Реферат

Реферат Видимі рухи планет Закони Кеплера

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 1.4.2025


Реферат на тему:

Видимі рухи планет. Закони Кеплера

1. Нижні та верхні планети. За особливостями свого видимого руху на небесній сфері планети поділяються на дві групи: нижні (Меркурій, Венера) і верхні (Марс, Юпітер, Сатурн, Уран, Нептун і Плутон). Рух верхніх і нижніх планет небесною сферою відбувається по-різному.

Меркурій і Венера перебувають на небі або в тих же сузір'ях, що й Сонце, або в сусідніх. При цьому вони можуть знаходитись як на захід, так і на схід від нього, але не далі 28° (Меркурій) і 48° (Венера).

Найбільше кутове відхилення планети від Сонця на схід нази­вається найбільшою східною елонгацією (з лат. - «відда­ляюся»), на захід - найбільшою західною елонгацією

При східній елонгації планету видно на заході у променях вечірньої заграви незабаром після заходу Сон­ця через деякий час вона також заходить. Потім, переміщую­чись зворотним рухом (зі сходу на захід, проти видимо­го руху Сонця), спочатку повільно, а потім все швидше планета починає наближати­ся до Сонця, ховається в його променях і стає невидимою. В цей час планета проходить між Землею та Сонцем і настає її нижнє сполучення із Сонцем.

Через деякий час після нижнього сполучення планета знову стає ви­димою, але вже на сході, в променях ранкової зорі, незадовго перед появою Сонця. Далі, продовжуючи переміщен­ня зворотним рухом, планета досягає найбільшої західної елонгації, зу­пиняється на деякий час і знову продовжує рух, але вже прямий, у на­прямку до Сонця.

Повернувшись до Сонця, планета незабаром зникає в його проме­нях і знову стає невидимою. В цей час вона проходить за Сонцем, і відбувається її верхнє сполучення, після якого через деякий час вона знову стає видимою на заході в про­менях вечірньої заграви. Далі цикл повторюється.

Таким чином, нижні планети, подібно до маятника, «коливають­ся» відносно Сонця.

Інакше відбувається видимий рух верхніх планет. Коли верхню планету видно після заходу Сон­ця на західному небосхилі, вона переміщується серед зір прямим рухом, тобто з заходу на схід, як і Сонце. Але швидкість її руху мен­ша, ніж у Сонця, тому Сонце наздо­ганяє планету, і вона на деякий час перестає бути видимою.

Потім, коли Сонце обжене пла­нету, вона стає видимою на сході перед появою Сонця. Швидкість її прямого руху поступово змен­шується, планета зупиняється, потім починає переміщення зво­ротним рухом зі сходу на захід, причому її траєкторія нагадує петлю.

В середині дуги свого зворотного руху планета знаходиться в сузір'ї, протилежному Сонцю; таке її положення називається про­тистоянням.

Через деякий час планета знову зупиняється, змінює напрямок сво­го руху на прямий, знову з заходу на схід. Згодом її наздоганяє Сонце, вона перестає бути видимою - і цикл руху починається спочатку.

В середині дуги свого прямого руху, під час періоду невидимості, планета знаходиться в одному сузір'ї з Сонцем, і таке її положення на­зивається сполученням із Сонцем.

Розташування планети на 90° на схід від Сонця називається східною квадратурою, на 90° на захід - західною квад­ратурою.

Всі вищеописані особливі положення планет відносно Сонця нази­ваються конфігураціями.

Проміжок часу S між двома послідовними однаковими конфігу­раціями планети називається її синодичним періодом обертання.

Для Меркурія він становить 116 діб, для Венери - 584 доби, для Марса, Юпітера і Сатурна відповідно - 780, 399 і 378 діб.

Особливості руху планет пов'язані з тим, що ми спостерігаємо їхній рух із Землі, яка також обертається навколо Сонця. Отже, петля в русі верхньої планети - це відображення руху Землі по орбіті, і чим далі планета, тим менший розмір петлі. Ширина петлі зворотного руху Марса дорівнює 15°, Юпітера - 10°, Сатурна - 7°.

2. Закони Кеплера. Використовуючи дані Птолемея, М. Коперник визначив відносні відстані (в радіусах орбіти Землі) кожної з планет від Сонця, а також їхні сидеричні (відносно зір) періоди обертання навколо Сонця. Це дало змогу Йогану Кеплеру (1618-1621) встановити три закони руху планет.

І. Кожна з планет рухається навколо Сонця по еліпсу, в од-ому з фокусів якого знаходиться Сонце.

Еліпс - це замкнена крива, сума відстаней до кожної точки якої від фокусів F1 і F2 рівна його великій осі, тобто 2а, де а - велика піввісь еліпса.

Якщо Сонце перебуває у фокусі F1 a планета у точці Р, то відрізок прямої F1P називається радіусом-вектором планети.

Відношення е = с/а, де с - відстань від фокуса еліпса до його центра, називається ексцентриситетом еліпса. Ексцентриситет визначає відхилення еліпса (ступінь його витягнутості) від кола, для якого е = 0,0167.

Орбіти планет у Сонячній системі дуже мало відрізняються від колових. Так, найменший ексцентриситет має орбіта Венери: е = 0,007; найбільший - орбіта Плутона: е = 0,249; ексцентриситет земної орбіти становить е = 0,0167.

Найближча до Сонця точка планетної орбіти П називається п е р й -в л і є м , найдальша точка орбіти А- афелієм.

II. Радіус-вектор планети за однакові інтервали часу описує рівновеликі площі.

З цього закону випливає важливий висновок: оскільки площі 1 і 2 рівні, то по дузі P1P2 планета рухається з більшою швидкістю, ніж по дузі Р3Р4 тобто швидкість планети найбільша в пе­ригелії П і найменша в афелії А.

III. Квадрати сидеричних періодів обертання планет відносяться як куби великих півосей їхніх орбіт.

Якщо сидеричні періоди обертання двох планет позначити Т1 і Т2, а великі півосі еліпсів - відповідно а1 і а2, то третій закон Кеплера має ви­гляд

Закони Кеплера справедливі не лише для планет, а й для їхніх супутників, як природних, так і штучних.

У 1687 р. І. Ньютон, розглядаючи задачу взаємного притягання небесних тіл, точніше сформулював третій закон Кеплера для випад­ку, коли планета з масою М має супутник з масою m. Наприклад, для руху Землі навколо Сонця (сидеричний період Т, піввісь орбіти а) і Місяця навколо Землі (відповідно Т і а) третій закон Кеплера запи­сується так:

Мʘ + m)Т2

=

а3

а3

(m + m)Т2

де Мʘ, mʘ і m - відповідно маси Сонця, Землі і Місяця.

Нехтуючи другими доданками в дужках (малими порівняно з пер­шими), можна визначити масу Сонця в одиницях маси Землі. Таким же чином можна визначити маси й інших небесних тіл, якщо вони мають природні чи штучні супутники.

3. Рух штучних супутників Землі. Наведемо деякі особли­вості руху штучних супутників Землі. У найпростішому випадку коло­вої орбіти, якщо висота Н супутника над поверхнею Землі і радіус R Землі виражені в кілометрах, його період обертання Т у хвилинах дорівнює

Наприклад, для висот Н = 220, 562 і 1674 км маємо період обер­тання Т = 89, 96 і 120 хв. Дуже цікавим є випадок, коли Н = 35 800 км: тоді Т = 23 год 56 хв 04 с. А це час, за який Земля здійснює оберт навколо власної осі. Тому, якщо орбіта такого супут­ника лежить у площині земного екватора, і він рухається в напрям­ку обертання Землі, то супутник увесь час перебуватиме «нерухомо» над певною точкою земного екватора. Така орбіта називається геостаціонарною.

Найбільша відстань на якій супутник все ще буде обертатись на­вколо Землі, - 1,5 млн км. Якщо ж супутник опиниться на більшій відстані, то тяжіння з боку Сонця збурюватиме його рух, або поверта­ючи супутник на менші висоти, або ж перетворюючи його в штучну планету.


1. Курсовая Разработка технологического процесса изготовления детали Поршень
2. Реферат на тему Violence Is The Answer A Satire Essay
3. Реферат Гостиничное предприятие как субъект современного рынка услуг
4. Реферат Особенности принятия и реализации управленческих решений
5. Реферат Африканский экзархат
6. Реферат Профессиональное долголетие менеджера 2
7. Курсовая Организационная культура и ее роль в управлении персоналом
8. Реферат на тему Pyramids Essay Research Paper When most people
9. Реферат на тему Handling Stress Essay Research Paper Handling Stress
10. Реферат на тему Вирішення проблем безпеки праці користувачів ПК в різних країнах св