Реферат Основні уявлення про пластичний обмін біосинтез білків фотосинтез 2
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Назва реферату: Основні уявлення про пластичний обмін, біосинтез білків, фотосинтез
Розділ: Біологія
Основні уявлення про пластичний обмін, біосинтез білків, фотосинтез
Основні уявлення про пластичний обмін. Біосинтез білків та його етапи.
Пластичний обмін (анаболізм, асимиляція) – сукупність біохімічних ферментативних процесів синтезу біоорганічних сполук:
- Поживні речовини (білки, ліпіди і вуглеводи), які поступають з їжею, не схожі на відповідні високомолекулярні сполуки даного організму.
- У процесі травлення ці сполуки розпадаються до мономерів, які використовуються в процесі біосинтезу специфічних високомолекулярних речовин.
До основних процесів пластичного обміну належить біосинтез білків, вуглеводів, ліпідів, нуклеїнових кислот, а також фотосинтез і хемосинтез.
Організми розрізняються між собою специфічними білками. Білки складаються з амінокислот. Взаєморозташування амінокислот визначає специфічні властивості білка.
Біосинтез білків відбувається у цитоплазмі клітини на спеціальних органелах – рибосомах. Кожна рибосома має велику і малу субодиниці, які відіграють важливу роль на різних етапах біосинтезу білків. Найважливішу роль у процесі біосинтезу білка відіграють нуклеїнові кислоти – ДНК, РНК. На ДНК записана інформація про білки.
Ген – ділянка ДНК, яка містить інформацію про первинну структуру білка.
Біосинтез білка проходить у 4 етапи:
І етап. Транспірація – передача інформації про структуру білка з молекули ДНК на і-РНК. Цей процес здійснюється з участю спеціальних ферментів і відбувається так: подвійний ланцюг на певному відрізку роз’єднується і вздовж одного з ланцюгів ДНК починається синтез молекули і-РНК за принципом комплементарності. Певна ділянка ДНК (ген) є матрицею для відповідної і-РНК. і-РНК після транскрипції зазнають процесу сплайсінгу – з новоутвореної і-РНК вирізаються неінформаційні фрагменти – інтрони і зшиваються інформаційні ділянки – інтрони.
Екзони – послідовність нуклеотидів у генах, що кодують синтез білка (інформативна ділянка). Інтрони – послідовність нуклеотидів ДНК, що не кодують синтез білка (неінформативна ділянка). Спейсери – частина ДНК, що взагалі не несе генетичної інформації.
Синтезовані молекули і-РНК переходять із ядра в цитоплазму, а ДНК відновлює свою структуру.
ІІ етап. Активація амінокислот. Цей процес відбувається в цитоплазмі. Активовані молекули амінокислот з’єднуються з молекулами транспортних РНК, кожній з 20 амінокислот відповідає певна т-РНК. У молекулі т-РНК є дві важливі ділянки: до однієї з них прикріплюється відповідна амінокислота, а інша містить триплет нуклеотидів, який відповідає коду даної амінокислоти в молекулі і-РНК. Активовані амінокислоти, сполучені з т-РНК надходять до рибосом.
ІІІ етап. Трансляція – синтез поліпептидних ланцюгів. Відбувається так: молекула і-РНК рухається між двома субодиницями рибосом і до неї послідовно приєднуються молекули т-РНК з амінокислотами. При цьому за принципом комплементарності кодони і-РНК вступають у зв’язок з антикодонами т-РНК. Послідовність розташування амінокислот при цьому визначається порядком чергування триплетів у молекулі і-РНК. Амінокислоти утворюють пептидні зв’язки за рахунок енергії АТФ і в результаті з рибосоми сходить поліпептидний ланцюг.
ІV етап. Термінація – утворення вторинної і третинної структур білкової молекули. Цей етап здійснюється в цитоплазмі шляхом скручування, згортання поліпептидного ланцюга.
Для синтезу білка необхідно:
1) енергія (у вигляді АТФ у мітохондріях).
2) відповідні ферменти.
3) інформація про структуру білка (у ДНК, а потім в і-РНК).
4) амінокислоти і відповідні їм т-РНК.
5) рибосоми.
Молекули білка синтезуються у клітині впродовж 1-2 с. Синтез білків у клітині відбувається в інтерфазі – період між її поділом.
Загальні уявлення про фотосинтез.
Основні реакції світлової та темнової фаз фотосинтезу в хлоропластах.
Значення фотосинтезу для існування біосфери.
Процес синтезу органічних речовин з неорганічних, який відбувається з використанням світлової енергії і за участю хлорофілу, називають фотосинтезом.
Процес фотосинтезу виражається таким сумарним рівнянням:
6СО2 + 6Н2О + Е →хлорофіл С6Н12О6 + 6О2
Фотосинтез – це складний, багатоступінчастий процес, який відбувається протягом двох фаз: світлової і темнової.
Світлова стадія фотосинтезу відбувається на тилакоїдах хлоропластів. Ця стадія розпочинається з моменту поглинання квантів світла молекулою хлорофілу; при цьому електрони атома магнію у молекулі хлорофілу переходять на більш високий енергетичний рівень, нагромаджуючи потенціальну енергію; частина електронів зразу ж повертається на своє попереднє місце, а енергія, що виділяється при цьому, випромінюється у вигляді тепла; значна частина електронів з високим рівнем енергії передає її іншим хімічним сполукам для фотохімічної роботи, яка здійснюється за кількома основними напрямками:
1.Перетворення енергії електронів на енергію АТФ, що відбувається таким чином:
АДФ + Ф + Енергія → АТФ;
оскільки приєднання залишків фосфорної кислоти здійснюється за рахунок енергії (в даному разі енергії світла), цей процес називається фосфорилюванням.
2.Відбувається процес розкладу (фотоліз) води; при цьому утворюються електрони (е-), протони (Н+); як побічний продукт – молекулярний кисень; рівняння розкладу води:
4H2O→4H+ + 4OH--
4 OH- → 2H2O+O2+4e--
4H+ +4e-- → 4H
протоки водню Н+ приєднуючи електрони з високим енергетичним рівнем, перетворюються на атомарний водень, який використовується у наступних реакціях фотосинтезу;
Відновлення універсального біологічного переносника водню НАДФ+ до НАДФ-Н. Таким чином. У результаті світлової фази фотосинтезу утворюються АТФ з АДФ; НАДФ+ відновлюється і утворюється НАДФ-Н; виділяється молекулярний кисень; АТФ і НАДФ-Н використовуються у темновій фазі фотосинтезу.
Темнова фаза фотосинтезу або цикл Кальвіна (Нобелівська премія) – ряд послідовних реакцій, що супроводжуються поглинанням вуглекислого газу і утворенням вуглеводів, відбувається в основній речовині хлоропласта. Ці реакції можуть відбуватися і на світлі, і в темряві. СО2, який надходить із зовнішнього середовища, вловлюється п’ятивуглецевими органічними сполуками, що містяться у хлоропластах рослин; при цьому утворюється нестійка шестивуглецева сполука, що швидко розщеплюється на дві тривуглецеві молекули.
У результаті семи послідовних ферментативних реакцій з використанням енергії АТФ і НАДФ-Н утворюється шестивуглецева молекула глюкози.
Для синтезу однієї молекули глюкози необхідно 6 молекул СО2, 18 молекул АТФ і 12 молекул НАДФ-Н.
Сумарне рівняння реакції темнової фази:
6СО2 + 18АТФ + 12Н2О + 12НАДФ-Н + 12Н+ → С6Н12О6 + 18АДФ + 18Ф + 12НАДФ+,
де Ф – залишок фосфорної кислоти.
Отже, у темновій фазі фотосинтезу як результат ряду ферментативних реакцій відбувається відновлення вуглекислого газу до глюкози.
Значення фотосинтезу:
- Завдяки фотосинтезу на Землі щорічно утворюється 150 млрд т органічної речовини та виділяються близько 200 млрд т вільного кисню.
- Фотосинтез підтримує баланс газів в атмосфері, необхідний для життя на Землі, перешкоджає збільшенню концентрації СО2, попереджає надмірне нагрівання Землі.
- Виділення кисню в процесі фотосинтезу сприяло формуванню озонового екрану, який захищає все живе від згубного впливу короткохвильової ультрафіолетової радіації.
- При всій грандіозності масштабів природний фотосинтез – повільний і малоєфективний процес: рослинами використовується лише 1% всієї сонячної енергії.
- Поняття про космічну роль земних рослин сформулював академік К.А.Тімірязев.