Реферат

Реферат Теорема Штольца

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024



Содержание работы:
1. Формулировка и доказательство теоремы Штольца.

2. Применение теоремы Штольца:

a) ;

b) нахождение предела «среднего арифметического» первых n значений варианты ;

c) ;

d) .
3. Применение теоремы Штольца к нахождению некоторых пределов отношения последовательностей.

4. Нахождение некоторых пределов отношения функций с помощью теоремы Штольца.
Для определения пределов неопределенных выражений  типа  часто бывает полезна следующая теорема, принадлежащая Штольцу.

Пусть варианта , причем – хотя бы начиная с некоторого листа – с возрастанием n и  возрастает:  . Тогда   =,

Если только существует предел справа (конечный или даже бесконечный).

Допустим, что этот предел равен конечному числу :

.

Тогда по любому заданному  найдется такой номер N, что для n>N будет



или

.

Значит, какое бы n>N ни взять, все дроби , , …, , лежат между этими границами. Так как знаменатели их, ввиду возрастания yn вместе с номером n, положительны, то между теми же границами содержится и дробь , числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при n>N

.

Напишем теперь тождество:

,

откуда


.

Второе слагаемое справа при n>N становится <; первое же слагаемое, ввиду того, что , также будет <, скажем, для n>N. Если при этом взять N>N, то для n>N, очевидно, , что и доказывает наше утверждение.
Примеры:

1. Пусть, например, . Отсюда, прежде всего вытекает, что (для достаточно больших n) , следовательно, вместе с yn и xn, причем варианта xn возрастает с возрастанием номера n. В таком случае, доказанную теорему можно применить к обратному отношению



(ибо здесь предел уже конечен), откуда и следует, что , что и требовалось доказать.
2. При а>1


Этот результат с помощью теоремы Штольца получается сразу:


3.  Применим теорему Штольца к доказательству следующего интересного предложения:

Если варианта anимеет предел (конечный или бесконечный), то этот же предел имеет и варианта



(среднее арифметическоепервых n значений варианты аn).

Действительно, полагая в теореме Штольца

Xn=a1+a2+…+an, yn=n,

Имеем:



Например, если мы знаем, что ,

то и      
4. Рассмотрим теперь варианту (считая k-натуральным)

,

которая представляет неопределённость вида .

Полагая в теореме Штольца

xn=1k+2k+…+nk, yn=nk+1,

будем иметь

.

Но

(n-1)k+1=nk+1-(k+1)nk+… ,

так что

nk+1-(n-1)k+1=(k+1)nk+

и

    .
5. Определим предел варианты

   ,

представляющей в первой форме неопределенность вида , а во второй – вида . Произведя вычитание дробей, получим на этот раз неопределенное выражение вида :

.

Полагая xn равным числителю этой дроби, а yn – знаменателю, применим еще раз ту же теорему. Получим

.

Но  ,

а   ,

так что, окончательно,

.
Пример 1.

====== ===.
Пример 2.

=

==

==

==

==

==

=.
Пример 3.



=

=.
Теорема Штольца справедлива для последовательностей, но т.к. последовательности есть частный случай функций, то эту теорему можно обобщить для функций.
Теорема.

Пусть функция , причем, начиная с некоторой xk, g(xk+1)>g(xk), т.е. функция возрастающая.
Тогда          ,

если только существует предел справа конечный или бесконечный.

Доказательство:

Допустим, что этот предел равен конечному числу k

.

Тогда, по определению предела



или

.

Значит, какой бы  ни взять, все дроби

, , …,

лежат между этими границами. Так как знаменатели их, ввиду возрастания g(xn) вместе с x(n), положительны, то между теми же границами содержится и дробь , числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при

.

Напишем тождество(которое легко проверить):

,

Откуда


.

Второе слагаемое справа при  становится ; первое же слагаемое, ввиду того, что , так же будет , скажем, для . Если при этом взять , то для , очевидно , что и доказывает теорему.

Примеры:

Найти следующие пределы:
1.   очевидна неопределенность

===2
2.   неопределенность

====0
3.   неопределенность

===
Литература:


Задачи и упражнения по математическому анализупод редакцией Б.П.Демидовича. ИздательствоНаука”, Москва 1996г.

Г.М.ФихтенгольцКурс дифференциального и интегрального исчисленияФизматгиз 1962г. Москва.

1. Диплом Налоговый контроль 2 Правовая природа
2. Лекция Информация о товаре
3. Реферат на тему A Comparison Of Two Poems About Soldiers
4. Сочинение Проблема творчества в романе М.А. Булгакова Мастер и Маргарита
5. Реферат на тему Weapons Essay Research Paper War has been
6. Реферат на тему Метафизичность теории познания Фундаментальные проблемы и основные
7. Реферат на тему Gothic Style Essay Research Paper The Gothic
8. Курсовая на тему Интерактивные методы обучения иностранному языку в 5-7 классах средней общеобразовательной школы
9. Сочинение на тему Лелеющая душу гуманность в поэзии Пушкина
10. Изложение на тему Зарабляюць