Реферат Жидкие кристаллы
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Жидкие кристаллы
Введение
Жидкие кристаллы (сокращённо ЖК) — вещества, обладающие одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре ЖК представляют собой жидкости, похожие на желе, состоящие из молекул вытянутой формы, определённым образом упорядоченных во всем объёме этой жидкости. Наиболее характерным свойством ЖК является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности. По типу ЖК обычно разделяют на две большие группы: нематики и смектики. В свою очередь нематики подразделяются на собственно нематические и холестерические жидкие кристаллы.
История открытия жидких кристаллов
Жидкие кристаллы открыл в 1888 г. австрийский ботаник Ф. Рейнитцер. Он обратил внимание, что у кристаллов холестерилбензоата и холестерилацетата было две точки плавления и, соответственно, два разных жидких состояния — мутное и прозрачное. Однако, учёные не обратили особого внимания на необычные свойства этих жидкостей. Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества: твёрдом, жидком и газообразном. Учёные относили жидкие кристаллы то к коллоидным растворам, то к эмульсиям. Научное доказательство было предоставлено профессором университета Карлсруэ Отто Леманном (нем. Otto Lehmann) после многолетних исследований, но даже после появления в 1904 году написанной им книги «Жидкие кристаллы», открытию не нашлось применения.
В 1963 г. американец Дж. Фергюсон (англ. James Fergason) использовал важнейшее свойство жидких кристаллов — изменять цвет под воздействием температуры — для обнаружения невидимых простым глазом тепловых полей. После того как ему выдали патент на изобретение (U.S. Patent 3114836 (англ.)), интерес к жидким кристаллам резко возрос.
В 1965 г. в США собралась Первая международная конференция, посвящённая жидким кристаллам. В 1968 г. американские учёные создали принципиально новые индикаторы для систем отображения информации. Принцип их действия основан на том, что молекулы жидких кристаллов, поворачиваясь в электрическом поле, по-разному отражают и пропускают свет. Под воздействием напряжения, которое подавали на проводники, впаянные в экран, на нём возникало изображение, состоящее из микроскопических точек. И всё же только после 1973 г., когда группа английских химиков под руководством Джорджа Грея (англ. George William Gray) синтезировала жидкие кристаллы из относительно дешёвого и доступного сырья, эти вещества получили широкое распространение в разнообразных устройствах.
Группы жидких кристаллов
По своим общим свойствам ЖК можно разделить на две большие группы:
термотропные ЖК, образующиеся в результате нагревания твердого вещества и существующие в определенном интервале температур и давлений и лиотропные ЖК, которые представляют собой двух или более компонентные системы, образующиеся в смесях стержневидных молекул данного вещества и воды (или других полярных растворителей). Эти стержневидные молекулы имеют на одном конце полярную группу, а большая часть стержня представляет собой гибкую гидрофобную углеводородную цепь. Такие вещества называются амфифилами (амфи — по-гречески означает с двух концов, филос — любящий, благорасположенный). Примером амфифилов могут служить фосфолипиды.
Амфифильные молекулы, как правило, плохо растворяются в воде, склонны образовывать агрегаты таким образом, что их полярные группы на границе раздела фаз направлены к жидкой фазе. При низких температурах смешивание жидкого амфифила с водой приводит к расслоению системы на две фазы. Одним из вариантов амфифилов со сложной структурой может служить система мыло-вода. Здесь имеется алифатический анион СН3-(СН2)n-2-СО2- (где n ~ 12-20) и положительный ион Nа+, К+, NН4+ и др. Полярная группа СО2- стремится к тесному контакту с молекулами воды, тогда как неполярная группа (амфифильная цепь) избегает контакта с водой. Это явление типично для амфифилов.
Термотропные ЖК подразделяются на три больших класса:
Нематические жидкие кристаллы. В этих кристаллах отсутствует дальний порядок в расположении центров тяжести молекул, у них нет слоистой структуры, их молекулы скользят непрерывно в направлении своих длинных осей, вращаясь вокруг них, но при этом сохраняют ориентационный порядок: длинные оси направлены вдоль одного преимущественного направления. Они ведут себя подобно обычным жидкостям. Нематические фазы встречаются только в таких веществах, у молекул которых нет различия между правой и левой формами, их молекулы тождественны своему зеркальному изображению (ахиральны). Примером вещества, образующего нематический ЖК, может
Смектические жидкие кристаллы имеют слоистую структуру, слои могут перемещаться друг относительно друга. Толщина смектического слоя определяется длиной молекул (преимущественно, длиной парафинового «хвоста»), однако вязкость смектиков значительно выше чем у нематиков и плотность по нормали к поверхности слоя может сильно меняться. Типичным является терефтал-бис(nара-бутиланилин):
Холестерические жидкие кристаллы — образуются, в основном, соединениями холестерина и других стероидов. Это нематические ЖК, но их длинные оси повернуты друг относительно друга так, что они образуют спирали, очень чувствительные к изменению температуры вследствие чрезвычайно малой энергии образования этой структуры (порядка 0,01 Дж/моль). В качестве типичного холестерика можно назвать амил-пара-(4-цианобензилиденамино)- циннамат
Холестерики ярко окрашены и малейшее изменение температуры (до тысячных долей градуса) приводит к изменению шага спирали и, соответственно, изменению окраски ЖК.
Во всех приведенных типах ЖК характерным является ориентация дипольных молекул в определенном направлении, которое определяется единичным вектором — называемым «директором».
В недавнее время открыты так называемые колончатые фазы, которые образуются только дискообразными молекулами, расположенными слоями друг на друге в виде многослойных колонн, с параллельными оптическими осями. Часто их называют «жидкими нитями», вдоль которых молекулы обладают трансляционными степенями свободы. Этот класс соединений был предсказан академиком Л. Д. Ландау, а открыт лишь в 1977 Чандрасекаром. Схематично характер упорядоченности жидких кристаллов названных типов представлен на рисунке.
У ЖК необычные оптические свойства. Нематики и смектики — оптически одноосные кристаллы. Холестерики вследствие периодического строения сильно отражают свет в видимой области спектра. Поскольку в нематиках и холестериках носителями свойств является жидкая фаза, то она легко деформируется под влиянием внешнего воздействия, а так как шаг спирали в холестериках очень чувствителен к температуре, то, следовательно, и отражение света резко меняется с температурой, приводя к изменению цвета вещества.
Эти явления широко используются в различных приложениях, например, для нахождения горячих точек в микроцепях, локализации переломов и опухолей у человека, визуализации изображения в инфракрасных лучах и др.
Характеристики многих электрооптических устройств, работающих на лиотропных ЖК, определяются анизотропией их электропроводности, которая, в свою очередь, связана с анизотропией электронной поляризуемости. Для некоторых веществ вследствие анизотропии свойств ЖК удельная электропроводность изменяет свой знак. Например, для н-октилоксибензойной кислоты она проходит через нуль при температуре 146° С, и связывают это со структурными особенностями мезофазы и с поляризуемостью молекул. Ориентация молекул нематической фазы, как правило, совпадает с направлением наибольшей проводимости.
Все формы жизни так или иначе связаны с деятельностью живой клетки, многие структурные звенья которой похожи на структуру жидких кристаллов. Обладая замечательными диэлектрическими свойствами, ЖК образуют внутриклеточные гетерогенные поверхности, они регулируют взаимоотношения между клеткой и внешней средой, а также между отдельными клетками и тканями, сообщают необходимую инертность составным частям клетки, защищая ее от ферментативного влияния. Таким образом, установление закономерностей поведения ЖК открывает новые перспективы в развитии молекулярной биологии.
Применение жидких кристаллов
Одно из важных направлений использования жидких кристаллов — термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы — сильно нагретые или холодные, неработающие — сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.
С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ — информационная техника. От первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку прошло лишь несколько лет. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии.