Реферат

Реферат на тему История развития основные достижения и проблемы медицинской генетики

Работа добавлена на сайт bukvasha.net: 2014-12-27

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024


РЕФЕРАТ
на тему:
«История развития, основные достижения и проблемы медицинской генетики»

Оглавление
1. История развития генетической науки
2. Этапы развития медицинской генетики
3. Генная и клеточная инженерия. Биотехнология
4. Достижения генетики в диагностике и профилактике заболеваний

1. История развития генетической науки
Впервые представления о передаче патологических наследственных признаков отражены в Талмуде (собрание догматических, религиозно-этических и правовых положений иудаизма, сложившихся в IV в. до н.э.), в котором указана опасность обрезания крайней плоти у новорожденных мальчиков, старшие братья которых или дяди по материнской линии страдают кровотечениями.
В ХVIII в. описано наследование доминантного (полидактилия многопалость) и рецессивного (альбинизм у негров) признаков. В начале XIX в. несколько авторов одновременно описали наследование гемофилии.
Особого внимания заслуживает книга лондонского врача Адамса, вышедшая в 1814 г. под названием «Трактат. О предполагаемых наследственных свойствах болезней, основанных на клиническом наблюдении». Через год она была переиздана под названием «Философский трактат о наследственных свойствах человеческой расы». Это был первый справочник для генетического консультирования. В ней сформулировано несколько принципов медицинской генетики:
- браки между родственниками повышают частоту семейных болезней;
- не все врожденные болезни являются наследственными, часть из них связана с внутриутробным поражением плода (например, за счет сифилиса).
А.Г. Мотульски (1959) справедливо назвал Адамса «забытым основателем медицинской генетики».
В середине XIX в. в России над проблемами наследственных болезней работал В.М. Флоринский. Он изложил свои взгляды по усовершенствованию человеческого рода. Однако ряд предположений был противоречив и неверен. В то же время В.М. Флоринский поднял и осветил некоторые вопросы медицинской генетики. В своих трудах он правильно оценил значение среды для формирования наследственных признаков, подчеркнул вред родственных браков. Показал наследственный характер многих патологических признаков (глухонемота, альбинизм). Однако книга не нашла отклика среди медиков и биологов того времени, так как ученые еще не были подготовлены к Восприятию этих идей.
В последней четверти XIX в. наибольший вклад в становление генетики человека внес английский биолог Ф. Гальтон (двоюродный брат Ч. Дарвина). Он первым поставил вопрос о наследственности человека как предмете для изучения, обосновал применение генеалогического, близнецового и статистического методов для ее изучения и заложил основы для будущего развития генетики человека. Принципиальная ошибка Ф. Гальтона заключается в том, что во всех евгенических мероприятиях он рекомендовал не столько избавиться от патологических генов человека, сколько повысить количество «хороших» генов в человеческих популяциях путем предоставления преимущественных условий для размножения более одаренных, гениальных людей.
Существенный вклад в изучение генетики человека внес выдающийся английский клиницист. А Гаррод, хорошо знавший биологию и химию. Он первым обнаружил взаимосвязь между генами и ферментами и, применив эти знания к изучению патологических признаков, открыл врожденные нарушения обмена веществ.
Работы Адамса и других исследователей того времени не привлекли внимания широкого круга специалистов потому, что наследственность тогда в основном изучалась на растениях. Наблюдения над человеком не учитывались. Между тем, если бы результаты исследований по генетике человека были известны Г. Менделю и другим ученым, изучавшим наследование на ботаническом материале, то открытие ее законов генетики и их признание могли бы произойти гораздо раньше.
В 1865 г. чешский ученый Г. Мендель глубоко и последовательно с математическим описанием в опытах на горохе сформулировал законы доминирования для первого поколения гибридов, расщепления и комбинирования наследственных признаков в потомстве гибридов. Этот важнейший вывод доказал существование наследственных факторов, детерминирующих развитие определенных признаков. Работа Г. Менделя оставалась непонятой 35 лет.
В 1900 г. три ботаника независимо друг от друга, не зная работы Г. Менделя, на разных объектах повторили его открытие: Де Фриз из Голландии - в опытах с энтерой, маком и дурманом, Корренс из Германии - с кукурузой, Чермак из Австрии - с горохом. Поэтому 1900 г. считается годом рождения генетики. С него начался период изучения наследственности, отличительной чертой которого стал предложенный ранее Г. Менделем гибридологический метод, анализ наследования отдельных признаков родителей в потомстве.
В 1905 г. В. Бэтсон предложил термин «генетика», а в 1909 г. В. Иогансен предложил термин «ген» (от греческого genes - рождающий, рожденный) для обозначения наследственных факторов. Совокупность всех генов у одной особи ученый назвал генотипом, совокупность признаков организма - фенотипом.
В 1908 г. Г. Харди и В. Вайнберг показали, что менделевские законы объясняют процессы распределения генов в популяциях (от лат. populus-население, народ). Ученые сформулировали закон, который описывает условия генетической стабильности популяции в России в 1919 г. Ю.А. Филипченко организовал первую кафедру генетики в Ленинградском университете. В это время работал молодой Н.И. Вавилов, сформулировавший один из генетических законов - закон гомологических рядов наследственной изменчивости.
Н.К. Кольцов, Ю.А. Филипченко и некоторые другие ученые в рамках евгенической программы проводили работы по генетике одаренности, изучая родословные выдающихся личностей. В этих исследованиях были допущены некоторые методические ошибки, Однако по сравнению с генетическими исследованиями в других, странах в период расцвета евгеники подходы наших ученых были во многом верными.
Так, Н.К. Кольцов и Ю.А. Филипченко правильно поставили вопрос о значении социальной среды в реализации индивидуальных способностей. Они полностью отвергли насильственный путь улучшения породы человека. В период проведения евгенических исследований в СССР были собраны интересные родословные выдающихся личностей (А.С. Пушкина, Л.Н. Толстого, А.М. Горького, Ф.И. Шаляпина и др.).
Конец 20-х - начало 30-х годов характеризуются довольно большими успехами в развитии генетики. К этому времени стала общепризнанной хромосомная теория наследственности. Т. Морган и его ученики экспериментально доказали, что гены расположены в хромосомах в линейном порядке и образуют группы сцепления.
Теоретическая и экспериментальная работы С.С. Четверикова (1926, 1929) положили начало современной генетике популяций. Большой вклад в изучение этого раздела внесли труды Р. Фишера (1931), С. Райта (1932), Н.П. Дубинина и Д.Д. Ромашова (1932), Дж.Е. Холдейна (1935) и др.
В ряде стран начала. развиваться медицинская генетика. В нашей стране особого упоминания заслуживает Медико-генетический институт, который функционировал с 1932 по 1937 т. При нем был Организован центр близнецовых исследований, в котором широко изучались количественные признаки у человека и болезни с наследственным предрасположением (сахарный диабет, гипертоническая Болезнь, язвенная болезнь и др.). Правильное применение разных методов исследования (клинико-генеалогического, близнецового, цитогенетического, популяционно-статистического) позволило коллективу занять передовые рубежи генетики.
В 20-30-х годах работал талантливый клиницист и генетик С.Н. Давиденков (1880-1961), который внес свой вклад в изучение наследственных болезней, а также первым в нашей стране начал проводить медико-генетическое консультирование и разрабатывать методику этого вида медицинской помощи.
К концу 30-х - началу 50-х годов интерес к генетике человека снизился. Возобновились исследования лишь в начале 60-х годов.
С 1959 по 1962 г. количество публикаций, конференций, симпозиумов по генетике человека быстро возросло. Стало ясно, что наследственные болезни по своей природе гетерогенны, различны не только с клинической, но и с генетической точки зрения. Один и тот же фенотип болезни может быть обусловлен мутационным изменением различных белков (генокопия).
После того как было установлено, что ДНК является носителем наследственной информации, ученые направили усилия на изучение молекулярной природы и генетической значимости ее отдельных компонентов.
Исследование ДНК проводилось многими учеными. Весь накопленный комплекс биологических и физико-химических знаний привел к тому, что в 1953 г. Д. Уотсон и Ф. Крик открыли двухцепочечную спиральную (пространственную) структуру молекулы ДНК Затем бурно начала развиваться молекулярная и биохимическая генетика человека, а также иммунопгенетика.
Развитие цитогенетики человека является ярким примером значения фундаментальных исследований для практического здравоохранения. Так, в 1956 г. А. Леван и Дж. Тио установили, что у человека хромосомный набор состоит из 46 хромосом, а через три года были открыты хромосомные болезни. Очередным переломным моментом в цитогенетике человека была разработка методов дифференциальной окраски хромосом.
Следующим шагом в развитии современной генетики явилось картирование (определение места положения) генов в хромосомах человека. Успехи цитогенетики, генетики соматических клеток обеспечили прогресс в изучении групп сцепления (групп генов, наследующихся совместно). В настоящее время у человека известно 24 группы сцепления. Работы по изучению сцепления генов дают новые практические возможности в диагностике наследственных болезней и медико-генетическом консультировании.
2. Этапы развития медицинской генетики
Таким образом, в истории медицинской генетики можно выделить несколько основных этапов:
1) открытие законов Г. Менделя и изучение наследственности на уровне целостного организма;
2) изучение генетики на хромосомном уровне и открытие сцепленного наследования Т. Морганом и его учениками;
3) начало развитию современной генетики популяции дали теоретические и экспериментальные работы С.С. Четверикова;
4) развитие молекулярной генетики началось с построения пространственной структуры молекул ДНК Д. Уотсоном и Ф. Криком.
В настоящее время наследственность изучается на всех уровнях: молекулярном, клеточном, организменном и популяционном.
3. Генная и клеточная инженерия. Биотехнология
Для лечения многих болезней необходимы различные биологически активные вещества. При выделении их из тканей человека возникает опасность загрязнения полученного материала различными вирусами (гепатита В, иммунодефицита человека и др.). Кроме того, эти вещества производятся в небольших количествах и являются дорогостоящими. Биологически активные вещества животного происхождения низкоэффективны из-за несовместимости с иммунной системой больного человека. Только развитие новой отрасли - генной инженерии помогло обеспечить получение чистых биологически активных веществ в больших количествах по более низкой цене.
Генная инженерия - это создание гибридных, рекомбинантных молекул ДНК, а стало быть, и организмов с новыми признаками. Для этого необходимо выделить ген из какого-либо организма или искусственно синтезировать его, клонировать (размножить) и перенести в другой организм.
Инструментами генной инженерии являются ферменты: рестриктазы
(разрезающие молекулу ДНК) и лигазы (сшивающие ее). В качестве векторов-переносчиков используются вирусы.
С помощью генной инженерии созданы штаммы кишечных палочек, в которые встроены гены человеческого инсулина (необходимого для лечения сахарного диабета), интерферона (противовирусного препарата), соматотропина (гормона роста).
С помощью генной инженерии созданы дрожжевые клетки, продуцирующие человеческий инсулин. Биосинтетический метод производства человеческого инсулина с помощью дрожжевых клеток широко используется в фармацевтическом Производстве (в Дании, Югославии, США, Германии и других странах).
В настоящее Время ученые разных стран работают над получением с помощью генной инженерии ряда других необходимых биологически активных веществ, вакцины против гепатита В, активатора профибринолизина (противосвертывающий препарат), нитерлейкина-2 (иммуномодулятор) и др. В клетки животных чужеродные гены вводят в виде отдельных молекул ДНК или в составе векторов-вирусов, способных вносить в геном клетки чужую ДНК
Обычно применяют два метода:
1) ДНК добавляют в среду инкубации клеток;
2) производят микроинъекции ДНК непосредственно в ядро (что более эффективно).
Первоочередными задачами генной инженерии у человека являются создание банков генов человека для их изучения и поиск путей генотерании, то есть замены мутантных генов нормальными аллелями.
Клеточная инженерия - это метод конструирования клеток нового типа на основе их культивирования, гибридизации или реконструкции. При гибридизации искусственно объединяются целые клетки (иногда далеких видов) с образованием гибридной клетки.
Клеточная реконструкция - это создание жизнеспособной клетки из отдельных фрагментов разных клеток (ядра, цитоплазмы, хромосом и др.). Изучение гибридных клеток позволяет решать многие проблемы биологии и медицины. Так, например, биотехнология использует гибридомы. Гибридома - это Клеточный гибрид, получаемый слиянием нормального лимфоцита и опухолевой клетки.
Биотехнология - это производство продуктов и материалов, необходимых для человека, с помощью биологических объектов.
Термин «биотехнология» получил распространение в середине 70-х годов ХХ в., хотя отдельные отрасли биотехнологии известны давно и основаны на применении различных микроорганизмов: хлебопечение, виноделие, пивоварение, сыроварение. Достижения генетики создали большие дополнительные возможности для развития биотехнологии.
В середине ХХ. в., используя индуцированный мутагенез, были получены антибиотики (пенициллин, стрептомицин, эритромицин и др.) - с помощью микробов; фермент амилаза - с помощью сенной палочки; аминокислоты - с помощью кишечной палочки; молочная кислота '- с помощью Молочнокислых бактерий; лимонная кислота - с помощью аспергилловой плесени; витамины группы В - с помощью дрожжей.
В последние десятилетия в результате успехов, достигнутых генной инженерией, происходит скачок в биотехнологии - развивается микробиологическая промышленность (микробиологическая индустрия), которая позволяет в промышленных условиях с помощью кишечной палочки или дрожжей получать человеческий инсулин, интерферон, соматотропин и другие вещества.
4. Достижения генетики в диагностике и профилактике заболеваний
В настоящее время проводится массовый скрининг новорожденных в роддомах для выявления фенилкетонурии и врожденного гипотиреоза. Данные исследования позволяют поставить диагноз в ранние сроки и своевременно назначить эффективное лечение.
Больших успехов в последнее десятилетие достигла пренатальная диагностика наследственных заболеваний и врожденных пороков развития. Широкое распространение в медицинской практике получили следующие методы: ультразвуковое исследование, амниоцентез, биопсия хориона, кордоцентез, определение альфа-фетопротеина и хориогонина, ДНК- диагностика.
Огромный вклад в диагностику хромосомных болезней внесли генетики, внедрив в практику медицины метод дифференциальной окраски хромосом. С помощью этого метода можно определить количественные и структурные перестройки хромосом, которые невозможно выявить при рутинной окраске, и точно поставить диагноз.
Большое теоретическое и практическое значение имеет изучение групп сцепления у человека и построение карт хромосом. В настоящее время у человека относительно изучены все 24 группы сцепления и продолжается установление новых локусов генов.
В последнее время в практическую медицину внедрены достижения клеточной инженерии. С помощью гибридом получают моноклональные антитела, которые широко используются в диагностике заболеваний.
Наиболее распространенным и эффективным методом профилактики наследственных болезней и врожденных пороков развития является медико-генетическое консультирование, направленное на предупреждение появления в семье больных детей. Врач-генетик рассчитывает риск рождения ребенка с тяжелой наследственной патологией и при высоком риске, при отсутствии методов пренатальной диагностики дальнейшее деторождение в данной семье не рекомендуется.
С целью предупреждения рождения детей с наследственно детерминированными болезнями необходимо объяснять вред близкородственных браков молодым людям, планирующим создание семьи.
Беременным женщинам в возрасте старше 35 лет необходимо обследование у врача-генетика для исключения у плода хромосомной патологии.
Таким образом, применение достижений генетики в практической медицине способствует предупреждению рождения детей с наследственными заболеваниями и врожденными пороками развития, ранней диагностике и лечению больных

Список используемой литературы
1. Медицинская генетика / Под ред. Бочкова Н.П. - М.: Мастерство, 2001
2. Ярыгин В.Н., Волков И.Н. и др. Биология. - М.: Владос, 2001
З. Биология / Под ред. Чебышева. Н.В. - М.: ГОУ ВУНМЦ,2005.
4. Орехова. В.А., Лажковская Т.А., Шейбак М.П. Медицинская генетика. - Минск: Высшая школа, 1999
5. Пособие по биологии для довузовского обучения иностранных учащихся / Под ред. Чернышова В.Н., Елизаровой Л.Ю., Шведовой Л.П. - М.: ГОУ ВУНМЦ МЗ РФ, 2004
6. Врожденные пороки развития // Серия учебной литературы «Образование медсестер», модуль 10. - М.: Гэотар-мед, 2002

1. Реферат Инновационный потенциал и модернизация экономики отечественный и зарубежный опыт
2. Реферат на тему М Е Салтыков Щедрин редактор
3. Реферат на тему Музыкально-дидактические игры для дошкольников
4. Диплом на тему Обґрунтування маркетингової (ринкової) стратегії підприємства і механізмів її реалізації (на матеріалах
5. Реферат Гепарин
6. Реферат на тему Теория устойчивости систем
7. Реферат на тему Head Games Essay Research Paper Head Gamesby
8. Реферат на тему Global Village Essay Research Paper You say
9. Реферат Становлення нового раціоналізму Е Мейерсона
10. Реферат Восточная Англия королевство