Реферат Аналитическая геометрия в решении экономических задач
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
"Тюменский государственный нефтегазовый университет"
Филиал ТЮМГНГУ г. Салехард
Кафедра "Автомобили и автомобильное хозяйство"
Реферат
По дисциплине "Математика"
На тему: "Аналитическая геометрия в решении экономических задач"
Выполнил:
студент группы АТХ-08
Кузнецов И. В.
Проверил:
Попова В. Р
Салехард 2009г.
Содержание
1. Модель Леонтьева многоотраслевой экономики (балансовый анализ). Пример балансового анализа
2. Линейная модель обмена. Пример торговли трёх стран
1. Модель Леонтьева многоотраслевой экономики (балансовый анализ)
Цель балансового анализа – ответить на вопрос, возникающий в микроэкономике и связанный с эффективностью ведения многоотраслевого хозяйства: каким должен быть объём производства каждой из n отраслей, чтобы удовлетворять все потребности в продукции этой отрасли? При этом каждая отрасль выступает с одной стороны, как производитель некоторой продукции, а с другой стороны как потребитель продукции и своей, и произведённой другими отраслями.
Связь между отраслями, как правило, отражается в таблицах межотраслевого баланса, а математическая модель, позволяющая их анализировать, разработана в 1936 году американским экономистом В. Леонтьевым. Предположим, что рассматривается n отраслей промышленности, каждая из которых производит свою продукцию. Часть продукции идёт на внутрипроизводственное потребление данной отраслью и другими отраслями, а другая часть предназначена для целей конечного (вне сферы материального производства) личного и общественного потребления.
Введём некоторые обозначения:
Так как валовой объём продукции любой i-й отрасли равен суммарному объёму продукции, потребляемой n отраслями, и конечного продукта, то
Уравнения (2.14) называются соотношениями баланса .Будем рассматривать стоимостный межотраслевой баланс, когда все величины, входящие в (2.14), имеют стоимостное выражение.
показывающие затраты продукции i-й отрасли на производство единицы продукции j-й отрасли.
Можно полагать, что в некотором промежутке времени коэффициенты
вследствие чего построенная на этом основании модель межотраслевого баланса получила название линейной.
Теперь соотношения баланса (2.14) примут вид:
Обозначим
Где X – вектор валового выпуска, Y – вектор конечного продукта, A – матрица прямых затрат (технологическая или структурная матрица).
Тогда систему (2.14) можно записать в матричном виде:
Основная задача межотраслевого баланса состоит в отыскании такого вектора валового выпуска X, который при известной матрице прямых затрат A обеспечивает заданный вектор конечного продукта Y.
Перепишем уравнение (2.18) в виде:
Если матрица
формуле (2.7)
Матрица
Чтобы выяснить экономический смысл элементов матрицы
Тогда по формуле (2.20) соответствующие векторы валового выпуска будут
Следовательно, каждый элемент
В соответствии с экономическим смыслом задачи значения
Матрица
Существует несколько критериев продуктивности матрицы A.Один из них говорит о том, что матрица A продуктивна, если максимум сумм элементов её столбцов не превосходит единицы, причём хотя бы для одного из столбцов сумма элементов строго меньше единицы, т.е. матрица A продуктивна, если
Пример балансового анализа
В таблице приведены данные об исполнении баланса за отчётный период, усл. ден. ед.:
Отрасль | Потребление | Конечный продукт | Валовой выпуск | ||
энергетика | машиностроение | ||||
Производство | Энергетика Машиностроение | 7 | 21 | 72 | 100 |
12 | 15 | 123 | 150 |
Вычислить необходимый объём валового выпуска каждой отрасли, если конечное потребление энергетической отрасли увеличится вдвое, а машиностроительной сохраниться на прежнем уровне.
Решение: Имеем
По формуле (2.15) находим коэффициенты прямых затрат:
т.е. матрица прямых затрат
Поэтому для любого вектора конечного продукта Y можно найти необходимый объём валового выпуска X по формуле (2.20):
Найдём матрицу полных затрат
Так как
По условию вектор конечного продукта
т.е. валовой выпуск в энергетической отрасли надо увеличить до 179,0 усл. ед., а в машиностроительной – до 160,5 усл. ед.
2. Линейная модель обмена
В качестве примера математической модели экономического процесса, приводящейся к понятию собственного вектора и собственного значения матрицы, рассмотрим линейную модель обмена(модель международной торговли).
Пусть имеется n стран
Рассмотрим матрицу
которая получила название структурной матрицы торговли. В соответствии с (3.32) сумма элементов любого столбца матрицы A равна 1.
Для любой страны
Для сбалансированной торговли необходима бездефицитность торговли каждой страны
Если считать, что
Сложив все неравенства системы (3.33), получим после группировки
Учитывая (3.32), выражения в скобках равны единице, и мы приходим к противоречивому неравенству
Таким образом, неравенство
Вводя вектор
В котором вектор x записан в виде вектор столбца, т.е. задача свелась к отысканию собственного вектора матрицы A, отвечающего собственному значению
Пример структурная матрица торговли трёх стран.
Структурная матрица торговли трёх стран
Найти соотношение национальных доходов стран для сбалансированной торговли.
Решение. Находим собственный вектор x, отвечающий собственному значению
Методом Гаусса. Найдём
Полученный результат означает, что сбалансированность торговли трёх стран достигается при векторе национальных доходов