Реферат

Реферат Множества с двумя алгебраическими операциями кольца и поля

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024



Множества с двумя алгебраическими операциями кольца и поля

Предположим, что существует множество R, на котором расположены две алгебраические операции: сложение и умножение.

Принято считать, что умножение имеет свойство правой дистрибутивности по отношению к сложению:

.

И соответственно сложение имеет свойство левой дистрибутивности по отношению к умножению. В случае, если операция умножения коммутативна, тогда данные свойства равнозначны.

Применяя свойства дистрибутивности, подразумеваем двустороннюю дистрибутивность.

Допустим, операция сложения на множестве R имеет нейтральный элемент, т. е. 0.

Приравняв у и z к нулю, получим: x * 0 = x * 0 + x * 0, владея свойством сокращения для операции сложения, получаем, что x * 0 = 0.

В случае наличия у элемента y противоположный элемент, т. е. отрицательный, приравняв z к (-y), получим: 0 = x * 0 = x * y + x *(-y), отсюда следует, x *(-y) = -x * y.

Полем называется такое ассоциативное коммутативное кольцо с единицей k, в котором всякий ненулевой элемент обратим: .

Таким образом, по определению в поле отсутствуют делители нуля.

Кольцом называется множество с двумя алгебраическими операциями R (+, *), если:

  0.

Обратимыми называют те элементы кольца R, которые имеют обратные относительно операции умножения, множество R в данном случае обозначается через .

Множество  является группой по умножению, называемой мультипликативной группой кольца R для ассоциативного кольца с единицей.

Умножение в R дистрибутивно относительно сложения.

Ассоциативное кольцо — это кольцо, в котором операция умножения обладает свойством ассоциативности.

Кольцо с единицей — наличие нейтрального элемента для операции умножения.

(R, +) — абелева группа (аддитивная группа кольца R).

Приведем некоторые примеры колец и полей.

Допустим R — любое ассоциативное коммутативное кольцо и x — некоторый символ. Формальная сумма вида p = , где  называется многочленом над кольцом R.

Нулевой многочлен не имеет степени. Многочлены над R можно складывать и перемножать по обычным правилам, и они образуют кольцо R [x]. Если кольцо R имеет единицу е, то многочлен нулевой степени p = e будет единицей кольца R [x]. Если , то число n называется степенью этого многочлена и обозначается deg (p).

Если R не имеет делителей нуля, то deg (pq) = deg (p) + deg (q), и потому R [x] также не имеет делителей нуля. В то же время обратимыми элементами кольца многочленов будут в точности обратимые элементы R, рассматриваемые как многочлены нулевой степени.

Данная конструкция позволяет рассматривать и многочлены от нескольких переменных по определению: R [x,y] = R [x][y] (= R [y][x]).

Аддитивная группа этого кольца — хорошо известная нам бесконечная циклическая группа. Мультипликативная группа  содержит всего 2 элемента — 1 и -1 — и потому изоморфна .

Множество Z целых чисел с операциями сложения и умножения дает важный пример ассоциативного коммутативного кольца с единицей. Элементы, не входящие в , необратимы, хотя и не являются делителями нуля.

Рассмотрим поля R, Q, и C соответственно вещественных, рациональных и комплексных чисел.

Построенное поле из двух элементов обозначается GF (2).

Если p — простое число, то все вычеты по модулю p, кроме 0, обратимы относительно операции умножения. Любое поле содержит по крайней мере 2 элемента: 0 и e. Этот «минимальный» запас элементов и достаточен для образования поля: операции определяются очевидным образом.

Рассматривая группу  с дополнительной операцией умножения, мы получаем поле из p элементов, которое обозначается GF (p).

Будем считать, что R является ассоциативным коммутативным кольцом. Кольцо матриц ассоциативно, но, вообще говоря, не коммутативно.

Множество  квадратных матриц порядка n с элементами из кольца R образует кольцо относительно операций сложения и умножения матриц.

Если det (A) — обратимый элемент кольца R, то матрица A обратима в кольце матриц: , где  — присоединенная к А матрица.

Если R содержит единицу , то матрица Е = diag (, ,..., ) будет единицей кольца матриц.

Для любой матрицы  имеет смысл понятие определителя det (A)  R, причем det (AB) = det (A) det (B).

 =  — группа матриц порядка n с обратимым определителем. Любая вырожденная матрица будет делителем нуля. В случае поля R это означает, что det (A)  0, то есть матрица невырождена.

В самом деле, из det (A) = 0 следует, что столбцы А линейно зависимы: , причем не все коэффициенты нулевые.

А * В = 0, где А является делителем нуля в том случае, если В — ненулевая матрица.

Подкольцо кольца с единицей может не иметь единицы. Например, подкольцо четных чисел 2 Z  Z не имеет единицы. Более того, может случиться, что и R, и K имеют единицы, но они не равны друг другу.

Например, для подкольца , состоящего из матриц с нулевой последней строкой и последним столбцом,  = diag (1,1,...,1,0)   = diag (1,1,...,1).

Допустим,  — некоторое подкольцо. К, + — подгруппа коммутативной группы R,+, можно образовать факторгруппу R / K, элементами которой являются смежные классы r + K.

Поскольку К * К  К, для произведения двух смежных классов имеет место включение: (r + K) * (s + K)  r * s + r * K + K * s + K.

Подкольцо К называется идеалом кольца R, если  : x * K  K и K * y  K.

Мы видим, что если К является идеалом в R, произведение смежных классов (r + K) * (s + K) содержится в смежном классе r * s + K. Значит, в факторгруппе R / K определена операция умножения, превращающая ее в кольцо, называемое факторкольцом кольца R по идеалу К.

Подкольцом является подмножество , если оно является кольцом относительно тех же операций, которые определены в R.

Согласно данной интерпретации, К является подгруппой аддитивной группы R и замкнуто относительно умножения: .

К будет обладать свойствами ассоциативности, коммутативности или отсутствием делителей нуля, если R обладает такими свойствами.

Отображение, сохраняющее обе кольцевые операции:  и  называется гомоморфизмом колец .

Пусть  — сюръективный гомоморфизм колец. Тогда S изоморфно факторкольцу R / Ker. Если эти изоморфные кольца отождествить, то  отождествляется с естественным гомоморфизмом кольца R на свое факторкольцо.

Ядро группового гомоморфизма аддитивных групп  называется ядром гомоморфизма . Ядро гомоморфизма колец является идеалом.

Пусть  — гомоморфизм колец, I = Ker ,  — любой элемент. Тогда, (x * I) = (x) * (I) = (x) * 0 = 0. Значит, x * I  Ker  = I.

Аналогично проверяется, что I * x  I.

Взаимно однозначный гомоморфизм является изоморфизмом.

Отсутствие в R делителей нуля еще не гарантирует их отсутствие в факторкольце. Такие свойства как ассоциативность, коммутативность и наличие единицы сохраняются при переходе к факторкольцу

Приведем примеры.

Всякий ненулевой идеал I в S совпадает со всем полем, если кольцо S является полем. В самом деле, если , x  0, то для всякого  имеем: , откуда .

Если  любой его элемент, то множество I = x * S является идеалом кольца S, называемым главным идеалом с образующим элементом x.

Этот идеал обозначается (x). Если S кольцо с единицей и элемент x обратим, то (x) = S.

Факторкольцо Z / nZ — это множество вычетов по модулю n с операциями сложения и умножения. Идеалом кольца Z является подкольцо nZ, так как для любого целого m m (nZ)  nZ. Если число n не является простым, то Z / nZ имеет делители нуля.

Допустим, что I — идеал кольца R. Тогда, соотнося каждому элементу  смежный класс r + I, получаем сюръективный гомоморфизм , который называется естественным гомоморфизмом кольца на факторкольцо.

Предположим, что I  R [x] является множество всех многочленов , у которых  = 0. Тогда I = xR [x]. Так как p * I = (p * x) R [x]  I, значит, получаем идеал кольца многочленов.

Каждый смежный класс q + I содержит элемент , поэтому (q + I) * (s + I) = (+ I) * (+ I) =  *  + I.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.matematika-r.info/



1. Реферат Военные кампании Наполеона
2. Сочинение на тему Русская идея и русская мысль
3. Реферат Акционерное общество как субъект гражданского права 2
4. Реферат Public Relations в туризме
5. Реферат на тему Тайны кубанских курганов
6. Реферат на тему Cuban History Essay Research Paper History of
7. Реферат на тему Russian Influences On The Finnish Revolution And
8. Доклад на тему Христианская полнота и совершенный мир искусства
9. Реферат Хейс, Джон Magnificent
10. Статья Подъем инвариантов классических групп