрочем,
что касается
последнего,
то наиболее
ходовые объемы
в 256-512 Мбайт производителями
уже освоены,
а широкое
распространение
карт емкостью
1 Гбайт и больше
не за горами.
Литература:
Г93 Аппаратные
средства IBM РС.
Энциклопедия,
2-е. – СПб.: Питер,
2001 928 с.: ил. Автор
– Михаил Гук
А. Жаров Ж35
"Железо IBM
2000" Москва: "МикроАрт",
352с.
Internet:
http://www.ixbt.com/storage.shtml
http://www.itc.ua/
http://www.ak-cent.ru/?parent_id=9842
|