Реферат

Реферат Послідовність Майбутня та теперішня вартість

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024


Реферат на тему:

Послідовність. Майбутня та теперішня вартість

Нехай p - початковий внесок в банк;

r - процент (відсоток) нарахувань;

t - кількість періодів, що минули від моменту початкового

внеску.

У тому випадку, коли нараховують звичайні відсотки, поточний розмір внеску є послідовністю типу арифметичної прогресії

a0=p; a1=p+rp; a2=p+2rp; . . .; at=p+trp; . . .

Загальний член прогресії (розмір внеску в періоді t ) обчислюють за формулою

at=p(1+tr).

Приклад. Клієнт вклав у банк 1000 грн. під прості відсотки у розмірі 10% річних. Визначити, через скільки періодів його внесок подвоїться.

При p = 1000 грн. та r = 0,1=10% маємо

a0=1000; a1=1100; a2=1200; . . . ; at=1000(1+0,1t); . . .

Подвоєння внеску (at=2a0) відбудеться через 1/r=10 періодів (років). Справді, із рівняння 1000(1+0,1t) = 1000 2 отримуємо

1+0,1t = 2;

t = 10.

Нехай, як і раніше, як і раніше,

p - початковий внесок у банк;

r - відсоток нарахувань;

t - кількість періодів, що минули від моменту початкового внеску,

проте в кінці кожного періоду нараховують відсотки не від початкового внеску, а від розміру останнього внеску (так звані складні відсотки).

Тепер розміри внесків в кінці періодів будуть такими:

b0 = p;

b1 = p+rp =p(1+r);

b2 = (p+rp)+r(p+rp) =p(1+r)2;

. . . . . . . . . . . . . . . . . . . . . . .

bt=p(1+r)t

. . . . . . . . . . . . . . . . . . . . .

Як бачимо, послідовність значень цих внесків є геометричною прогресією.

При p=1000; r=0,1 (10%) у випадку складних відсотків розміри внесків будуть такими:

b0=1000; b1=10001,1=1100; b2=10001,12=1210; . . . ;bt=10001,1t;. . .

Подвоєння внеску ( bt=2b0 ) буде через 7,27 періоду (року). Справді, з рівняння 1,1t=2 маємо tln1,1=ln2, звідки і t=7,27.

Ми отримали результат: у разі нарахування складних відсотків у розмірі r через t періодів (місяців, років) внесок p зростає до p(1+r)t . Зокрема, кожна гривня зросте до (1+r)t гривень.

Отже, майбутня вартість теперішніх грошей обчислюється за формулою

(3.3)

Позначення FV та PV представляють собою скорочення від слів Future Value (майбутня вартість) та Present Value (теперішня вартість).

Очевидно, що теперішню вартість майбутніх грошей розраховують за формулою

(3.4)

Обчислення теперішньої та майбатньої вартості виконують функції PV та FV (у російській версії використовуються не зовсім вдалі назви БЗ та ПЗ ) системи EXCEL .

Приклад. Нараховують складні відсотки у розмірі 30%. Обчислити майбутню вартість (через два роки) теперішніх грошей у сумі 2000 грн.

Згідно з формулою (3.3) маємо FV=2000(1+0,3)2=20001,69=3380 грн.

Цей же результат дає застосування функції FV(0.3,2,0,-2000) або у російській версії БЗ(0,3;2;0;-2000).


1. Реферат Кримінологічні аспекти банківської діяльності
2. Реферат Роль лексикона в когнитивно-дискурсивных исследованиях
3. Реферат Технология моделирования на уроках чтения как одно из условий литературного развития младших шко
4. Реферат Методы монтажа железобетонных конструкций каркасных зданий
5. Контрольная работа Мировой экспорт промышленных товаров
6. Реферат Прибыль предприятия 2
7. Курсовая на тему Заработная плата как часть национального дохода
8. Курсовая на тему База данных Учет готовой продукции на складе
9. Контрольная работа на тему Методы факторного анализа
10. Методичка на тему Ефективне керівництво Школою сприяння здоров ю методичні рекомендації