Реферат Исследование некоторых физико-химических свойств протеиназы Penicillium wortmannii
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Министерство общего и профессионального образования
Российской Федерации
Воронежский Государственный Педагогический Университет
Выпускная квалификационная работа по специальности 011000 «Химия»
«Исследование некоторых физико-химических свойств
протеиназы
Penicillium
wortmannii
.»
Исполнитель:
ст-ка V курса
Естественно-географического факультета
Шишкина Е.Ф.
Научный руководитель:
кандидат технических наук, доцент
Кочергина Н.И.
ВОРОНЕЖ 1999 г.
СОДЕРЖАНИЕ
Введение. 3
Глава 1. Обзор литературы. 5
1.1 Протеиназы микробного происхождения. 5
1.2 Ферменты, их физико-химические свойства. 9
1.3 Выделение и очистка препаратов протеиназы. 13
1.4 Расщепление коллагенсодержащего сырья и его применение. 17
Глава 2. Материалы и методы исследования. 27
2.1 Определение рН. 27
2.2 Определение протеолитической активности. 27
2.3 Определение коллагеназной активности. 27
2.4 Определение молекулярной массы. 28
2.5 Определение содержания аминного азота. 28
2.6 Электрофоретические исследования. 29
2.6.1 Определение гомогенности очищенных препаратов 29
2.6.2 Идентификация протеиназ в ПААГ. 30
Глава 3. Получение препаратов протеиназы Penicillium wortmannii 2091
и исследование их физико-химических свойств. 31
3.1 Разработка условий выделения препарата
Penicillium wortmannii BKMF 2091. 31
3.2 Фракционирование протеолитического комплексного
препарата ферментов. 36
3.3 Влияние температуры и рН на активность фермента. 37
3.4 Определение молекулярной массы. 40
3.5 Исследование процессов кислотной и термической инактивации. 40
3.6 Влияние ионов металлов и ингибиторов на активный центр фермента. 44
3.7 Субстратная специфичность. 46
3.8 Гидролиз коллагенсодержащего сырья: ноги птиц, шквара. 47
Глава 4. Методическая часть. 57
4.1 Межпредметность – современный принцип обучения. 57
4.2 Межпредметные связи на уроках химии. 61
4.3 Методические рекомендации по реализации принципов
межпредметных связей при изучении тем, связанных
с понятием «ферментные препараты». 63
Выводы. 70
Список литературы. 71
ВВЕДЕНИЕ.
Важнейшим свойством ряда белков является их каталитическая активность. Вещества белковой природы, способные каталитически ускорять химические реакции, называют ферментами. Роль ферментов в жизнедеятельности животных, растений и микроорганизмов колоссальна. В настоящее время в биологических объектах обнаружено несколько тысяч индивидуальных ферментов, а несколько сотен из них выделено и изучено.
Биологические катализаторы по ряду признаков резко отличаются от неорганических катализаторов. Будучи белками, ферменты обладают всеми их свойствами. Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды, специфичность, подверженность влиянию активаторов и ингибиторов.
Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоком значении к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрат. Кроме того, для каждого фермента существует оптимальное значение рН среды, при котором он проявляет максимальную активность. Большинство ферментов имеет максимальную активность в зоне рН поблизости от нейтральной точки. Специфичность – одно из наиболее выдающихся свойств ферментов. Данное свойство ферментов объясняется в первую очередь совпадением пространственных конфигураций субстрата и субстратного центра фермента. Ферменты могут обладать абсолютной, относительной, стереохимической специфичностью. Влияние на ферменты активаторов и ингибиторов впервые было изучено А.Я.Данилевским. Ингибиторы тормозят действие ферментов. Механизм ингибирующего действия сводится к двум типам торможения (необратимое и обратимое). Обратимое ингибирование действия ферментов может быть конкурентным и неконкурентным.
Будучи выделены из организма, ферменты не утрачивают способности осуществлять каталитическую функцию, на чем основано их применение в различных областях промышленности. В хлебопекарной промышленности применяют ферментные препараты, относящиеся к роду Aspergillus. В пивоваренной и спиртовой промышленности применяют амилазы – ферменты, ускоряющие реакцию осахаривания крахмала. В кожевенном и меховом производстве применяют препараты протеиназ. Ферменты находят большое применение в медицине. Пепсин, трипсин, химотрипсин, липазу и амилазу применяют для лечения заболеваний ЖКТ. Протеолитические ферменты – плазмин и активирующие его стрептокиназу и урокиназу – для растворения тромбов в кровеносных сосудах. Кроме того, специфическую область применения ферментов в медицине составляет энзимодиагностика (заболевание может быть тестировано по уровню содержания фермента или соотношения его множественных форм в крови или реже в моче).
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
1.1 Протеиназы микробного происхождения.
Протеолитические ферменты синтезируются практически всеми живыми существами. В промышленных целях как источник протеиназ используются животные ткани, растения и клетки микроорганизмов. Наиболее перспективным источником протеиназ следует признать микроорганизмы по ряду существенных преимуществ, связанных, прежде всего, с неограниченностью источников, возможностью широко варьировать свойства методами селекции и генной инженерии, подбором условий биосинтеза, широким спектром ферментных комплексов и глубиной воздействия на различные субстраты, а так же простотой и относительной дешевизной технологии.
Продуценты протеолитических ферментов обнаружены среди самых различных групп микроорганизмов: бактерий (Bacillus, Micrococcus, Pseudomonas), микромицетов (Aspergillus, Rhizopus, Penicillium), актиномицетов (Streptomyces, Actinomyces). На их основе у нас в стране и за рубежом создано крупнотоннажное производство ферментных препаратов протеолитического действия.
Многие широко распространённые микроорганизмы секретируют значительное количество протеолитических биокатализаторов в окружающую среду, что значительно облегчает задачу их выделения и очистки. Возможность управления образованием ферментов за счёт подбора соответствующей питательной среды и условий культивирования позволяет не только увеличить выход протеолитических ферментов, но и получать ферментные препараты с определёнными свойствами. Методы селекции и генной инженерии значительно увеличивают возможности целенаправленного биосинтеза ферментов. Существенна способность микроорганизмов вырабатывать ферменты, уникальные по своей субстратной специфичности (кератиназы, коллагеназы, эластазы).
Большое внимание, уделяемое изучению протеолитических ферментов микроорганизмов, привело к получению значительного числа препаратов бактериальных и грибных протеиназ в высокоочищенном состоянии.
В настоящее время в номенклатуру и классификацию ферментов внесено большое количество протеолитических ферментов микробного происхождения, которые относятся к различным подклассам. По современной классификации протеолитические ферменты относятся к классу гидролаз и образуют подкласс пептид-гидролаз, или протеаз. Протеазы обычно подразделяются на пептидазы и протеиназы. Однако чёткого разделения по этому признаку нет, так как установлено, что протеиназы (пепсин, трипсин, папаин и другие) гидролизуют пептидные связи не только в белках, но и различных полипептидах. За последние годы значительно изменились представления о протеолитических ферментах. Согласно классификации Бергмана, подкласс пептид-гидролаз делится на две группы: эндопептидазы и экзопептидазы, которые отличаются специфичностью действия на субстрат. Эндопептидазы гидролизуют пептидные связи, отщепляя последовательно концевые аминокислоты. Эндопептидазы могут действовать на центральные участки пептидной связи и расщеплять молекулу белка на более мелкие фрагменты. Экзопептидазы не могут гидролизовать пептидные связи, находящиеся в середине цепи и действуют, отщепляя последовательно одну за другой концевые аминокислоты.
Необходимо отметить, что многие из протеолитических ферментов микробного происхождения получены в кристаллическом виде, например, субтилизин КФ 3.4.21.14, сериновая эндопептидаза Alternaria КФ 3.4.21.16, сериновая протеиназа Arthrobacter КФ 3.4.21.14, кислая протеиназа Aspergillus oryzae КФ 3.4.23.6, кислая протеиназа Penicillium janthinellum КФ 3.4.26.6. и другие. Часто под одним номером находится очень много ферментов, получаемых из различных источников, но имеющих сходные свойства.
В промышленности чаще всего получают комплекс протеолитических ферментов, достоинства которого определяются с учётом аспектов последующего применения ферментного препарата. Общая протеолитическая активность препаратов определяется на стандартных субстратах (казеине, гемоглобине, казеинате натрия) в соответствии с известными методами и используется для сравнения эффективности их действия на специфические субстраты (коллаген, эластин, кератин, желатин и т.д.).
Следует отметить, что у нас в стране проведены определённые исследования и обобщения по эффективности микробных протеиназ при расщеплении белков животных тканей. Однако лишь для немногих из них глубоко изучены физико-химические свойства, проведена идентификация функциональных групп каталитического центра, исследованы кинетика гидролиза субстратов и субстратная специфичность, расшифрована первичная структура.
Производство протеолитических препаратов организовано на основе микроскопических грибов родов Aspergillus и Rhizopus при поверхностном культивировании продуцентов, а также на основе бактерий Bacillus (subtilis, mesentericus, licheniformis, cereus и др.) при глубинном культивировании.
Протеиназы, полученные из этих культур, обладают высокой активностью. Они находят широкое применение в различных отраслях промышленности для гидролиза животных и растительных белков. Среди микроорганизмов – продуцентов протеиназ не менее важное место, чем бактерии, занимают актиномицеты Streptomyces (bradia, griseus, fradiospiralis). Впервые способность синтезировать протеиназы актиномицетами была показана Ваксманом, а затем Красильниковым. С тех пор большое число работ советских и зарубежных учёных посвящено изучению протеолитических ферментов актиномицетов [6, 17]. В настоящее время появились работы, где описано использование актиномицетов в качестве продуцентов кератиназы [24], эластазы [28], коллагеназы [26]. Однако промышленный выпуск протеиназ из актиномицетов развит слабо. Известны лишь препараты протеиназ Streptomyces griseus и Streptomyces fradie.
Однако проведение глубоких исследований ферментов у микроорганизмов осложняется высокой гетерогенностью синтезируемых протеолитических комплексов, требующих особо тонких и чувствительных методов выделения и очистки. Комплексные препараты, получаемые на практике, дают специфические эффекты при гидролизе субстратов. Так, например, протеолитические ферменты бактериального и грибного происхождения действуют в основном на белки мышечной ткани. Вместе с тем, известны комплексные препараты, проявляющие активность в отношении коллагена и эластина. При исследовании различных субтилизинов установлена их высокая каталитическая активность и невысокая специфичность гидролитического действия, что допускает их использование в различных пищевых технологиях.
Протеиназа из Actinomyces fradiae,отнесённая к типу трипсиноподобных, способна также гидролизовать казеин, денатурированный коллаген, но не активна в отношении эластина.
Из культуральной жидкости Bacillus mesentericum 316М выделяют комплексный ферментный препарат, обладающий высокой протеолитической активностью к фибриллярным белкам, в том числе коллагену и эластину.
Из отходов производства антибиотиков получен протеолитический препарат (источник Streptomyces griseus). Он обладает высокой казеинолитической активностью, подвергая при этом гидролизу гемоглобин, эластин, коллаген и желатин.
Получение высокоочищенных фракций ферментов – длительный, сложный и дорогой процесс, а применение комплексных препаратов не всегда даёт желаемый эффект и требует исследования условий гидролиза не только на чистых субстратах, но и при обработке сложных белковых систем. При этом интерес представляет как глубина протеолиза, так и качественная характеристика продуктов реакции, поскольку именно они определяют не только функциональные, биологические и технологические свойства продуктов, но и могут проявлять физиологические эффекты в составе пищи.
1.2 Ферменты, их физико-химические свойства.
Протеиназы, включающие ферменты микробного происхождения, составляют около половины производства препаратов на мировом рынке. Их эффективность и мощность намного превосходят синтетические катализаторы. Они высокоспецифичны по отношению к своим субстратам и ускоряют строго определённые химические реакции без образования побочных продуктов; ферменты функционируют в разбавленных водных растворах при физиологических значениях рН и температуры.
Ферменты – функциональные единицы клеточного метаболизма. Действуя в строго определённой последовательности, они катализируют сотни многостадийных реакций, в ходе которых расщепляются молекулы питательных веществ, запасается и преобразуется химическая энергия, и из простых молекул-предшественников строятся макромолекулы, входящие в состав клетки.
Ферментативный катализ происходит на расстоянии длины химической связи, поэтому акт катализа совершается на определённом участке поверхности макромолекулы, называемом активным центром. Современный уровень экспериментальных исследований позволил доказать, что он представляет собой набор небольшого числа функциональных групп, расположенных близко друг от друга и имеет вид впадин, выемок на поверхности молекулы фермента. Функциональные группы активного центра могут принадлежать звеньям полипептидной цепи, весьма удалённым друг от друга. Сближение их связано с формированием третичной структуры молекулы фермента.
Вполне логично, что активный центр не имеет автономного существования. Нельзя провести какую-либо грань между активным центром фермента и остальной частью белковой молекулы. Именно это и является одной из причин высокой чувствительности и лабильности активного центра к различным воздействиям.
К наиболее важным характеристикам ферментных препаратов, которые определяют возможность их применения на практике, относят рН, температурный оптимум, субстратную специфичность. Кривые строятся на основе данных, полученных при измерении скоростей реакции, протекающей в буферных растворах с разными значениями рН.
В 1964 году была получена в высокоочищенном состоянии нейтральная протеиназа Bacillus subtilis. Фермент имеет довольно широкий оптимум рН 6,5 – 8,0. В щелочной области рН её активность снижается, достигая при рН 9,0 – 30% максимальной величины. Таким образом, ферменты активны только в определённом интервале рН. В большинстве случаев для каждого фермента имеется определённый оптимум рН. Это объясняется несколькими причинами:
- истинное, обратимое влияние рН на скорость реакции (когда фермент насыщен субстратом);
- влияние рН на сродство фермента к субстрату (в этом случае падение активности по обе стороны от оптимума рН будет следствием понижения насыщения фермента субстратом в силу понижения сродства);
- влияние рН на стабильность фермента, который может необратимо инактивироваться при рН по одну или обе стороны от оптимума.
Перечисленные факторы могут действовать и в комбинации друг с другом. Например, падение активности по одну сторону от оптимума рН может быть результатом уменьшения сродства фермента к субстрату, а по другую – результатом инактивации фермента.
Итак, для всех известных ферментов зависимость скорости реакции от рН графически выражается в виде «колоколообразной» функции. Такие кривые строятся на основе данных, полученных при измерении скоростей реакции, протекающей в буферных растворах с разными значениями рН.
Форма кривых, описывающих зависимость скорости ферментативной реакции от рН, отражает способность важных для данного фермента протон - донорных связей или протон – акцепторных групп в его каталитическом центре переходить при определённых значениях рН в состояние требуемой степени ионизации.
Методы анализа температурных зависимостей кинетических и равновесных параметров ферментативных реакций основываются на классических принципах термодинамики и кинетики. Ферментативные реакции характеризуются также наличием «колоколообразной» зависимости скорости реакции от температуры в достаточно широком температурном интервале, что приводит к температурному оптимуму реакции. Эта способность влияния температуры на кинетику ферментативных реакций объясняется наложением двух эффектов (возрастание скорости реакции при увеличении температуры и ускорением тепловой денатурации белковой молекулы, приводящей к инактивации фермента при высоких температурах).
Многообразие форм, в которых проявляется влияние температуры на скорость ферментативных реакций, даёт основание ожидать, что анализ этого явления должен представлять большие трудности. В действительности, однако, влияние температуры легко установить экспериментально. Влияние этого фактора на стабильность фермента можно изучить, инкубируя фермент при различных значениях температуры в течение определённого периода времени, а за тем определяя его активность в той температурной зоне, в которой он остаётся стабильным.
Хорошо изученными являются протеиназа из Bacillus amyloliguefarias [31] и протеиназа из Bacillus thermoproteolyticus (термолизин). Они довольно близки по своим свойствам. Однако термостабильность их значительно различается, так термолизин теряет 50% максимальной активности при температуре 84оС, за 15 минут при рН 7,2 , в то время как протеиназа Bacillus amyloliguefacieus теряет за то же время 50% активности при температуре 59оС.
Ферментативная реакция в целом состоит, по крайней мере, из трёх последовательных стадий: образование фермент-субстратного комплекса, превращение этого комплекса в комплекс фермент-продукт и диссоциация промежуточного продукта. Влияние температуры на реакцию в целом является результатом её влияния на каждую из этих стадий.
Известно много ферментов, для которых естественные условия их действия не совпадают с оптимальными параметрами рН и температуры. Таким образом, внешние факторы позволяют с достаточным эффектом регулировать интересующие процессы, особенно при технологической обработке биологических объектов, например мяса и мясных продуктов.
Специфичность ферментов объясняется в первую очередь совпадением пространственных конфигураций субстрата и субстратного центра фермента. По-видимому, только тогда, когда совпадение это достаточно полно, может образоваться фермент-субстратный комплекс и, следовательно, начаться процесс ферментативного катализа. Детальное изучение специфичности ферментов показало, что пределы её у разных ферментов различны. Одни ферменты обладают абсолютной специфичностью, т.е. каталитически ускоряют одну – единственную реакцию. Примером такого фермента может служить уреаза. Другие ферменты осуществляют катализ реакций определённого типа независимо от того, какие конкретные вещества в них взаимодействуют или распадаются. Основным признаком для ферментов этого типа является характер связи. Такие ферменты характеризуются, следовательно, групповой специфичностью. Наконец, некоторые ферменты отличаются стереохимической специфичностью, т.е. действуют только на один из пространственных изомеров. Примером могут служить ферменты, расщепляющие a- и b-метилглюкозиды.
Катализируемая химическая реакция представляет тот специфический признак, по которому один фермент отличается от другого. Современная классификация основана на этом признаке. Ферменты делят на группы в зависимости от типа катализируемой реакции и на подгруппы, более точно характеризующие эту реакцию.
Часто на практике протеолитические ферменты, известные и тем более мало изученные, подразделяются на группы в зависимости от оптимального значения рН действия на субстраты. Как правило, выделяют три группы:
1. Щелочные протеиназы, стабильные и активно действующие в области рН 5 – 10. Максимальная их активность обнаруживается при рН 9,5 – 10,5. Установлено, что это главным образом сериновые протеиназы (для акта катализа важную роль играют функциональные группы серина); они активно ингибируются диизопропилфторфосфатом (ДФФ).
2.Нейтральные протеиназы с оптимумом рН для протеолиза около 7,0. В эту группу объединяют большинство металлоферментов, чувствительных к таким аддентам, как ЭДТА и о-фенантролин. Они не ингибируются ДФФ и тиоловыми реагентами, устойчивы при рН 6 – 9.
3.Кислые протеиназы, активные при рН 2 – 5, не чувствительные к сульфгидрильным реагентам, металлохелатным агентам, тяжёлым металлам и к ДФФ. Для акта катализа этой группы ферментов важны остатки карбоксильных групп глутаминовой и аспарагиновой кислот.
Вместе с тем отметим, что зависимость активность – рН носит подчинительный характер и связана со структурой активного центра,
определяющего механизм действия.
1.3 . Выделение и очистка препаратов протеиназы.
Современный уровень науки и техники позволяет получить не только комплексные, но и гомогенные, кристаллические ферменты. Их, как правило, выделяют непосредственно из биомассы гриба или культуральной жидкости, а так же из экстрактов поверхностных культур.
В качестве осадителей при получении комплекса препаратов протеиназ применяют сульфат аммония [14, 17], этанол [17], ацетон, изопропанол [24].
Отмечается, что в зависимости от применяемого осадителя выход фермента бывает различным. Так при использовании различных органических растворителей в концентрации 80% , выход протеолитических ферментов составил: 56% - для этанола, 78% - изопропанола, 65% - ацетона.
Вместе с тем, сочетание различных осадителей приводит к более полному отделению от сопутствующих веществ. К. А. Калунянц с соавторами [13] для очистки препарата реннинопузилин П10х воспользовались осаждением сульфатом аммония. Полученный осадок растворяли в воде, фракционировали этиловым спиртом. При этом авторам удалось отделить значительную часть сопутствующих белков.
Таким способом получают комплексные ферментные препараты. Их можно применять в народном хозяйстве, не проводя дальнейших этапов очистки. Более полная очистка возможна с помощью таких методов разделения как гельфильтрации на сефадексе, хроматографии на ДЭАЭ-сефадексе, КМ-сефадексе, КМ-целлюлозе, ДЭАЭ-целлюлозе.
Например, протеиназа Torula thermofila была выделена и очищена в 11 раз в результате диализа препарата, полученного осаждением сульфатом аммония, с последующей гельфильтрацией на сефадексе У-100.
Для разделения коллагеназы и нейтральной протеиназы Achromobacter iophagus препарат, полученный осаждением сульфатом аммония, подвергли диализу, а так же хроматографии на ДЕ-32 целлюлозе.
Наиболее изученные протеолитические ферменты, продуцируемые Bac. Subtilis, получены в кристаллическом состоянии. Схема очистки этих препаратов включает: высаливание сульфатом аммония 75% насыщения с последующим диализом против ацетатного буфера. Затем двух кратное осаждение 67% ацетоном и диализ против трисбуфера с последующей хроматографией на ДЕАЕ-сефадексе А-50 [30].
При разделении нейтральной и щелочной протеиназ Asp. Oryzae ОИТ-5038 использовали осаждение сульфатом аммония 80% насыщения, с последующей хроматографией на ДЕАЕ-целлюлозе и сефадексе У-100.
Для отделения баластных белков и пигментов от протеиназы Asp. Terricola Войнарским разработан метод очистки на биогеле Р-10. В результате активность протеиназы возросла в 30 раз, а содержание пигментов уменьшилось в 100 раз.
В результате ионообменной хроматографии на ДЭАЭ-целлюлозе был получен препарат нейтральной протеиназы Streptomyces acidoresistous 1403 с десятикратной степенью очистки.
Наиболее эффективным методом выделения и очистки ферментов является афинная хроматография. Метод основан на использовании взаимодействий, аналогичных взаимодействию фермента с субстратом. Как правило, ферменты, полученные с помощью афинной хроматографии, являются гомогенными или смесью изоферментов. Это подтверждается данными электрофокусирования, электрофореза в полиакриламидном геле, определением аминокислотной последовательности [20].
В настоящее время достаточно широко применяется для очистки метод ультрафильтрации растворов ферментов. Преимуществом ультрафильтрации являются отсутствие тепловой инактивации и небольшие энергозатраты. Ультрафильтрация позволяет провести концентрирование раствора без фазового превращения при комнатной температуре, при одновременном освобождении от баластных веществ (пигментов, низкомолекулярных соединений). Например, Рожанская с соавторами [27] с успехом использовали метод ультрафильтрации при очистке протеиназ из Asp. terricola и Streptomyces sp.
Приведённые литературные данные, касающиеся вопросов выделения и очистки протеолитических ферментов, свидетельствуют о том, что сочетание различных методов позволяет получить гомогенные ферментные препараты из культур микроорганизмов. Применение того или иного из них зависит от индивидуальных свойств фермента, конечной цели при его применении, физико-химических факторов.
Анализируя литературные данные, мы пришли к выводу, что молекулярная масса нейтральных протеиназ находится в интервале 20000 – 50000. Все они имеют довольно высокий температурный оптимум, лежащий в интервале 40 – 60oС, оптимальное значение рН 7,0 – 8,0, диапазон стабильности характеризуется значениями рН 5,0 – 10,0. Так нейтральная протеиназа Bac. Subtilis имеет оптимум рН 7,0 и температурный оптимум 52oС. Протеолитические ферменты Bac. Subtilis, выделенные А.А. Глемжай и сотрудниками, имеют несколько оптимумов рН (от 6,5 до 10,5). Молекулярная масса нейтральной протеиназы 38000 – 45000, щелочной – 27000 – 29000.
Препараты протеиназ Pseudomonas aeruginosa 700/75 имеют рН оптимум от 7,5 до 10,0. Протеиназы различных фракций обладали различными рН оптимумами. Фермент с молекулярной массой 28000 имеет оптимум рН 10,5. Уменьшение молекулярной массы коррелировало со снижением оптимума рН. Так, протеиназа с молекулярным весом 20000 характеризуется рН оптимумом 7,0.
Известны термостабильные препараты протеиназ. Для термостабильного фермента, выделенного из Thermoactinomyces thalpophilus максимальная активность обнаружена при рН 6,0 и сохранялась до 70% при изменении рН от 5,0 до 8,0. Оптимальная температура равна 70oС, но через 30 минут выдерживания при 70oС сохраняется лишь 62% активности [32].
Другая термостабильная нейтральная протеиназа – прототерпин имеет оптимум температуры 79oC, за 60 часов инкубации при 60oС потеря активности не превышает 15%.
Итак, рН оптимум для нейтральных протеиназ варьирует от 6,0 до 8,0, температурный оптимум 40 – 60oС, однако термостабильность ферментов может варьировать в широком диапазоне.
1.4 Расщепление коллагенсодержащего сырья и его применение.
Перспективное направление обработки коллагенсодержащего сырья – его ферментация. Авторами обзора [5] показано, что употребляемые для улучшения качества мяса ферментные препараты должны иметь следующие свойства:
- вызывать изменение соединительной ткани;
- слабо действовать на мышечную ткань;
- иметь возможно более высокий температурный оптимум действия, сохраняя способность частично изменять ткани при тепловой обработке;
- действовать в слабокислой или нейтральной среде с максимальной активностью;
- быть безвредным для человека.
Практика применения ферментных препаратов показывает, что не все ферменты, обладающие высокой протеолитической активностью, при обработке мяса дают должный эффект. При этом имеет большое значение оптимум действия ферментов, природа их активаторов и ингибиторов, специфичность к разрыву пептидных связей при гидролизе животных белков.
Известно несколько способов обработки мяса ферментами: инъекции раствора в кровеносную систему животных, шприцевание раствора фермента в шею, поверхностная обработка мяса ферментами, добавление ферментного раствора к мясному фаршу.
Наиболее приемлемым методом для современного производства оказалось шприцевание ферментного раствора в шею. В состав шприцуемого раствора кроме ферментного препарата входит поваренная соль и пищевые добавки.
Характер и глубина изменений внутримышечной соединительной ткани под действием протеолитических ферментов зависит от специфичности протеиназ содержащихся в препаратах. Наиболее глубокие изменения соединительнотканных прослоек происходили под действием фицина, т. к. этот фермент способен гидролизовать нативный эластин при естественном рН мяса. Что касается пищевых ферментных препаратов микробного происхождения, не обладающих коллагеназной и эластазной активностью, то их действие на внутримышечную соединительную ткань ограничивается освобождением коллагеновых волокон от «цементирующего» их основного вещества. Это способствует снижению устойчивости коллагеновых волокон к гидротермическому воздействию и более быстрому размягчению мяса в процессе тепловой обработки.
Проводя биохимическую оценку мяса, все исследователи пришли к единому мнению, что в результате обработки мяса ферментными препаратами перивариваемость его возрастает. Видимо, это связано с наличием в нём белков уже подвергнутых более или менее глубокой деструкции. Особенно это касается коллагена и эластина белков, наиболее трудно расщепляемых пищеварительными ферментами.
Направленное изменение исходных свойств сырья с помощью ферментативной обработки наиболее перспективно в колбасном производстве при сокращении сроков посола и использования сырья с большим содержанием соединительной ткани.
А.Ф. Невельниченко (1989) предложил способ созревания мясного сырья, предварительно обработанного раствором протеолитических ферментов микробного происхождения (протосубтилин, протомезентерин, прототерризин) методом инъецирования. Такая обработка позволила увеличить выход натуральных полуфабрикатов на 11% за счёт использования для этих целей жёстких частей говяжьих туш.
В США для мягчения соединительной ткани предложено тушу после убоя и разделки шприцевать водным раствором ферментов, содержащим коллагеназу, полученную из Cl. histolyticum и эластазу - из свиной поджелудочной железы.
Результаты исследований по изучению возможности ферментации коллагенсодержащего сырья в колбасном производстве позволили установить следующее:
- применение протосубтилина Г20х как самостоятельного фермента, так и в комплексе с ЭПЖ, вызывает очень значительные деструктивные изменения, в первую очередь, мышечной ткани односортной говядины, не оказывая должного влияния на соединительную;
- ферментация односортной говядины ЭПЖ способствует улучшению физико-химических свойств этого сырья;
-обработку коллагенсодержащего сырья целесообразно проводить на стадии посола мяса или при составлении фарша перед шприцеванием его в оболочку.
Повышенная резистентность коллагеновых и эластиновых волокон к термической дезагрегации предопределяет ряд пороков готовых изделий. Для снижения этих негативных проявлений используют жиловку этого сырья.
Обобщение результатов исследований, выполненных Н.Н. Липатовым, В.Г. Боресковым и др. позволило предположить, что альтернативой операции жиловки при производстве мясопродуктов из сырья с высокой массовой долей соединительной ткани является биотехнологическая модификация такого сырья за счёт воздействия на него протеолитическими ферментными препаратами, обладающими коллагеназной и эластазной активностью.
Ферментирование сырья с высокой массовой долей соединительной ткани способствует повышению скорости диффузионно-фильтрационного распределения посолочных ингредиентов при посоле такого сырья. Авторами [5] доказано увеличение равномерности распределения хлорида натрия при обработке сырья протеолитическими ферментами.
Особое внимание разработке специальных ферментных препаратов уделяется в последнее время в связи с проблемой максимального привлечения вторичных белковых ресурсов и отходов мясной промышленности и созданием безотходных технологий. Обеспечение устойчивого подъёма в этом направлении может быть достигнуто за счет разработки эффективных микробных препаратов. Способностью синтезировать специфические ферменты, расщепляющие животные белки, обладают многие микроорганизмы. Среди них выделяются виды, эффективно гидролизующие белки типа коллагена, эластина, кератина. Показана возможность применения для этих целей протеолитических ферментов на основе Bacillus, Pseudomonas, Streptomyces, Aspergillus, Penicillium.
При использовании коллагенофильного препарата ферментов из Penicillium wortmannii ВКМ – 2091 степень гидролиза коллагенов достигает 60 – 65%.
Анализ гидролизатов указывает на богатый набор и высокое содержание свободных аминокислот: пролина, цистина, валина, аланина, изолейцина, лейцина, фенилаланина, лизина, серина, глутаминовой и аспарагиновой кислот. При этом перевариваемость сырья увеличивается в 2,0 – 2,5 раза. Такие гидролизаты являются прекрасной основой для получения пищевых добавок, модифицированных продуктов и кормовых концентратов.
Ряд методов получения ферментативных гидролизатов предложен французскими исследователями, которые использовали ферменты животного (панкреатин, трипсин, химотрипсин), растительного (фицин, бромелаин, папаин) и микробного (B. subtilis Str. fradiae Str. griseus) происхождения.
В Германии получают гидролизаты из малоценных продуктов переработки тушек птицы. В измельчённое сырьё вносят препараты из B. subtilis, A. оryzae, P. latex, A. melleus. Гидролизат сушат и используют для приготовления супов. При этом потери аминокислот, в частности, лизина, минимальны.
Зарубежные авторы разработали способы получения пищевых гидролизатов путём автолиза сырья содержащимися в нём ферментами. Рекомендовано также получать пищевые гидролизаты из костного остатка после механической обвалки тушек птицы. Согласно этому способу для получения гидролизатов используют микробные протеолитические препараты из B. subtilis, P. latex, A. melleus.
Для более эффективного гидролиза белков животного происхождения предлагается ряд комбинированных способов. При этом применяется предварительная кислотная или щелочная обработка, а затем – ферментативный гидролиз.
В последнее время вырос практический интерес к способам рационального использования малоценных коллагенсодержащих продуктов убоя птицы для получения белковых гидролизатов, которые находят применение не только как компонент пищи, но и как диетический продукт для лечебного питания. Отечественными исследователями проведены работы и достигнуты хорошие результаты по получению гидролизатов из голов и ног сухопутной птицы. Для ферментативной обработки с последующим получением белково-жировой эмульсии предлагается использование препаратов ферментов из P. wortmannii ВКМ-2091 и Str. chromogenes graecus 0832, которые соответственно в большей степени обладают коллагеназной и кератинолитической активностями.
Конкретные условия гидролиза, определённые с помощью методов математической статистики, легли в основу нового способа получения белково-жировой добавки – заменителя основного сырья в рецептурах фаршевых мясных изделий. Способ заключается в следующем: промытые свежие ноги и головы сухопутной птицы измельчают, а затем гомогенизируют с добавлением воды. Это необходимо для разрушения тканевых структур и частичной механической деструкции особенно прочных белков – коллагена и кератина. Измельчённое сырьё (гомогенаты) нагревают до 80 – 90оС для частичной деструкции упроченных белков. Затем сырьё подвергают ферментативной обработке.
Подготовленные гомогенаты сырья охлаждают и вносят специфическую энзимную композицию на основе микробных препаратов. В результате максимально образуются водорастворимые белковые фракции, перивариваемость гидролизата в 2,0 – 2,5 раза выше, чем исходного сырья.
Изготовленные в соответствии с рекомендациями и технологическими инструкциями готовые изделия имеют хороший товарный вид, высокие вкусовые свойства и биологическую ценность при увеличении выхода на 1,5 – 3,0%.
Аспекты применения на пищевые цели специфического коллагенсодержащего сырья – шквары, получаемой в виде отхода при вытопке жиров и содержащей 22 – 44% белков (в основном коллагенов), известны [3].
Гомогенизированная шквара – ценное белковое сырьё. В её составе присутствуют такие незаменимые аминокислоты, как валин, лизин, фенилаланин. Для улучшения функционально-технологических свойств шквары также целесообразно применение ферментов, специфичных к гидролизу фибриллярных белков. В нейтральной зоне рН при умеренных температурах наиболее эффективными оказались протеолитические препараты глубинной культуры микромицета Penicillium wortmannii.
Полученный гидролизат отличается следующими показателями: значительная доля свободных аминокислот и общие изменения во фракционном составе белков.
В результате нарушения белково-липидных комплексов создаются условия для дополнительного получения жира.
Возможности гидролизатов различного коллагенсодержащего сырья имеют огромные перспективы при получении специальных продуктов питания, в том числе профилактических.
Применение ферментных препаратов при обработке кожевенного сырья является одним из перспективных методов совершенствования технологических процессов кожевенного производства.
Присутствие в шкуре растворимых и нерастворимых компонентов различной химической природы, многоступенчатая структурная организация основного белка шкуры – коллагена – определяют сложный характер реакций при ферментативной обработке.
Среди подготовительных процессов кожевенного производства наиболее трудоёмким является обезволашивание. Наиболее перспективным для всех видов сырья показало себя обезволашивание с помощью ферментов. В достижении эффекта обезволашивания установлена целесообразность применения ферментов, действующих на разные классы соединений дермы – белки, углеводы, жировые вещества, ведущее место среди которых принадлежит специальным протеазам. Основной фактор ускорения процесса – изменение структуры дермы, способствующее увеличению её проницаемости и пористости, скорости проникания фермента к волосяной сумке.
Одним из направлений в проведении ферментативных обработок является применение композиций ферментных препаратов.
Благодаря ферментативным обработкам, потери коллагена на 20 – 30% меньше, чем при традиционных методах, при этом из шкуры удаляется основная масса неколлагеновых белков, углеводов, аминосахаров и происходит разделение структурных компонентов коллагена. Это позволяет проводить последующее золение в более мягких условиях, с уменьшением концентрации химических реагентов и длительности процесса.
Важной операцией в получении мягкой кожи с гладкой шелковистой лицевой поверхностью, является процесс мягчения голья. В процессе мягчения под действием ферментов в голье происходит:
- разложение кератозы, удаление её и других продуктов распада белков, гидролиз остатков эпидермиса, гидролиз и удаление межволоконных веществ, эмульгирование и удаление липидов;
- видоизменение эластиновых волокон;
- разделение коллагеновых волокон на отдельные фибриллы.
Одним из направлений совершенствования процесса мягчения является использование ферментных препаратов, действующих в кислой среде, что даёт возможность объединить в один процесс мягчение и пикелевание. Мягчение в кислой среде способствует получению однородного грифа и текучести по всей площади кожи.
Из-за ряда существенных преимуществ, предпочтение отдаётся микробным препаратам. Среди них положительно опробированны препараты, полученные из грибов Aspergillus, бактерий Bacillus, актиномицетов [1,4].
В результате отбора микробных продуцентов авторами [5] предложены Penicillium wortmannii ВКМ – 2091 и Streptomyces chromogenes s.graecus 0832. Установлено, что Str. chromogenes наиболее кератинофилен, однако по уровню коллагеназной активности этот продуцент был ниже промышленного B. subtilis. Высоким уровнем коллагеназной и кератиназной активности при гидролизе пера отличаются протеолитические комплексы ферментов P. wortmannii, включающие две специфические протеиназы с различными физико-химическими свойствами, удовлетворяющие требованиям мясной промышленности [2].
Целенаправленное применение комплекса ферментов открыло перспективы к созданию принципиально нового подхода к обработке кишечного сырья для получения натуральной колбасной оболочки. При этом трудоёмкие процессы механической обработки возможно заменить применением ферментных препаратов.
Известно, что серозный слой, подлежащий удалению, включает жировые и белковые компоненты. Для их разрушения разработан в Московской государственной технологической академии пищевых производств и получен в опытно-промышленных условиях препарат путём высушивания культуральной жидкости Rhizopus oryzae.
Сравнительные гистологические исследования тканей кишечного сырья, обработанного механическим и ферментативным способами, показали полностью идентичную структуру. Однако в случае ферментативной обработки поверхность не деформирована, на ней полностью отсутствуют штрихи, порезы и другие механические дефекты.
Разработанное техническое решение имеет ряд преимуществ: полностью заменяется сложное электромеханическое оборудование по разрыхлению и удалению серозных слоёв (шляма), отсутствуют разрывы кишок, повышается качество сырья, улучшаются условия труда.
Основной задачей получения коллагеновых масс является максимальная очистка исходного сырья и выделение целевого продукта – коллагена – в свободном от примесей виде. В качестве ферментных препаратов используют прототерризин П10х (источник Asp. terricoba) или протосубтилин Г10х (источник Bac. subtilis). Способ характеризуется высокой степенью очистки исходного сырья от балластных компонентов под действием ферментов микробиального происхождения, их низкой себестоимостью, высокой степенью экологичности производства.
Сложность и трудоёмкость приготовления препаратов ферментов, потеря значительной доли коллагена в результате неполной его экстракции и денатурации под влиянием повышенной температуры, действующей длительное время, снижают значение методов обработки коллагена протеолитическими ферментами животного и растительного происхождения. Новые перспективы и реальная возможность внедрения биотехнологических методов в производство возникает при использовании микробных ферментных препаратов, отличающихся высокой стабильностью, возможностью варьировать специфику биохимических свойств. Было проведено изучение эффективности ферментативного гидролиза балластных компонентов различных коллагенсодержащих источников с применением ряда микробных препаратов: протосубтилина, протомегетерина, липоризина, выделенных из соответствующих микроорганизмов (B. subtilis, B. megaterium, R. oryzae).
Таким образом, для мясной промышленности наибольшую перспективу имеют микробные ферментные препараты и клетки, характерные специфической активностью в отношении фибриллярных белков упроченной структуры.
Оценка эффективности биотехнологий переработки коллагенсодержащего сырья предполагает экономию 10 – 20% основного сырья при получении полноценных мясных продуктов и 70 – 100% - в случае выработки искусственных оболочек и плёнок.
Применение специфических ферментных препаратов и клеток позволяет осуществить принципиально новые технологии глубокой и комплексной переработки основного, вторичного сырья и не пищевых отходов с реализацией режимов в естественных диапазонах температуры, рН среды и давления, минимальными энергозатратами, без дополнительных капитальных вложений и нежелательных экологических воздействий.
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
2.1 Определение величины рН.
Величину рН определяли потенциометрически на рН-метре ЛПУ-01. Для измерений значений рН растворов в температуре отличной от 20oС, применяли автоматическую компенсацию.
2.2 Метод определения протеолитической активности.
Протеолитическую активность (ПА) определяли по ГОСТ 20264.2-74 [12]. Субстратом служил 2% раствор казеината натрия, к которому добавляли 2см3 раствора фермента и помещали в ультратермостат при температуре 30oС. После проведения гидролиза в течение 10 минут в опытную пробирку приливали 4см3 раствора трихлоруксусной кислоты. Выдерживали ещё 20 минут при температуре 30oС. Затем фильтровали в сухие пробирки. К 1см3 фильтрата добавляли 5см3 0,5М раствора карбоната натрия, перемешивали и добавляли 1см3 рабочего раствора Фолина. Через 30 минут измеряли оптическую плотность раствора на ФЭКе КФК-2 при 670 нм в кюветах с поглощающим свет слоем 10 мм против контроля. За единицу ПА принимают такое количество фермента, которое за 1 минуту при 30oС катализировало переход в неосаждаемые трихлоруксусной кислотой продукты гидролиза казеината натрия в количестве, соответствующем 1 ммолю тирозина (1ммоль тирозина равен 0,181мг).
2.3 Определение коллагеназной активности.
Коллагеназную активность определяли по содержанию оксипролина в смеси, образовавшегося в результате действия фермента на нативный коллаген. С этой целью готовили реактив для окисления: 28,2 г хлорамина Т растворяли в 40см3 воды для получения 0,05М концентрации, добавляли 60см3 ацитат-цитратного буфера с рН 6,0. К 2см3 анализируемой пробы, содержащей 2 - 20 см3 оксипролина, приливали 1мл реактива для окисления, встряхивали и оставляли на 20 минут при комнатной температуре. Затем в смесь вносили 2 – 1 см3 4М хлорной кислоты, встряхивали и через 5 минут приливали 3см3 10% раствора n-диметиламинобензальдегида в метилцеллосольфе. Пробу нагревали 15 минут в водяной бане при 150оС и после охлаждения фотометрировали с зелёным светофильтром на ФЭК-56М (555нм).
Гидролиз коллагена вели в следующих условиях: 20 мг нативного коллагена обрабатывали исследуемым ферментным препаратом в присутствии буферной системы с рН 7,0 так, чтобы общий объём составил 25см3. Смесь инкубировали в течение 1 часа при 37oС. Контролем служили пробы, инкубированные в тех же условиях, но без фермента, предварительно остановив реакцию внесением 0,5см3 этанола и центрифугированием смеси в течение 15 минут при 6000 ч×мин-1.
Активность коллагеназы выражали либо в ммолях оксипролина на 1 мг белка за 60 минут, либо в процентах растворения.
2.4 Определение молекулярной массы фермента.
Молекулярную массу определяли с помощью гель-фильтрации на сефадексе У-100. Расчёт проводили по формуле:
LgM=5,941-0,847 (V/V0),
где V – объём выхода фермента;
V0 – свободный объём колонки.
2.5 Определение содержания аминного азота.
Метод основан на образовании цветного комплекса при взаимодействии аминогрупп аминокислот с гидроксидом меди. В пробирку, содержащую 100 мг сухого медного реактива, вносили 4см3 анализируемой пробы, предварительно нейтрализованной сухим бикарбонатом натрия, выдерживали 15 минут периодически встряхивая. Затем центрифугировали и измеряли оптическую плотность на ФЗКе КФК-2 при 590 нм. В контроле вместо 4см3 пробы присутствовало 4см3 дистилированной воды. Содержание аминного азота рассчитывали по калибровочной кривой, построенной для известных аминокислот.
2.6 Электрофоретические исследования.
2.6.1 Определение гомогенности очищенных препаратов.
Электрофорез проводили по методу Дэвиса на приборе фирмы Reanol (Венгрия) в щелочной буферной системе, рН 8,9. Концентрация акриламина в мелкопористом геле составила 5%. Длина мелкопористого геля в трубочке составила 5,5 см. Растворы для полимеризации готовили обычным способом. Исследуемый образец, содержащий 20 – 30 мкг белка смешивали в соотношении 1 : 1 с 40% раствором сахарозы и наносили на трубочку с гелем. Объём образца не превышал 0,2 см3. Поверх образца осторожно наслаивали электродный буфер, который содержал в 1 л 0,6 г трис-(гидроксиметил)-амино-метана и 2,88 г глицина.
В верхний резервуар прибора вносили 1 см3 0,001% раствора бромфенолсинего для контроля за движением фронта подвижных ионов. В первые 10 – 15 минут сила тока составила 1мА на трубочку, а затем 2,5мА. После окончания электрофоретического разделения гели вынимали из трубочек и проводили окрашивание. Окрашивание проводили раствором амидочерного с массовой долей 0,5, приготовленного с массовой долей 7 уксусной кислоты. Окрашивание проводили 20 – 30 минут. Краситель отмывали с массовой долей 7 уксусной кислотой с многократной сменой раствора.
2.6.2 Идентификация протеиназ в ПААГ [16].
Для проявления в гелях полос с протеиназой их выдерживали в денатурированном растворе гемоглобина 2% концентрации в течение 15 – 30 минут при температуре 30oС. Затем промывали несколько раз дистиллированной водой и переносили в раствор амидочерного. Проводили окрашивание в течение 20 – 30 минут. Краситель отмывали 7% уксусной кислотой. Если в гелях присутствовала протеиназа, то появлялись белые полосы.
Все опыты, описанные в работе, проводили 3 –4 раза, аналитические определения для каждой пробы проводили в двух – трёх повторностях. В таблицах и на рисунках показаны данные типичных опытов, причем каждое значение есть среднее из двух или трех определений. Обсуждаются только те результаты, которые были воспроизводимы в каждом опыте.
ГЛАВА 3. ПОЛУЧЕНИЕ ПРЕПАРАТОВ ПРОТЕИНАЗЫ
PENICILLIUM WORTMANNII 2091 И ИССЛЕДОВАНИЕ ИХ
ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ.
Известно, что микроорганизмы синтезируют богатые набором ферментов комплексы. Поэтому важным этапом в получении препаратов направленного действия является изучение условий их выделения, очистки от сопутствующих биологически активных и баластных веществ. В связи с малой изученностью представителей грибов Penicillium этот этап представляет особую важность.
3.1 Разработка условий выделения препарата
Penicillium wortmannii BKMF 2091.
Для выделения ферментов из различных сред в лабораторных условиях и в промышленности чаще всего применяют органические растворители и нейтральные соли.
Эффект осаждения белков органическими растворителями, как известно [7], основан на явлении уменьшения сольватации полярных групп фермента. Молекулы воды, расположенные на гидрофобных участках поверхности белка, могут быть замещены на молекулы органического растворителя. При этом растворимость белков падает, происходит агрегирование и осаждение белковых молекул.
В качестве осадителей использовали 96,5% этанол, 98,0% изопропанол, химически чистый ацетон и сульфат аммония. Органические растворители и сульфат аммония добавляли к охлажденной до 0 – 4oС культуральной жидкости Pen. Wortmannii 2091 при различных значениях рН и постоянном перемешивании. Образовавшийся осадок отделяли центрифугированием, растворяли в небольшом объёме дистиллированной воды и определяли протеолитическую активность.
Результаты исследования влияния рН на полноту осаждения протеолитического комплекса при концентрации растворителей 60% представлены на рис. 1, из которого видно, что оптимальным является значение рН 7,5 при использовании всех видов органических растворителей. Вероятно, изоэлектрическая точка для данного фермента лежит в этой области рН.
В дальнейшем нами проводились исследования по влиянию концентрации органических растворителей на выход фермента при оптимальном значении рН. Наблюдалось монотонное осаждение фермента при последовательном увеличении концентраций осадителей, выход фермента возрастал до определённого предела (табл. 1).
Как видно из табл. 1, концентрация органических растворителей значительно влияет как на выход протеолитического комплекса, так и на степень его очистки. При использовании этанола наиболее эффективной для выхода ПА была концентрация 72,0%. Степень очистки 1,27. Максимальный выход 98,5% по активности.
Оптимальная концентрация ацетона 66,6% (в объёмных соотношениях 1: 2). Степень очистки была более высокой, чем для этанола (1,5 раза) – однако выход по активности всего 62%. Лучшим органическим осадителем для протеиназы Pen. Wortmannii 2091 явился изопропанол. При концентрации его в смеси 50% выход протеиназы составил 90, 5%, степень очистки 2,78 и удельная активность 3,06.
Таким образом, изопропанол избирательно осаждает протеолитические ферменты, что повышает степень их очистки и снижает содержание баластных примесей. Однако на практике вполне можно использовать и этанол.
В дальнейшем проведены исследования по осаждению протеиназы сульфатом аммония. Было установлено, что при оптимальных условиях (степень насыщения 0,8 рН 7,5) выход фермента составил всего 23%. Низкий вы-
|
Таблица 1
Получение препарата протеиназы из культуральной жидкости Penicillium wortmannii 2091
осаждением органическими растворителями.
Содержание осадителя | Общая активность, ед | Белок, мг/см3 | Общий белок, мг | Вес препаратов, мг | Удельная активность, ед/мг белка | Выход по активности, % | Очистка | |
В объёмных отношениях | В % | |||||||
Ацетон | ||||||||
Культуральная жидкость рН 7,5 | ||||||||
- | - | 2,5 | 2,250 | 62,5 | - | 1,10 | 100,0 | 1,00 |
1:1 | 50 | 179,0 | 0,180 | 21,6 | 120 | 0,99 | 17,4 | 0,90 |
1:2 | 66,6 | 222,0 | 0,133 | 46,4 | 349 | 1,67 | 62,0 | 1,50 |
1:3 | 75,0 | 213,0 | 0,233 | 51,9 | 223 | 0,91 | 38,0 | 0,82 |
1:4 | 80,0 | 203,0 | 0,216 | 64,6 | 299 | 0,94 | 49,0 | 0,85 |
Изопропанол | ||||||||
Культуральная жидкость рН 7,5 | ||||||||
- | - | 2,5 | 2,250 | 62,5 | - | 1,10 | 100,0 | 1,00 |
1:1 | 50,0 | 392,0 | 0,128 | 36,9 | 288 | 3,06 | 90,5 | 2,78 |
1:2 | 66,6 | 385,4 | 0,232 | 67,4 | 290 | 1,65 | 92,0 | 1,50 |
1:3 | 75,0 | 215,0 | 0,282 | 211,5 | 350 | 0,76 | 60,0 | 0,69 |
1:4 | 80,0 | 183,0 | 0,132 | 42,2 | 320 | 1,39 | 46,0 | 1,26 |
Этанол | ||||||||
Культуральная жидкость рН 7,5 | ||||||||
- | - | 2,5 | 2,250 | 62,5 | - | 1,10 | 100,0 | 1,00 |
1:1 | 48,0 | 320,3 | 0,396 | 85,1 | 215 | 0,80 | 55,0 | 0,73 |
1:2 | 64,0 | 366,7 | 0,340 | 90,1 | 265 | 1,08 | 77,6 | 0,98 |
1:3 | 72,0 | 385,4 | 0,276 | 135,2 | 320 | 1,40 | 98,5 | 1,27 |
1:4 | 80,0 | 349,6 | 0,250 | 160,0 | 335 | 1,40 | 93,7 | 1,27 |