Реферат

Реферат Похідна суми добутку та частки з наведеними прикладами

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 3.4.2025


Реферат

на тему: “Похідна суми, добутку та частки

з наведеними прикладами”.

Теорема: Якщо функції u(x) і (x) мають похідні у всіх точках інтервалу ]a; b[, то

(u(x)(x))’ = u’(x)’(x)

для любого х є ]a; b[. Кортше,

(u)’ = u

Доведення: Суму функцій u(x)+(x), де х є ]a; b[, яка представляє собою нову функцію, позначим через f(x) і найдем похідну цієї функції,

Нехай х0 – деяка точка інтервала ]a; b[.

Тоді

Також,

Так як

х0 – допустима точка інтервала ]a; b[, то маєм:

Випадок добутку розглядається аналогічно. Теорема доведена.

Наприклад,

а)

б)

в)

Зауваження. Методом математичної індукції доводиться справедливість формули (u1(x) + u2 (x) +… кінцевого числа складених.

Теорема. Якщо функції u(x) і (x) мають похідні у всіх точках інтервала ]a; b[, то

для любого х є ]a; b[. Коротше,

Доведення. Позначим похідні через х є ]a; b[, і найдем похідну цієї функції, виходячи із опреділення.

Нехай х0 – деяка точка інтервала ]a; b[. Тоді

Навіть так як

то

Так як х0 – вільна точка інтервала ]a; b[, то маєм

Теорема доведена.

Приклад,

а)

б)

в)

Наслідок. Постійний множник можна виносити за знак похідної:

Доведення. Застосувавши множник можна виносити за знак теорему про похідну де а – число, отримаєм

Приклади.

а)

б)

Похідна частки двох функцій .

Теорема. Якщо функції мають похідні у всіх точках інтервалу ]a; b[, причому для любого х є ]a; b[, то

для любого х є ]a; b[.

Доведення. Позначим тимчасово через найдем використовуючи опреділення похідної.

Нехай х0 – деяка точка інтервала ]a; b[.

Тоді,

Навіть, так як

то

і послідовно

Так як х0 – вільна точка інтервалу ]a; b[, то в послідній формулі х0 можна замінити на х. Теорема доведена.

Приклади.

а)

б)

Формули (3) (стор 20) [2] Д.М. Роматовський “Збірник задач з ТМ”.

Літ [4] табл.6 стор 323 А.М. Кменжова і В.А. Малов “Довідник з ТМ” т.І.


1. Реферат на тему Stoker And Rice
2. Контрольная работа на тему Принципы устройства бюджетной системы Российской Федерации
3. Реферат на тему Decisions Essay Research Paper Choosing a college
4. Диплом Cовершенствования управления персоналом в ООО АлеРо
5. Кодекс и Законы Правовая охрана земель 2
6. Реферат Восприятие и научение
7. Реферат на тему Renaisance 2 Essay Research Paper The Renaissance
8. Диплом Совершенствование системы управления закупками на предприятии ОАО Новосибирская макаронная фабрика
9. Курсовая Учет валютных операций 8
10. Реферат Рак кожи