Реферат

Реферат Изучение механизмов металлорежущих станков

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024



Министерство образования РФ
Тверской Государственный Технический Университет
Кафедра  "Металлорежущие станки и инструменты"

Изучение механизмов металорежущих станков

Методические указания


к лабораторной работе по курсу "Металорежущие станки"

для студентов специальности 1201- "Технология машиностроения"

Тверь 2001



В методических указаниях к лабораторной работе "Изучение механизмов металлорежущих станков" изложены основные понятия и положения по систематике и функциональному назначению механизмов, входящих в кинематические цепи станков.

Лабораторная работа предназначена для изучения курса "Металлорежущие станки". Методические указания (второе издание) рекомендованы к применению на заседании кафедры "Металлорежущие станки и инструменты" (протокол №2 от 02.11.2000)
Автор: Клюйко Э.В.

СОДЕРЖАНИЕ

1.    

Стр.

2.     1. Цель работы............................................................................................

3

3.     2. Порядок проведения работы.................................................................

3

4.     3. Назначение и состав механиз­мов.........................................................

3

5.     4. Структурные свойства механизмов....................................................

8

6.     5. Функциональные свойства механизмов .............................................

11

7.     6. Примеры анализа механизмов..............................................................

13

8.     7. Индивидуальные задания по анализу механизмов.............................

17

9.     8. Контрольные вопросы...........................................................................

18

9. Библиографический список .................................................................

18

10. Приложение ............................................... .........................................

19

 


1. ЦЕЛЬ  РАБОТЫ
1.     Изучить основные свойства передаточных механизмов станков.

2.     Приобрести определенные навыки в анализе структурных и функциональных свойств механизмов станков.
2. ПОРЯДОК  ПРОВЕДЕНИЯ  РАБОТЫ

1.     Ознакомиться с основными свойствими передаточные меха­низмов станков,

2.     Изучить методику анализа структурных и функциональных свойств механизмов станков.

3.     По индивидуальному заданию (альбом, макеты механизмов и Приложение на стр  20…22) проанализировать основные свойства и характеристики станочных механизмов.
3. НАЗНАЧЕНИЕ  И  СОСТАВ  МЕХАНИЗМОВ

В металлорежущих станках все многообразие механизмов, пред­назначенных для создания определенных движений, подразделяют на двигательные (приводные), передаточные и исполнительные (формообразующие). Наиболее многочисленные из них передаточные [1,4]. Отличаются они друг от друга по назначению (реверсирующие, суммирующие, корректирующие и др.), по конструкции (шарнирно-рычажные, кулачковые, зубчатые, винтовые и др.) по исполнению опор и зацеплении (передачи скольжения, передачи качения и т.д.).

Механизмы представляют собой (рис. 1) подвижные соединения несколь­ких тел, предназначенных для преобразования движений. Имеется в виду как замена одного вида движения на другое (рис. 1а, 1в), так и передача движения с количественным изменением его параметров (рис. 1г). В качестве основных характеристик движения при настройке механизмов станков, используют пять параметров: траекторию, путь (угловой или линейный), скорость, направление и положение входного или выходного звеньев [2,4].

Передаточные механизмы состоят из звеньев, образующих на стыках между собой кинематические пары (j;k). Звено j или k - это одно ли несколько деталей, жестко (без относительных смещений) связанных между собой. Например, на рис. 1г звено 3 образуют вал и закрепленные на нем шестерни z4 и z5. Звенья могут быть твердыми и деформируемыми, подвижными и неподвижными, ведущими и ведомыми. Основные типы подвижных звеньев, применяемые в станках приведены в таблице 1 и в альбоме ([3], стр.63). Кроме концевых подвижных звеньев в механизмах могут быть промежуточные подвижные звенья и всегда есть одно неподвижное звено, называемое основанием или стойкой. Поэтому можно сказать, что механизм - это многозвенная подвижная передаточная система с одним неподвижным звеном. На рис. 1а показан четырехзвенный (с учетом стойки) механизм привода ползуна 3 долбежного станка. Для компенсации перекосов в шарнирах и смягчения ударной нагрузки в паре (1;2) введена избыточная подвижность (v12=2 вместо v12=1). Для придания повышенной жесткости одинаковым рычагам 1 и 3 (рис 1б) к ним в пятизвенном механизме зажимного приспособления присоединен дополнительный шатун 4. На рис 1б показан простейший трехзвенный пространственный механизм с дисковым кулачком 1 и качающимся толкателем 2, применяемый в приводе подачи шпиндельной бабки токарного автомата (кулачок вращается параллельно плоскости yz
,
а толкатель качается в плоскости ху). Сложный восьмизвенный двухпоточный механизм привода стола продольно-фрезерного станка (рис. 1г) позволяет уменьшить зазоры в косозубых зубчатых передачах и распределить силовую нагрузку между приводными валами 4 и 6 в соответствии с их жесткостью.    
Рис.1. Примеры передаточных механизмов:

а) – кривошипно-ползунный механизм с избыточной подвижностью в паре (1;2);

б) – шарнирно рычажный механизм с избыточным звеном 4;

в) – кулачково-рычажный пространственный механизм;

г) – зубчатый замкнутый механизм привода стола  
Таблица 1

Основные типы звеньев в механизмах




Тип звена

Назначение

Условное обозначение

1

Стойка

(основание)

неподвижное звено



2



Кривошип

вращательное звено


3



Коромысло (рычаг)

качательное звено


4

Кулачок

вращательное или по­ступательное звено с плоским или пространственным криволинейным профилем


5

Шестерня

вращательное звено в виде колеса с зубчатым венцом


6

Рейка

поступательное звено в виде стержня с зубчатой нарезкой


7

Шатун

Звено, совершающее

плоское или пространственное движение


8



Ползун (толкатель)

Звено, совершающее поступательное движение



9

Кулиса

Звено, совершающее любое движение и не­сущее направляющие плоскости для другого звена


10

Винт

(ходовой винт)

Звено в виде вала с винтовой на­резкой для создания вращательного поступательного или винтового движения



11

Гайка

а– простая

б– маточная

в– шариковая

звено, охватывающее в зацеплении ходовой винт для передачи движения


а           б          в



Кинематическая пара (j;k) представляет собой подвижное соединение двух звеньев j и k. Подвижное соединение может быть выполнено по поверхностям (в низших парах) и по линиям или точкам (в высших парах). Подвижный контакт в парах может поддерживаться геометрическим, силовым или кинематическим замыканием. В первом случае используют ограничение (охват) одних поверхностей другими (рис. 1а, направляющая О для ползуна 3), во втором – применяют пружины (рис 1в), груз или гидроприжим, в третьем – используют дополнительную кинематическую цепь механизмов (рис. 1г). Конструктивно кинематическая пара обычно представляет собой подвижный контакт звеньев в подшипниковых опорах или зацепление этих звеьев. Основные типы пар приведены в таблице 2 (арабскими цифрами в таблице обозначены звенья.)

  Основной характеристикой кинематической пары является ее подвижность v
jk
, т.е число относительных смещений (линейных или угловых) между звеньями j и k.

  Таким образом, передаточный механизм - это совокупность нескольких звеньев, связанных в кинематические пары и предназначенных для преобразования движений одних звеньев (входных) в движения других звеньев  (выходных). В таблице 3 приведены основные типы передаточных механизмов общего назначения, применяемые в станках.

  Наряду с обычными механическими передачами в металлорежущих станках применяют технологические механизмы, которые являются основными исполнительными механизмами станков и отличаются от передаточных механизмов наличием технологической пары, представляющей собой подвижный контакт инструмента относительно обрабатываемого изделия (табл.2). В технологической паре вместо скольжения или качения создается срезание материала и формообразование изделия. В соответствии  с способом обработки технологические пары называют токарными, фрезерными, шлифовальными парами и т.д. На рис.2. приведен пример механизма шлифования с одной шлифовальной парой (2;5)




Рис.2. Механизм врезного шлифования кулачков распредвалов: 1-качающаяся люлька, несущая на себе шпиндель 2 с изделием Д и копиром К;

3-копировальный ролик, установленный на

подшипниках О1 и контактирующий с копиром;

4-шлифкруг на шпиндельных опорах О2 .

Пружина П создает силовой контакт между

копиром и роликом. Ведущим является вращение

шпинделя 2 с изделием и копиром.




Таблица 2

Типы кинематических пар в передаточных механизмах (по ГОСТ 2.770-68 и по рекомендациям ICO ТК/10 ПК4



Наименование

Условное изображение

Подвижность, v
jk
,

Замыкание



Наименование

Условное изображение

Подвижность, v
jk
,

Замыкание

1

Ползунная



1

Геометрическое

6

Сферическая
а) обычная



б) с пальцем






3
2

геометри-ческое

2

Вращательная



1

-“-

7

Зубчатая
а) плоская



б) пространственная






2
4 или 5



силовое и геометрическое

3

Винтовая
а) скольжения



б) качения



1

-“-

8

Кулачковая
а) плоская






б) пространственная





2
4 или 5


силовое и геометрическое

4

Цилиндри-ческая



2

-“-

9

Технологическая (токарная, фрезерная, шлифовальная и т.д.)
а) с линейным формообразующим контактом


б) с точечным формообразующим контактом




1
2

силовое

5

Плоская
а) обычная


б) с пальцем



3
2



Силовое
Силовое и геометрическое




4.  СТРУКТУРНЫЕ СВОЙСТВА МЕХАНИЗМОВ

4.1. Сложность N механизма. В металлорежущих станках сложные подвижные механические системы, передающие движе­ния от входного звена к выходному (шпиндель, суппорт и т.д.) и образующие последовательные связи между этими звеньями, называют кинематической цепью механизмов Еще более сложными яв­ляются так называемые кинематические группы [2], которые предназначены для создания сложных исполнительных движений и состоящие из нескольких кинематических цепей. Любые кинематические цепи механизмов или их участки, образующие сложные механизмы, могут быть расчленены на простые.

Простой механизм (или передача)- это такой, в котором число звеньев (с учетом неподвижного) равно числу кинематические пар, то есть p = n + 1, где р – число кинематических пар, n – число подвижных звеньев. Графическое изображение основных типов простых механизмов стандартизовано, (см. [3], стр. 65). Каждое звено в простом механизме образует подвижное соединение с двумя другими звеньями. Сложные механизмы содержат несколько простых;  в них есть звенья, подвижно связанные более чем с двумя другими звеньями (рис. 3 и 4).

          Число N простых механизмов в сложном равно
N = p – n                                                    (1)
          Если вычисление по формуле (1) дает N = 1, то механизм простой; если N > 1, то механизм сложный; при N < 1 механизм вырождается в жесткую ферму. В числе р кинематических пар в формуле (1) не учитывают избыточные (пассивные) пары, вводимые в механизмы в виде дополнительных опор и зацеплений. Например, в дифференциале(рис.5), такой опорой является пара (2;4) между водилом 2 и ступицей 4 шестерен z4 и z8.

          Таким образом, степень сложности механизма определяется в нем числом простых передач.

4.2. Размерность
R
механизма.
Она определяется числом измерений движения звеньев механизма и равна числу независимых уравнений, связывающих параметры движения (положения или скорости или ускорения) всех звеньев механизма. Например, в шарнирном четырехзвеннике А (рис.3) для четырех переменных параметров положения (углы поворота j4, j5, j6, j7) имеем три независимых уравнения связи, то есть R=3:

         


(2)
 
1)  -проекция на ось х

2)  -проекция на ось у                                   

3)  - сумма внутренних углов 4-звенника


Из примера следует, что размерность простого механизма на единицу меньше числа vå параметров его положения, то есть в большинстве механизмов R = (vå – 1). Это обстоятельство позволяет определить R для существующего (известного) механизма без составления вышеуказанных уравнений. Например, для передачи «винт-гайка», R=2, так как параметров положения три: угловое положение винта, линейное положение гайки, а также относительное смещение в зацеплении витков винта и гайки. Для неизвестного (нового) механизма система R  вышеуказанных уравнений (2) определяет условия существования механизма и ограничивает число измерений пространства, в котором происходит движение. В общем случае пространство движений – шестимерно. Поэтому  размерность R простого механизма определяется зависимостью
R=6 – cг                                                                                    (3)
где cг – число общих геометрических связей, ограничивающих пространство движений звеньев механизма. Например, для передачи «винт-гайка» cг=4 (допускается только две подвижности в механизме: вращение вокруг оси винта и перемещение вдоль этой оси), а для кулачкового механизма (рис. 2 в) величина cг=2 (невозможно вращение одного из звеньев вокруг оси y  и перемещение перпендикулярно плоскости xy). Так как движения звеньев механизмов не могут иметь более 6-и измерений, то все простые механизмы делят на:

1)     одномерные, R=1 (приводные электро-, гидро- и пневмодвигатели);

2)     двухмерные, R=2 (например, трехзвенные клиновые, винтовые и фрикционные механизмы);

3)     трехмерные, R=3 (все плоские шарнирно-рычажные, кулачковые, зубчатые и поводковые механизмы, а также сферические и зубчато-рычажные механизмы);

4)     четырехмерные,  R=4 (например пространственные рычажно-винтовые и кулачковые механизмы;

5)     пятимерные, R=5 (например пространственные шарнирно-рычажные, кулачковые и зубчато-рычажные механизмы);

6)     шестимерные, R=6 (например пространственные шарнирно-рычажные, кулачковые и  зубчато-рычажные механизмы)
4.3. Подвижность
W
механизма.
Она определяется числом степеней свободы движений в механизме, т.е. числом независимых движений на разных входных звеньях, передающих их на одно выходное звено механизма. В соответствии с этим механизмы могут быть одноподвижными (подавляющее большинство) и многоподвижными. Примерами последних являются разнообразные суммирующие механизмы станков ([3], стр.79) и промышленные роботы. Подвижность всего механизма зависит от подвижностей  отдельных кинематических пар (j;k), определяемых числом возможных перемещений одного звена пары относительно другого. Могут быть одно-, двух-,…, пятиподвижные кинематические пары (табл.2).

          В сложном передаточном механизме общая подвижность определяется следующим выражением:
                                                (4)
где     - суммарная подвижность всех р кинематических пар механизма, ;

Rå - сумма размерностей N простых механизмов, входящих в состав сложного, Rå= R1+ R2+…+ RN;

vп – число местных избыточных (пассивных) подвижностей в кинематических парах. Например, лишняя подвижность в паре Р12 (рис.1а) или «лишнее» вращение ролика 2 (рис.3) на рычажном толкателе 3, не влияют на положение и движение других звеньев механизма. Избыточные подвижности применяют для уменьшения трения, для компенсации перекосов и других погрешностей с целью повышения работоспособности механизмов.

ск- число жестких кинематических связей в сложном механизме. К числу кинематических связей относятся как отдельные дополнительные звенья (рычаги, кулачки, шестерни и т.п.), так и цепи дополнительных механизмов, дублирующих или дополняющих работу основных передач. Указанные кинематические связи образуют замкнутые механические контуры (замкнутые механизмы) и способствуют повышению точности, жесткости и других свойств механизмов. Примерами простейших кинематических связей являются дополнительные шатун 4 (рис.1б) и сателлит 7 (рис.5). Пример более сложной кинематической связи показан на рис.1г. Здесь от двигателя  М с помощью зубчатой пары z1/z2 на вал 2 передается вращение, которое затем разделяется на два потока передачами z3/z4 , z5/z6  и  z7/z8 , z9/z10, замыкаясь с помощью шестерен z11 и z12 на зубчатой рейке, закрепленной на столе станка. Усилие Q  гидроцилиндра или мощной пружины 3 на вал2, благодаря косозубым зацеплениям шестерен, создает дополнительный натяг между боковыми поверхностями зубьев колес z11, z12 с рейкой. В этом механизме n=7, p=14, N=7, ск=1 (один замкнутый контур), vп=0 и W = ( 14 + 7 ) + 1 – 7 × 3 = 1 (все простые механизмы – трехмерные,  Rj
=3
).

          Подвижность простого механизма в соответствии с (4) равна:
W = vS  - Rj - vп                                               (5)
          Здесь ск=0, т.к. введение кинематических связей в простой механизм делает его сложным. Например, присоединение дополнительного шатуна 4 (рис. 1б) в шарнирный четырехзвенник добавляет в него две кинематические пары, поэтому N = 6 – 4 = 2 (два подобных четырехзвенника).



5. ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА МЕХАНИЗМОВ.
5.1. Трансформизм. Он характеризуется передаточным отношением i
12
, равным производной от параметра положения (j2, S2) выходного звена 2 по параметру положения (j1, S1) входного звена 1 (jj – угол поворота, Sj – линейное смещение звена j). Величина i
12
определяется по формулам:



здесь w1, w2, V1, V2 – угловая и линейная скорость звеньев 1 и 2.

          Для механизмов, в которых входные и выходные звенья имеют равномерные движения вместо понятия передаточное отношение i
12
удобнее пользоваться понятием ход Sjk
механизма
, под которым понимают угловое (или прямолинейное) перемещение ведомого звена 2 за один оборот (или один мм) перемещения ведущего звена 1. В зависимости от типа передач ход S12 равен:



         

Если механизм сложный (кинематическая цепь механизмов с n подвижными звеньями), то передаточное отношение i1n от звена 1 к звену n равно:

,                                         (6)
то есть передаточное отношение сложного механизма равно произведению передаточных отношений простых механизмов. Соответственно, если перемещения звеньев в механизме определяется с помощью ходов Sjk простых механизмов, то xод S
1
n
сложного механизма:
                                              (7)
5.2. Равномерность (линейность) механизма. Это свойство определяется постоянством хода или передаточного отношения в механизме. Если, например, j1 – угол поворота входного звена, j2 – угол поворота выходного звена и j2=i12j1, где i12=const, то механизм линейный; если i12¹const, то механизм неравномерный. Наличие в сложном механизме хотя бы одного простого неравномерного механизма делает весь сложный механизм тоже неравномерным.

          В таблице 3 приведены основные типы станочных равномерных механизмов, их ходы S12 и передаточные отношения i12. В примечании к табл.3 указаны расчетные параметры этих механизмов.

          Нелинейность движения механизма оценивают коэффициентом неравномерности  равным:

,                                          (7)

где D - диапазон скоростей, D = Vmax/Vmin ; Vmax, Vmin – скорость (наибольшая и наименьшая) на выходном звене механизма. У равномерных механизмов . Равномерными являются зубчатые, винтовые, фрикционные и некоторые другие механизмы.

5.3. Реверсивность механизма – свойство изменять направление движения на выходном звене при неизменном направлении движения входного  звена. Достигается это либо переключением специально вводимых в сложный механизм реверсивных устройств ([3, стр.74]), либо без переключения, так как это свойство органически присуще данному механизму (например, кривошипному или кулачковому). В переключаемых реверсивных механизмах различают два состояния и соответствующие им два передаточных отношения или хода iP1, iP2 или SP1, SP2, которые обычно одинаковы и постоянны по величине, но отличаются друг от друга знаком. В большинстве шарнирно-рычажных и кулачковых реверсивных механизмах передаточное отношение обычно переменное по знаку и величине.
5.4. Обратимость механизма. Это свойство механизма позволяет передавать движение в обоих направлениях (от звена 1 к звену n  и, при необходимости, от звена n к звену 1). Такая особенность механизмов объясняется, в основном, трением в кинематических парах. В необратимых механизмах в результате самоторможения в одной или в нескольких парах движение возможно только в одном направлении. Самотормозящими и, следовательно, необратимыми могут быть винтовые, кулачковые, некоторые зубчатые (например, червячные) и другие передачи скольжения. Напротив, передачи качения являются, как правило несамотормозящими (обратимыми), так как в зацепление между витками (зубцами) звеньев вводят тела качения (шарики или ролики) и коэффициент трения очень мал. Например, в передаче «винт-гайка качения» небольшой нажим (от руки) на гайку вдоль ее оси приводит винт во вращение. Для обратимых механизмов имеет место равенство i1n=1/in1 , то есть передаточное отношение (и ход) в механизме от звена 1 к звену n  обратно передаточному отношению in1 (ходу) от звена n к звену 1. Если хотя бы одна кинематическая пара в механизме самотормозящая, то механизм в целом необратимый.

5.5. Регулируемость механизма. Данное свойство определяется возможностью существенного изменения (или небольшой корректировки) какого-либо параметра движения в механизме. Изменяемыми параметрами движения могут быть: длина хода (угловой или линейный путь), скорость (угловая или линейная), направление движения и исходное положение одного из звеньев механизма. Регулировки в механизмах достигаются переключением коробок скоростей и подач, изменением относительного положения или длины одного из звеньев или заменой звеньев (сменных кулачков или шестерен и т.д.), а также введением в механизм специальных корректирующих устройств (см. [3, стр.66,67]).

          В общем случае регулируемость механизма по параметру xj на выходном звене характеризуется диапазоном DX регулирования, DX=xmax
/
xmin
,
где xmax

,
xmin
– максимальное и минимальное значения регулируемого параметра. В качестве параметра xj обычно выбирают линейную или угловую скорость, угловую частоту (в оборотах в минуту или в двойных ходах в мин), путь (угловой или линейный) и другие характеристики.

6. ПРИМЕРЫ АНАЛИЗА МЕХАНИЗМОВ
6.1. Кулачково-рычажный механизм привода подачи поперечного суппорта токарного станка-автомата.

1.      Механизм преобразует вращение В1 сменного кулачка 1 (рис.3) в поступательное движение П7 суппорта 7. Промежуточные звенья:

2-ролик, 3 и 4– коромысла с зубчатыми секторами, 5- шатун,

6-коромысло с регулируемой длиной  lx
рычага, 7- ползун (суппорт), 0- стойка.

2.      Число подвижных звеньев n=7; кинематических пар p=11, три из которых двухподвижные (v12, v34, v67). Суммарная подвижность

vΣ = 8 × 1 + 3 × 2 = 14.

3.      Простых механизмов в сложном N = 11 – 7 = 4 (кулачково-рычажный с звеньями 0, 1, 2, 3; зубчато-рычажный с звеньями 0, 3, 4; шарнирный 4-звенник с звеньями 0, 4, 5, 6; рычажно-ползунный с звеньями 0, 6, 7). Размерность всех простых механизмов (все они плоские): R1=R2= R3= R4= 3

4.      Общая подвижность механизма по формуле (2)  W=14-4×3-1=1. Здесь v0=1 – местная подвижность ролика 2 в паре v23 с коромыслом 3.

5.      Механизм неравномерный, так как содержит шарнирно-рычажные передачи.

6.      Механизм реверсивный, так как реверсивна кулачковая передача.

7.      Механизм необратимый, так как необратима кулачково-рычажная передача.

8.      Механизм регулируемый, так как изменением длины lx рычага в коромысле 6 корректируется длина хода Нх суппорта 7, а заменой кулачка 1 изменяется длина хода и скорость подачи суппорта.
6.2. Промышленный робот (рис. 4)

1.     В основании 0 размещен приводной двигательМ1, в подвижной стойке 4 установлены двигатели М2, М3 , а на конце руки 6 закреплен пневмодвигатель ПД, ротор 7 которого непосредственно связан со схватом робота. Остальные звенья: 1-шестерня, 2-поворотная платформа, жестко связанная с шестерней, 3 и 5 –ходовые винты.

2.     Число подвижных звеньев n=7, кинематических пар Р=10 (одна из них двухподвижная v12), суммарная их подвижность vS=9×1+1×2=11.

3.     Степень сложности N = 10 – 7 = 3. Промышленный робот содержит 3 простых передаточных механизма: зубчатый с подвижными звеньями 1-2 (R1=3) и два винтовых, с подвижными звеньями 3-4 и 5-6 (R2=R3=2).

4.     Общая подвижность механизма W = 11 – (3 + 2 × 2) = 4, то есть робот 4-подвижный: три подвижности (В2, П4, П6) реализуются от двигателей М1, М2, М3, вращающих входные звенья 1,3,5, а одна подвижность (В7) осуществляется непосредственно (без передаточного механизма) от неполноповоротного пневмодвигателя ПД.

5.     Механизм равномерный, нереверсивный, необратимый (содержит винтовые пары скольжения) и регулируемый (направление движения изменяется двигателями, а исходное положение и длина перемещений - путевыми упорами, переключающими двигатели).
Рис. 3 Семизвенный плоский механизм привода подачи суппорта
Рис. 4. Четырехподвижный  промышленный робот с

цилиндрической координатной системой


6.3. Суммирующий механизм (рис. 5)

1.     В этом механизме ведущими являются валы 1 и 3, ведомыми– вал 7. Цепь передач от вала 1 к валу 7 состоит из червячной передачи z1/z2 и планетарной передачи, в которой  вал 2 жестко связан с осями сателлитов 5 и 6, образуя так называемое водило. Последнее передает вращение через шестерни 5 и 6 на вал 7. Вторая цепь (от вала 3) состоит из передач z3/z4, z8/z5, z5/z7 и дублирующих передач z8/z6, z6/z7.

2.     Число подвижных звеньев n=7, кинематических пар Р=14 (из них шесть пар –двухподвижные, зубчатые); одна пара (2;4) – пассивная поэтому общая подвижность vå=(14–1)+6=19

3.     Сложность механизма N=13-7=6 (две червячных и четыре конических передачи с размерностями Rj=3)

4.     Общая подвижность W=19+1–6×3=2. Здесь ск=1 – один замкнутый контур конических передач.

5.     Механизм равномерный, нереверсивный, необратимый и нерегулируемый.
Рис. 5. Конический дифференциал: М1, М2 – электродвигатели соответственно

для ускоренного и рабочего хода, 1– вал с червяком z1, 2- вал с закрепленным

на нем водилом В и шестерней z2, 3- вал с червяком z3, 4- ступица с закрепленными

на ней шестернями z4 и z8, 5 и 6 – сателлиты, свободно насаженные на водило В,

7- выходной вал с шестерней z7; пара (2;4) – избыточная, v24=1.




7. ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ ПО АНАЛИЗУ МЕХАНИЗМОВ

7.1. В приложении (стр. 20, 21) предусмотрены задания для 20 вариантов (см. табл. 4). В задании № 1 по схеме механизма необходимо дать его анализ по методике п.7.2. (см. примеры в п.6). В задании 2 предварительно нужно по макету механизма составить его кинематическую схему, учитывая правила изображения звеньев и кинематических пар (табл.1 и 2).

7.2. При анализе свойств механизмов необходимо:

1)     Разобраться в принципе действия и составных частях механизма.

2)     Изобразить кинематическую схему механизма, указав в ней все звенья, кинематические пары и их подвижности vjk. При выполнении задания №3 рекомендуется кроме табл. 1 и 2 использовать условные обозначения механизмов в [3, стр.62-65].

3)     Дать краткое описание принципа работы механизма с наименованием всех звеньев.

4)     Проанализировать структуру механизма в следующем порядке

-       указать общее число n подвижных звеньев,

-       указать общее число р кинематических пар и определить их суммарную подвижность vå,

-       по формуле (1) определить степень сложности механизма N и перечислить типы простых механизмов, входящих в состав сложного с указанием их звеньев и размерностей.

-       по формуле (4) определить подвижность механизма W  и указать его входные и выходные звенья.

5)     Дать оценку равномерности, реверсивности, обратимости и регулируемости механизмов.

    При оценке равномерности движения на макете (задание №2) нужно последовательно, задавая одинаковые перемещения на входном звене, замерить соответствующие перемещения на выходном звене; если  примерно одинаковые, то , механизм равномерный, в противном случае неравномерной.

          При оценке регулируемости нужно выявить по каким измененным параметрам движения возможна настройка заданного механизма и с помощью каких приемов.
Таблица 4

Индивидуальное задания



задания

Варианты

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

(табл.5)

Рис.1

Рис.2

Рис.3

Рис.4

Рис.5

Рис.6

Рис.7

Рис.8

Рис.9

Рис.10

Рис.11

Рис.12

Рис.13

Рис.14

Рис.15

Рис.16

Рис.17

Рис.18

Рис.19

Рис.20

2

(макеты)

№1

№2

№3

№4

№5

№6

№7

№8

№9

№10

№11

№12

№13

№14

№15

№16

№17

№18

№19

№20




8.КОНТРОЛЬНЫЕ ВОПРОСЫ
1.     Понятие о передаточном и технологическом механизмах и их составе.

2.     Понятие о кинематической паре. Типы пар и их свойства.

3.     Что такое подвижность механизма? Примеры.

4.     Размерность механизма. Классификация механизмов по числу измерений. Примеры.

5.     Какие избыточные («пассивные») элементы вводятся в передаточные механизмы и с какой целью. Примеры.

6.     Основные особенности простых и сложных механизмов.

7.     Может ли входное звено быть выходным? В каких механизмах?

8.     Как оценивается равномерность движения механизма?

9.     Какие элементы в механизмах регулируются и с какой целью?

10. Что такое ход и передаточное отношение механизма? В чем отличие ходов и передаточных отношений простого и сложного механизмов.

11. Чему равны передаточное отношение и ход в следующих механизмах: в зубчатой цилиндрической передаче, в червячной передаче, в реечной передаче, в винтовой передаче, в ременной передаче, в цепной передаче?

9. БИБЛИОГРАФИЧЕСКИХ СПИСОК

1.     Металлорежущие станки /Под ред. Н.С.Ачеркана.-М.:Машиностроение, 1965.

2.     Федотёнок А.А. Кинематическая структура металлорежущих станков.-М.:Машиностроение, 1970.

3.     Клюйко Э.В. Кинематика металлорежущих станков.-Калинин:КПИ, 1974.

4.     Клюйко Э.В., Матвеев А.И. Металлорежущие станки общего назначения.-Тверь:ТГТУ, 1999.

5.     Клюйко Э.В. Изучение передаточных механизмов  металлорежущих станков. Методические указания к лабораторной работе.-Тверь: КПИ, 1991.

1. Реферат Промышленная политика 2
2. Реферат Лица участвующие в деле классификация, права и обязанности, краткая характеристика правового по
3. Реферат Концепции содержания и личностно ориентированное образование
4. Статья на тему Отбор и разработка нововведений
5. Сочинение 10 сочинений по иностранному языку english
6. Реферат My Lyceum
7. Реферат на тему Similarities Between Creon And Antigone Essay Research
8. Реферат Індія економіко-географічна характеристика країни
9. Курсовая на тему Євангельська відповідь на органічно-моралістичну критику юридичного розуміння спасіння
10. Книга на тему Business english