Реферат

Реферат Расчет униполярного транзистора

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.9.2024


Содержание




Стр.

1 Принцип действия полевого транзистора



2 Вольт-фарадная характеристика МОП-структуры



3 Расчет стоковых и стокозатворных характеристик



4 Определение напряжения насыщения и напряжения отсечки



5 Расчет крутизны стокозатворной характеристики и проводимости канала



6 Максимальная рабочая частота транзистора





1 Принцип действия транзистора
В отсутствии смещений (UЗ =0,  UС =0) приповерхностный слой полупроводника обычно обогащен дырками из-за наличия ловушек на границе кремний – оксид кремния и наличия положительных ионов в пленке диэлектрика. Соответственно энергетические зоны искривлены вниз, и начальный поверхностный потенциал положительный. По мере роста положительного напряжения на затворе дырки отталкиваются от поверхности. При этом энергетические зоны сначала выпрямляются, а затем искривляются вниз, т.е. поверхностный потенциал делается отрицательным.

Существует некоторое пороговое напряжение , по превышении которого энергетические зоны искривляются настолько сильно, что в близи поверхностной области образуется инверсный электрический сой, именно этот слой играет роль индуцированного канала.
1.1 Равновесное состояние

Рисунок 1.1 – Равновесное состояние
Т.к. UЗ =0, то контактная разность потенциалов между металлом и полупроводником равна нулю, то энергетические зоны отображаются прямыми линиями. В таком положении уровень Ферми постоянен при UЗ =0, полупроводник находится в равновесном состоянии, т.е. pn = pi2 и ток между металлом и полупроводником отсутствует.
1.2 Режим обогащения (UЗ >0)
Если UЗ >0, то возникает поле направленное от полупроводника к затвору. Это поле смещает в кремнии основные носители (электроны) по направлению к границе раздела кремний – оксид кремния. В результате на границе возникает обогащенный слой с избыточной концентрацией электронов. Нижняя граница зоны проводимости, собственный уровень и верхняя граница валентной   зоны изгибаются вниз.


Рисунок 1.2 – Режим обогащения
1.3 Режим обеднения (UЗ <0)

Если UЗ <0, то возникает электрическое поле направленное от затвора к подложке. Это поле выталкивает электроны с границы раздела SiSiO2 в глубь кристалла оксида кремния. В непосредственной близости возникает область обедненная электронами.



Рисунок 1.3 – Режим обеднения
1.4 Режим инверсии (UЗ <<0)

При дальнейшем увеличении отрицательного напряжения UЗ , увеличивается поверхностный электрический потенциал US . Данное явление является следствием того что энергетические уровни сильно изгибаются вверх. Характерной особенностью режима инверсии является, то что уровень Ферми и собственный уровень пересикаются.


Рисунок 1.4 – Режим инверсии

1-    инверсия;

2-    нейтральная.
1.5 Режим сильной инверсии

Концентрация дырок в инверсной области больше либо равна концентрации электронов.
1.6 Режим плоских зон


Рисунок 1.5 – Режим плоских зон

1 - обогащенный слой неосновными носителями при отсутствии смещающих напряжений изгибает уровни вниз.



2 Вольт-фарадная характеристика МОП-структуры
Удельная емкость МОП-конденсатора описывается выражением:
                                                                                                          (2.1)

где:

                                                                                                                (2.2)

                                          

                                         (2.3)

- удельная емкость, обусловленная существованием области пространственного заряда.

                                                                                                               (2.4)

- емкость обусловленная оксидным слоем.
Эквивалентную схему МОП-структуры можно представить в виде двух последовательно соединенных конденсатора:

Рисунок 2.1 – Эквивалентная схема МОП-структуры


Таблица 2.1 – Зависимость емкости от напряжения на затворе



UЗ [B]

С [Ф]

0.01

0.05

0.1

0.2

0.22

0.26

0.3

0.32

0.36

0.4

0.42

0.46

3.182e-5

3.182e-5

3.182e-5

3.182e-5

3.182e-5

3.182e-5

3.182e-5

3.182e-5

3.182e-5

3.182e-5

3.182e-5

3.182e-5




Рисунок 2.2 – График зависимости емкости от приложенного напряжения на затворе

Рисунок 2.3 – Отношение С/С0 как функция напряжения,  приложенного к затвору




3 Вольт-амперные характеристики

3.1 Стоковые характеристики

Формула описывающая вольт-амперную характеристику имеет вид:
                                        (3.1)

где

                                                      (3.2)

- пороговое напряжение

                                                         (3.3)
                                              (3.4)

- напряжение Ферми


                                                  (3.5)

- плотность заряда в обедненной области
Таблица 3.1 – Таблица значений токов и напряжений стоковой характеристики



UC [B]

UЗ = 9

UЗ = 10

UЗ = 11

UЗ = 12

UЗ = 13







IC [A]





0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0.000

2.322e-3

4.334e-3

6.037e-3

7.431e-3

8.515e-3

9.290e-3

9.756e-3

9.913e-3

9.761e-3

9.299e-3

8.528e-3

7.448e-3

6.058e-3

4.359e-3

2.351e-3

3.399e-5

0.000

2.631e-3

4.952e-3

6.965e-3

8.668e-3

0.010

0.011

0.012

0.012

0.013

0.012

0.012

0.011

0.010

8.689e-3

6.990e-3

4.982e-3

0.000

2.940e-3

5.571e-3

7.892e-3

9.905e-3

0.012

0.013

0.014

0.015

0.015

0.015

0.015

0.015

0.014

0.013

0.012

9.930e-3

0.000

3.249e-3

6.189e-3

8.820e-3

0.011

0.013

0.015

0.016

0.017

0.018

0.019

0.019

0.019

0.018

0.017

0.016

0.015

0.000

3.559e-3

6.808e-3

9.748e-3

0.012

0.015

0.017

0.018

0.020

0.021

0.022

0.022

0.022

0.022

0.022

0.021

0.020




Рисунок 3.1 – График зависимости тока стока от функции напряжения стока при постоянных значениях напряжения на затворе
3.2 Стоко-затворная характеристика

при UC =4B
Таблица 3.2 – Таблица значений токов и напряжений стокозатворной характеристики


UЗ [B]

IC [A]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3.703e-3

3.826e-3

3.950e-3

4.074e-3

4.197e-3

4.321e-3

4.445e-3

4.569e-3

4.692e-3

4.816e-3




Рисунок 3.2 – График зависимости тока стока от напряжении на затворе



4 Напряжения насыщения и отсечки

Напряжение отсечки описывается выражением:
                                                        (4.1)
Напряжение насыщение описывается формулой:
                                     (4.2)

где:

                                                (4.3)

- толщина обедненного слоя.
Таблица 4.1 – Таблица данных напряжения стока и напряжения насыщения



UЗ

UНАС

UОТ

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.92

1.59

2.45

3.50

4.730

6.14

7.7411

9.5

11.4890

13.63

15.973

0.2387

0.410

0.62

0.8911

1.2

1.55

1.9583

2.4063

2.9

3.4

4.0



Рисунок 4.1 – График зависимости напряжения насыщения от напряжения на затворе


Рисунок 4.2 – График зависимости напряжения отсечки от напряжения на затворе
5 Крутизна стокозатворной характеристики и проводимость канала

5.1 Крутизна стокозатворной характеристики описывается выражением:
                                               (5.1)

где:

                                         (5.2)


5.2 Проводимость канала:
                                              (5.3)

    



6 Максимальная рабочая частота транзистора
Максимальная рабочая частота при определенном напряжении стока описывается формулой:

                                                        (6.1)
Таблица 6.1 – Таблица значений частоты при фиксированном напряжении стока



Uc

fmax

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0.000

8.041e6

1.608e7

2.412e7

3.217e7

4.021e7

4.825e7

5.629e7

6.433e7

7.237e7

8.041e7

8.846e7

9.650e7

1.045e8




Рисунок 6.1 – График зависимости частоты транзистора от напряжения на стоке.



Список использованной литературы

1 Л. Росадо «ФИЗИЧЕСКАЯ ЭЛЕКТРОНИКА И МИКРОЭЛЕКТРОНИКА»     М.-«Высшая школа» 1991 – 351 с.: ил.

2 И.П. Степаненко «ОСНОВЫ ТЕОРИИ ТРАНЗИСТОРОВ И ТРАНЗИСТОРНЫХ СХЕМ», изд. 3-е, перераб. и доп. М., «Энергия», 1973. 608 с. с ил.

1. Реферат Памятники истории науки и техники
2. Курсовая Налоговая система государства
3. Реферат на тему Organism Adaptations Essay Research Paper 1stimulus a
4. Контрольная работа Расчет показателей эконометрики
5. Реферат Осада Данцига 1807
6. Реферат на тему Израильско-Иудейское царство Правление Соломона
7. Реферат на тему Baby Boom Vs. Three Men And A
8. Лекция Привлечение в качестве обвиняемого 2 Сущность основания
9. Курсовая на тему Учет доходов организации
10. Сочинение Природно-ландшафтное зонирование на примере города Москвы