Реферат

Реферат на тему Расчет энергоемкости продукции

Работа добавлена на сайт bukvasha.net: 2015-07-02

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024


ЭНЕРГОЕМКОСТЬ ПРОДУКЦИИ (национального дохода) — показатель, характеризующий расход энергии на единицу продукции или национального дохода. В целом по народному хозяйству рассчитывается как отношение затрат (обычно за год) первичных топливно-энергетических ресурсов к объему произведенного национального дохода или валового общественного продукта, а по министерствам, объединениям, предприятиям — по отношению к объему товарной.

В расчет включаются все виды топлива и энергии, потребленных на производственно эксплуатационные нужды,— электрической, тепловой энергии, израсходованной на технологические нужды, пересчитанной в тонны условного топлива (или гигаджоули) по единым в стране эквивалентам (коэффициентам пересчета), устанавливаемым Госпланом СССР.

При определении энергоемкости учитывается потребление всех видов топлива и энергии по всем направлениям расхода, включая отопление, вентиляцию, водоснабжение, потери в сетях, независимо от источников энергоснабжения. При расчете энергоемкости продукции в стоимостном выражении топливо и энергия оцениваются по действующим ценам и тарифам. Снижение энергоемкости продукции — важное направление интенсификации производства, ресурсосбережения; достигается осуществлением системы технических, технологических, организационных, экономических и воспитательных мер, направленных на всемерное совершенствование процессов производства и потребления энергии.

Решающее значение для снижения энергоемкости продукции имеет коренная реконструкция топливно-энергетического комплекса, широкое применение энергосберегающих технологий. Выпуск экономичных двигателей с меньшим потреблением топлива и горючего, дизелизация транспорта, совершенствование нагревательной и осветительной техники, стимулирование экономии и санкции за перерасход энергии позволяют систематически снижать энергоемкость общественного продукта и национального дохода. Усиление внимания к улучшению использования топлива и энергии положительно сказалось на динамике энергоемкости национального дохода: в 1985 г. она была ниже, чем в 1980 г. , на 5,5 %. К 2000 г. энергоемкость национального дохода должна снизиться не менее чем в 1,4 раза.

В современных условиях роста стоимости и даже дефицита топливно-энергетических ресурсов особую актуальность приобретает оценка энергетической эффективности промышленных технологий. Расход энергии является универсальным показателем, определяющим, в конечном итоге, эффективность всего производства. В промышленно развитых странах Запада энергетический анализ перестал быть прерогативой только исследователей, превратившись в действенный механизм, способствующий становлению энергосберегающих технологий, стимулирующий более эффективное использование энергоресурсов. Еще в 1974 г. Конгресс США принял закон, в соответствии с которым при осуществлении федеральных программ обязателен энергетический анализ различных технологий производства и процессов преобразования энергии. Работы по энергетическому анализу финансируются государственной организацией – Администрацией энергетических исследований и развития (ERDA).

Особое значение энергетический анализ имеет для горной промышленности, характеризующейся значительной удельной энергоемкостью по сравнению с другими отраслями. Энергетический подход при оценке эффективности процессов и технологий открытых горных работ нашел отражение в исследованиях многих ученых [1–3, 5, 9, 13]. Вместе с тем, несовершенство применяемых методик привело к тому, что до настоящего времени у специалистов не сформировалось единого мнения по данной проблеме.

При энергетической оценке транспортных систем глубоких карьеров возникают два ключевых вопроса, требующих решения.

Первый связан с приведением тепловой энергии дизельного топлива, потребляемой автотранспортом, и электрической энергии, расходуемой конвейерным и железнодорожным транспортом, в сопоставимый вид. В этом направлении в отечественной литературе существует несколько подходов.

Один из них, предложенный проф. Тангаевым И. А. , заключается в переводе расхода дизтоплива автосамосвалами из натуральных единиц (г, кг) в кДж или кВт·ч путем умножения на удельную теплоту сгорания дизтоплива Qд. т. (Qд. т. =43,5кДж/г=12,08 кВт·ч/кг) и сравнении с фактическим расходом электроэнергии электрифицированными видами транспорта [1]. Такой подход нельзя признать методически правильным, так как он приводит к энергетической «дискредитации» автомобильного транспорта. Здесь мы сравниваем дизтопливо – источник энергии, максимально приближенный к первичному (сырой нефти), с электроэнергией, являющейся вторичным источником энергии и вырабатываемой на тепловых и гидроэлектростанциях.

При другом подходе, получившем достаточно широкое распространение в практике, расход электроэнергии приводится к расходу дизтоплива путем умножения на коэффициент, характеризующий удельный расход дизтоплива на выработку 1 кВт·ч электроэнергии на дизельных электростанциях (230–250 г/кВт·ч) [2].

Здесь мы явно завышаем энергоемкость электрифицированных видов транспорта, поскольку основной объем электроэнергии горнодобывающие предприятия получают с электростанций, работающих на природном газе, угле и мазуте. Разница в оценках удельной энергоемкости отдельных видов транспорта глубоких карьеров при использовании указанных методик составляет 3,0–3,5 раза.

По нашему мнению, наиболее объективное сопоставление можно получить путем приведения расхода электроэнергии и дизельного топлива к расходу первичных энергоресурсов, т. е. к «условному топливу» (у. т. ), с учетом соответствующих затрат энергии на их добычу, переработку и транспортирование. В отечественной практике в качестве «условного топлива» используется так называемый угольный эквивалент – 7000 ккал (29,3 мДж) – теплота, которая выделяется при сжигании 1 т высококачественного угля. Аналогичный подход получил распространение за рубежом. Так, в США и Англии в качестве критерия энергетической оценки используют британскую тепловую единицу (БТЕ) – количество тепловой энергии, которое необходимо затратить, чтобы поднять температуру 1 фунта воды на 1°F (1 БТЕ = 0,252 кал/кг).

Второй вопрос связан с выбором и обоснованием критерия оценки энергетической эффективности транспортных систем глубоких карьеров и отдельных видов транспорта. Широко используемые на практике критерии (кВт·ч/т, г/т, кВт·ч/т·км, г/тк·м), учитывающие расход энергии на единицу объема перевезенной горной массы или на единицу грузооборота, малоинформативны и не отражают специфики глубоких карьеров. Исходя из основных функций транспорта глубоких карьеров, в качестве критерия может быть принята величина удельных затрат энергии на подъем 1 т горной массы из карьера. Тогда коэффициент полезного использования энергии (η) определится из выражения

(1)

где Рт – теоретически необходимая величина расхода энергии на подъем 1 т горной массы на высоту 1 м (Рт=9,81 кДж/т·м); Рф – фактические затраты энергии данным видом транспорта, кДж/т·м.

Приведение фактических затрат энергии к расходу первичных энергоресурсов (у. т. ) осуществляется с использованием следующих выражений:

(2)

где Рф. а. , Pф. к. (ж) – удельные затраты условного топлива на подъем 1 т горной массы на 1 м, соответственно, автомобильным и конвейерным (железнодорожным) транспортом, г у. т. /т·м; g′ – удельный расход дизтоплива автосамосвалами, г/т·м; ω′ – удельный расход электроэнергии конвейерным (железнодорожным) транспортом, кВт·ч/т·м; kпер – коэффициент, учитывающий затраты энергии на получение дизтоплива из нефти (kпер=1,18÷1,20) [3]; kд – коэффициент, учитывающий затраты энергии на добычу и транспортирование топлива (kд=1,04÷1,10) [4]; kт – коэффициент, учитывающий разницу удельной теплоты сгорания дизельного и условного топлива (kт=1,5); kэ – показатель, учитывающий затраты условного топлива на получение 1 кВт·ч электроэнергии (kэ=310÷330 г/кВт·ч); kпот – коэффициент, учитывающий потери электроэнергии при передаче и распределении (kпот ≈1,09).

Используя фактические данные расхода энергии конкретными видами транспорта глубоких карьеров на единицу грузооборота, получим

(3)

где g, ω – соответственно, удельный расход дизтоплива (г/т·км) автосамосвалами и электроэнергии (кВт·ч/т·км) конвейерным (железнодорожным) транспортом; hа, hк(ж) – высота подъема горной массы на 1 км внутрикарьерной трассы (уклон трассы) при данном виде транспорта, м/км.

Тогда формулу (1) можно представить в виде

(4)

где Pт=9,81 кДж/т·м; Pф – фактические затраты энергии данным видом транспорта, г у. т. /т·м; Qу. т. – удельная теплота сгорания условного топлива, кДж/г (Qу. т. = 29,3 кДж/г).

С использованием предложенной методики и фактических данных глубоких железорудных карьеров установлены показатели энергоемкости различных видов транспорта при работе на подъем горной массы (табл. 1, рис. 1). Энергетическая эффективность конвейерного транспорта (ηк = 15,4÷21,5%) в 1,9–2,2 раза выше, чем электрифицированного железнодорожного транспорта (ηж = 8,0÷10,0%) и в 2,4–3,0 раза выше, чем автомобильного (ηа = 6,5÷7,5%).

Рис. 1. Зависимость удельной энергоемкости (Р) различных видов карьерного транспорта от уклона трассы (i):PA, PЖ, РК – средние значения энергоемкости различных видов транспорта; PТ – теоретически необходимая (минимальная) величина расхода энергии на подъем 1 т горной массы на 1 м; iA, iЖ, iК – средневзвешенные уклоны трасс различных видов транспорта; – области фактических значений удельной энергоемкости различных видов транспорта глубоких железорудных карьеров.

Таблица 1. Энергоемкость различных видов транспорта при работе на подъем горной массы из карьеров

Вид транспорта

Удельная энергоемкость

η,%

натуральные показатели

условное топливо

г/т·м

кВт·ч/т·м

г у. т. /т·м

Автомобильный

2,4–2,8

4,5–5,2

6,5–7,5

Железнодорожный

0,009–0,012

3,4–4,4

8,0–10,0

Конвейерный

0,0047–0,0064*

0,0043–0,0060

1,7–2,3

1,6–2,2

14,6–19,5

15,4–21,5


В числителе – с учетом крупного дробления; в знаменателе – собственно конвейерный траспорт.

Поэтому при формировании комбинированных транспортных систем особое внимание должно уделяться глубокому вводу конвейерного и железнодорожного транспорта и поддержанию сборочных автоперевозок на минимальном, технологически необходимом уровне. Это обеспечивается внедрением мобильных комплексов ЦПТ, крутонаклонных конвейеров, повышенных уклонов (до 60‰) и тоннельного вскрытия при железнодорожном транспорте.

При эксплуатации автотранспорта в рабочей зоне карьеров важным направлением снижения энергопотребления является оптимизация схем вскрытия временными съездами. Метод оптимизации основан на разделении грузооборота на две составляющие: минимально необходимую вертикальную часть грузооборота по подъему горной массы до перегрузочных пунктов и технологически необходимую горизонтальную часть, которая минимизируется за счет выбора количества, месторасположения вскрывающих выработок и порядка отработки карьерного поля. Этот вопрос особенно актуален для сборочного автотранспорта железорудных карьеров, где горизонтальная составляющая достигает 35–50% от общей величины грузооборота.

Высокая энергетическая эффективность конвейерного транспорта объясняется большими углами подъема трасс (сокращением пути перемещения груза) и отсутствием энергозатрат на подъем верхней ветви ленты ввиду равной ее массы с опускающейся нижней ветвью. При движении автосамосвалов и железнодорожных составов по уклону вверх затраты энергии необходимы как на подъем груза, так и собственно подвижного состава. В то же время коэффициент сопротивления движению ленты по роликам на порядок выше, чем коэффициент сопротивления движению груженого поезда, и сравним с аналогичным показателем автомобильного транспорта.

Энергетические преимущества железнодорожного транспорта перед автомобильным объясняются меньшими значениями коэффициента сопротивления движению груженого поезда (в 8–10 раз) и коэффициента тары. Коэффициент тары современных думпкаров составляет 0,41–0,50, а отечественных автосамосвалов 0,70–0,84. Однако реализация этих преимуществ при работе на подъем горной массы ограничивается сравнительно небольшим уклоном железнодорожных трасс (40–60‰) и значительным коэффициентом их развития (до 1,5–1,8).

Структурные формулы удельной работы по подъему горной массы различными видами транспорта имеют следующий вид:

1. Автомобильный и железнодорожный транспорт

(5)

где АП – работа по подъему 1 т горной массы на 1 м, кДж/т·м; Рт = 9,81 кДж/т·м – теоретически необходимая величина работы; kт – коэффициент тары автосамосвала (железнодорожного состава); ωо – коэффициент сопротивления движению груженого автосамосвала (локомотивосостава); i – уклон трассы.

2. Конвейерный транспорт

(6)

где kсопр – коэффициент, учитывающий долю сопротивлений на концевых станциях конвейера. Для наклонных конвейеров kсопр≈ 1,23÷1,25; ωк – коэффициент сопротивления движению ленты по роликам; αк – угол наклона конвейера, град.;

(7)

где qк – погонная масса ленты и вращающихся частей роликов верхней и нижней ветвей, кг/м; qг – погонная масса груза на ленте, кг/м.

С помощью формул (5) и (6) можно ориентировочно устанавливать соотношение энергозатрат на подъем горной массы в конкретных горно-технических условиях.

Энергетические показатели различных видов карьерного транспорта при работе на горизонтальных трассах значительно отличаются от установленных параметров при движении на подъем. К сожалению, обоснование общего показателя энергетической эффективности различных видов карьерного транспорта в указанных условиях, аналогичного работе на подъем (η), проблематично. Поэтому воспользуемся сравнительными показателями энергоемкости, полученными в типичных условиях железорудных карьеров (табл. 2).

Таблица 2. Энергоемкость различных видов карьерного транспорта при работе на горизонтальных трассах

Вид транспорта

Удельная энергоемкость



натуральные показатели

условное топливо



г/т·км

кВт·ч/т·км

г у. т. /т·км


Автомобильный

50–70

95–130


Железнодорожный

0,09–0,12

34–45


Конвейерный

0,15–0,20

57–70



Как видно, при работе на горизонтальных трассах в полной степени реализуются преимущества железнодорожного транспорта. Энергетическая эффективность железнодорожного транспорта в сопоставимых горно-технических условиях в 2,8–3,0 раза выше, чем автомобильного, и в 1,5–1,6 раза выше, чем конвейерного. Вследствие этого железнодорожный транспорт на зарубежных предприятиях получил преимущественное распространение не как внутрикарьерный, а как магистральный вид транспорта для перевозок руды и вскрыши от борта карьера до обогатительных фабрик и отвалов. По данным зарубежных исследований энергетическая эффективность железнодорожных перевозок промышленных грузов в 4,2 раза выше, чем автомобильных [5].

Важным направлением энергосбережения для всех видов транспорта глубоких карьеров является увеличение уклонов транспортных коммуникаций. В технологическом аспекте применение повышенных уклонов позволяет сократить дополнительный разнос бортов карьеров от размещения транспортных коммуникаций, в энергетическом – увеличение уклонов в определенном диапазоне позволяет повысить энергетическую эффективность транспорта при работе на подъем горной массы. Для всех видов транспорта зависимости удельной энергоемкости на подъем горной массы от уклона трассы имеют экстремальный характер [6]. Так, для автомобильного транспорта оптимальный уклон по энергетическому критерию в зависимости от типа покрытия и модели автосамосвала находится в пределах 0,08–0,012 (рис. 2).

Рис. 2. Зависимость удельного расхода дизтоплива БелАЗ-7519 (110 т) при движении на подъем (Р) от уклона (i) и сопротивления качению (ω0); – область оптимальных значений уклонов.

Установленные закономерности смещения iопт от качества дорожного покрытия подтверждаются экспериментально и полностью согласуются с одним из важнейших принципов физики – принципом Ле Шателье – Брауна, описывающего поведение термодинамических систем, находящихся в устойчивом равновесии.

Для электрифицированного железнодорожного транспорта при мотор-вагонной тяге оптимальный уклон составляет 0,045–0,051, при электровозной тяге – 0,027–0,031. При эксплуатации ленточных конвейеров большой производительности оптимальный угол их наклона составляет 17–19°. При мотор-вагонной тяге увеличение уклона железнодорожных путей с 40 до 60‰ приводит к повышению, хотя и незначительному, удельных энергозатрат на подъем горной массы. Это происходит вследствие увеличения коэффициента тары поезда, которое во многих случаях не может быть полностью компенсировано сокращением протяженности трассы и упрощением схемы путевого развития. Весьма актуален этот вопрос для конвейерного транспорта по причине разработки в последнее время различных конструкций крутонаклонных конвейеров. Создание таких конвейеров должно сопровождаться детальным энергетическим анализом.

Оптимальный продольный уклон трасс по энергетическому критерию для отдельных видов транспорта и конкретных моделей транспортных средств следует рассматривать как частный оптимум и нижний предел уклона, который рекомендуется принимать при проектировании транспортных систем. Окончательное решение по руководящим уклонам следует принимать на основе глобального оптимума – удельной энергоемкости всей транспортной системы.

Остановимся на энергетических характеристиках других видов транспорта глубоких карьеров. Среди них наибольший практический интерес представляют дизель-троллейвозы, наклонные скиповые и автомобильно-клетьевые подъемники.

Фактический удельный расход энергии (г у. т. /т·м) дизель-троллейвозным транспортом определяется из выражения



(8)

где ωдт – удельный расход электроэнергии при работе дизель-троллейвозов, кВт·ч/т·км; gдт – удельный расход дизтоплива дизель-троллейвозным транспортом, г/т·км; hдт – высота подъема горной массы дизель-троллейвозами на 1 км автодороги, м/км.

Расчетные показатели энергетической эффективности дизель-троллейвозного транспорта (опытные образцы на базе автосамосвалов БелАЗ-7519 грузоподъемностью 110 т) на карьерах черной металлургии приведены в табл. 3 и 4. Установлено, что коэффициент полезного использования энергии дизель-троллейвозным транспортом изменяется в пределах 6,2–7,6% при среднем значении 6,7%. Таким образом, энергетические показатели дизель-троллейвозного транспорта только на 3,1% выше, чем автомобильного (η =6,5% для автосамосвалов БелАЗ-7519).

Таблица 3. Условия эксплуатации дизель-троллейвозного транспорта на карьерах черной металлургии (предпроектные проработки).

Карьер

Объем перевозок, млн т/год

Параметры трассы




L, км

Кэ , %

Нп , м

hдт , м/км


Костомукшский

22,0

4,0

52

150

37,5


Ингулецкий

18,0

2,9

76

105

36,2


«Малый Куйбас» (ММК)

15,3

4,7

64

174

37,0


21 Донского ГОКа

10,2

4,0

75

180

45,0


Карагайский ОАО «Магнезит»

8,8

3,8

68

165

43,4



Примечание. L – расстояние перевозок, км; Кэ – степень электрификации трассы, %; Нп – высота подъема горной массы, м.

Таблица 4. Показатели энергетической эффективности дизель-троллейвозного транспорта.

Карьер

Удельный расход

Показатели энергетической эффективности



gдт, г/т·км

ωдт, кВт/т·км

Рф. дт, г у. т. /т·м

η, %


Костомукшский

51,8

0,28

5,29

6,3


Ингулецкий

29,5

0,29

4,43

7,6


«Малый Куйбас» (ММК)

44,5

0,32

5,39

6,2


21 Донского ГОКа

42,0

0,39

4,90

6,8


Карагайский ОАО «Магнезит»

40,1

0,40

5,07

6,6



Данный вывод может показаться парадоксальным, поскольку в технической литературе распространено мнение о высокой энергетической эффективности данного вида карьерного транспорта. Однако в последние годы полученные результаты подтверждаются и зарубежными исследованиями. Американские ученые П. Реввель и И. Реввель на примере автотранспорта общего пользования показывают, что энергетическая эффективность обычных и электрифицированных автомобилей (электромобилей) примерно одинакова [7]. Широкое внедрение дизель-троллейвозного транспорта на карьерах США в 1980-х годах было обусловлено не энергетической эффективностью данного вида транспорта, а конъюнктурой цен на дизтопливо и электроэнергию.

Вместе с тем, при создании отечественных дизель-троллейвозов нового поколения, не уступающих лучшим зарубежным образцам, и увеличении руководящего уклона автодорог до 10–12% коэффициент полезного использования энергии может возрасти до 7,6–7,8%, т. е. приблизится к показателям электрифицированного железнодорожного транспорта. Это свидетельствует об определенных перспективах дизель-троллейвозного транспорта на отечественных глубоких карьерах.

Средний удельный расход электроэнергии скиповым подъемником СНК-40, эксплуатировавшимся на Сибайском карьере, составил 0,0077 кВт·ч/т·м. Энергетическая эффективность характеризовалась следующими показателями: Рф. ск=2,8 г у. т. /т·м; η=12%. Расчетные показатели энергетической эффективности проектируемых скиповых (СНК-75) и автомобильно-клетьевых подъемников (АНК-75) составляют: Рф. ск=2,1÷2,2 г у. т. /т·м; η=15,2÷15,9% [2]. Энергоемкость различных типов шахтных вертикальных скиповых подъемников (Рф. ск=1,4÷1,9 г у. т. /т·м; η=17,4÷23,4%) находится на уровне показателей карьерного конвейерного транспорта [8]. Утверждение ряда авторов о наибольшей энергетической эффективности скипового подъема среди существующих видов карьерного транспорта нельзя считать достаточно обоснованным [9].

В исследованиях по оценке эффективности применения на карьерах аэростатно-канатных транспортных систем (АКТС), выполненных в последние годы, доказывается возможность снижения энергозатрат на подъем горной массы в 1,5–1,6 раза по сравнению с конвейерным транспортом [10]. Исследования носят чисто теоретический характер. Возможность и технологическая целесообразность внедрения подобных систем на карьерах большой глубины и производительности вызывают сомнение. Таким образом, реальной альтернативы рассмотренным видам транспорта для доставки горной массы из глубоких карьеров в настоящее время нет, и надежды на резкое снижение энергозатрат на транспортирование не имеют достаточных оснований.

Энергетическая оценка транспортных систем карьеров в условиях рыночной экономики имеет ряд специфических особенностей, до настоящего времени не нашедших отражения в исследованиях. В первую очередь к таким особенностям следует отнести методику расчета показателя kэ (см. формулу (2)), учитывающего затраты условного топлива на получение 1 кВт·ч электроэнергии и отражающего технологическую и экономическую эффективность электроэнергетики. Большинство авторов рекомендуют принимать значение этого показателя в пределах 310–330 г/кВт·ч. Однако эти цифры отражают реальное состояние отечественной электроэнергетики в 1975–1990 гг. , т. е. в советский период (рис. 3).

Рис. 3. Динамика показателя технологической эффективности электроэнергетики России.

Высокая технологическая эффективность отечественной электроэнергетики в указанный период была достигнута за счет централизации производства, создания Единой энергетической сети и переброски энергии вслед за перемещением пиковых нагрузок в часовых поясах. Даже самая эффективная из зарубежных – японская энергетика уступала советской [11].

В настоящее время эффективность отечественной электроэнергетики (kэ = 397 г у. т. /кВт·ч) в 1,23 раза ниже японской и в 1,11 ниже французской и американской (рис. 4). За 10 лет, с 1990 по 2000 г. , расход условного топлива на производство 1 кВт·ч электроэнергии в России увеличился с 306 до 397 г/кВт·ч, т. е. в 1,3 раза. В соответствующей пропорции снизилась энергетическая эффективность электрифицированных видов транспорта. Энергоемкость карьерного железнодорожного транспорта практически сравнялась с энергоемкостью автомобильного.

Рис. 4. Показатели технологической эффективности электроэнергетики наиболее развитых стран.

Переход к рыночной экономике отечественных горных предприятий сопровождался резким увеличением энергоемкости основных процессов открытой разработки и, в первую очередь, карьерного транспорта. Основными причинами увеличения энергоемкости явилось снижение объемов производства по горной массе и старение парка оборудования. В этом отношении характерен пример карьеров ОАО «Ураласбест» (рис. 5)

Рис. 5. Зависимость показателей удельной энергоемкости различных видов транспорта (Р) от объема перевозки горной массы (V) (ОАО «Ураласбест»): Ра, Рж – удельная энергоемкость соответственно автомобильного и железнодорожного транспорта, г у. т. /т·м; V – объемы перевозок горной массы, млн т/год

Выявилась лучшая адаптивность энергетических показателей автотранспорта к изменению экономических и горно-технических условий разработки, в частности, к сокращению объемов перевозок, по сравнению с железнодорожным транспортом, что объясняется меньшей долей постоянной составляющей в энергозатратах автомобильного транспорта. Это привело к расширению области применения автотранспорта на глубоких карьерах. Так, доля автотранспорта в объемах перевозок вскрышных пород на разрезах ОАО «Концерн Кузбассразрезуголь» за период 1990–2004 гг. увеличилась с 45 до 69%. На рудных карьерах расширение области применения автотранспорта наблюдается при расконсервации уступов и бортов в зоне работы железнодорожного транспорта, отработке карьеров зонами концентрации, отработке нагорной части месторождений.

Для рыночной экономики развитых стран характерно постепенное сближение энергетических и экономических оценок промышленных технологий. В России до этого пока далеко в силу неправильного соотношения цен «уголь – газ – мазут», рассчитанного по паритету покупательной способности валют. В РФ это соотношение составляет 1:0,8:1,3, в США 1:2,3:2,1, в Великобритании 1:1,8:1,6, в Германии 1:2,4:1,7. Во всех странах, кроме России, газ дороже угля [12]. С вступлением в ВТО Россия будет вынуждена изменить указанное соотношение. Согласно прогнозным оценкам, к 2010 г. по сравнению с 1998 г. цены на уголь (руб. /т у. т. ) увеличатся в 2,5 раза, на газ в 9 раз, на мазут в 2,5 раза и на электроэнергию (коп. /кВт·ч) в 4,8 раза. Таким образом, оптимизм по поводу высокой экономической эффективности перевода карьерного автотранспорта на газ может не оправдаться, хотя экологическая эффективность такого перехода неоспорима.

Удельная энергоемкость может успешно использоваться при технико-экономической оценке транспортных систем карьеров в качестве основного или дополнительного критерия.

По аналогии с экономической оценкой при сравнении вариантов транспортных систем затраты энергии прошлых и будущих периодов можно приводить к текущему моменту с помощью коэффициента приведения, рассчитываемого по выражению

(9)

где В – коэффициент приведения; s – норматив для приведения разновременных затрат энергии (норма дисконта); tn – год, к которому приводятся энергозатраты; tj – год осуществления энергозатрат.

В этом случае норма дисконта (s) отражает технический прогресс, т. е. среднегодовой процент снижения удельной энергоемкости различных видов и средств горно-транспортной техники. По данным зарубежных исследований, s=0,005÷0,015. Такой подход имеет определенные преимущества перед денежной оценкой. В отличие от денежной энергетическая оценка имеет прямое, объективное, «физическое» основание, является более стабильной, не подверженной инфляции и волюнтаристскому вмешательству. В целом, энергетическая оценка не подменяет, а дополняет денежную оценку. Денежная оценка дает основание для выработки производственной тактики, энергетический анализ – для выработки стратегии формирования транспортных систем на весь период отработки карьера.

Метод энергетической оценки был реализован при обосновании глубины перехода к вскрытию внутрикарьерными железнодорожными тоннелями Костомукшского карьера [13]. Был рассмотрен период отработки карьера с 1998 до 2031 г. включительно. Оценивалось три варианта, характеризующихся различными глубинами перехода с траншейного на тоннельное вскрытие: 170, 230 и 310 м. К детальной оценке принят 2-й вариант тоннельного вскрытия (глубина перехода 230 м) как наиболее энергетически эффективной. Суммарные дисконтированные затраты энергии по указанному варианту на 12,1% ниже, чем при вскрытии с траншейным вводом железнодорожного транспорта на глубину 310 м, и на 10–16% ниже, чем при 1 м и 3 м вариантах тоннельного вскрытия. Энергетическая эффективность обеспечивается за счет глубокого ввода железнодорожного транспорта, снижения высоты подъема горной массы автотранспортом и сокращения разноса бортов карьера. Вместе с тем, экономические расчеты (ЧДД) не позволяют сделать обоснованный вывод о рациональной глубине перехода на тоннельное вскрытие ввиду незначительного различия вариантов по затратам. Это подтверждает перспективность энергетического анализа при обосновании стратегии формирования транспортных систем глубоких карьеров.


1. Реферат Реакции спиртов Кислотно-основные свойства спиртов Реакции с участием нуклеофильного центра
2. Реферат Задачи учета материалов и их классификация
3. Курсовая Проектирование силового трехфазного трансформатора
4. Реферат Влияние подвижных игр для развития физических качеств у детей младшего школьного возраста 2
5. Реферат Производные финансовые инструменты связанные с акциями
6. Контрольная работа на тему История психологии Античная философия
7. Статья Социологический анализ доминирующих мотиваций занимающихся в фитнес-клубах
8. Курсовая Разработка ценовой стратегии организации
9. Краткое содержание Леди Макбет Мценского уезда
10. Реферат на тему Потребность человека в уважении смысле жизни и самоактуализации