Реферат Моделювання на ЕОМ випадкових величин і випадкових процесів
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
МОДЕЛЮВАННЯ НА ЕОМ ВИПАДКОВИХ ВЕЛИЧИН І ВИПАДКОВИХ ПРОЦЕСІВ
Содержание
Вступ
1. Принципи моделювання на ЕОМ випадкових елементів
2. Моделювання випадкових величин із заданими ймовірнісними характеристиками
Моделювання випадкових величин, що приймають дискретні значення
Моделювання випадкових величин із заданими щільностями імовірностей методом обернених функцій
Моделювання випадкових величин із заданими щільностями імовірностей методом суперпозиції
Моделювання гаусових випадкових величин методом сумації
Моделювання випадкових величин із експоненціальним розподілом та розподілом Релея
Вступ
При статистичному моделюванні на ЕОМ систем та мереж зв’язку виникає необхідність моделювання різних випадкових елементів - одержання на ЕОМ реалізацій випадкових величин та випадкових процесів, які описують реальні фізичні явища, події та процеси функціювання цих систем. Розглянемо основні принципи, методи та алгоритми моделювання на ЕОМ типових випадкових величин та випадкових процесів, що можуть бути використані для статистичних випробовувань при моделюванні систем та мереж зв’язку на ЕОМ.
1. Принципи моделювання на ЕОМ випадкових елементів
При моделюванні випадкових елементів (ВЕ) на ЕОМ розглядають три об'єкти: реальний фізичний об'єкт, його математичну модель, алгоритм моделювання на ЕОМ реалізацій ВЕ на основі вибранної математичної моделі. Наприклад, в системах та мережах зв'язку такими реальними фізичними об'єктами можуть бути повідомлення, сигнали-переносчики, модульовані сигнали, завади, потоки заявок, процеси обслуговування заявок, процеси комутації. Математичні моделі цих фізичних процесів - це різні класи випадкових процесів з імовірнісними характеристиками, що відповідають реальним фізичним процесам. Результатом моделювання на ЕОМ є вибірки реалізацій процесів, що одержуються за допомогою спеціальних моделюючих алгоритмів. Моделювання ВЕ базується на таких принципах:
ВЕ визначається (“конструюється”) як відповідна борелівська функція від найпростіших базових випадкових величин (БВВ);
повинна бути забезпечена близькість (за вибраним критерієм) імовірнісних характеристик реальних фізичних процесів та змодельованих реалізацій випадкових процесів.
БВВ одержують в результаті проведення на ЕОМ найпростішого випадкового експерименту.
Експеримент полягає в “киданні точки навмання“ в інтервал [0,1) (мал.1). Математичною моделлю такого експерименту є ймовірнісний простір
Рисунок 1 - Графічне пояснення найпростішого випадкового експерименту для одержання реалізацій БВВ
Випадкова величина
Відповідна їй щільність розподілу рівномірна на півінтервалі [0,1]
На рис.2 наведені графічні зображення функції і щільності розподілу ВВ
моделювання випадкова величина алгоритм
а б
Рисунок 2 - Графічне зображення функції розподілу (а) та щільності розподілу (б) БВВ.
У кожній ЕОМ є генератори (спеціальні програми) одержання випадкових величин, що мають вказані ймовірнісні характеристики. При послідовному звертанні
При моделюванні на ЕОМ складних ВЕ, зокрема, випадкової величини (ВВ) або випадкового процесу (ВП) з заданими ймовірнісними характеристиками розглядається складний випадковий експеримент, що полягає в проведенні
В результаті проведення такого складного експерименту отримуємо
Підбирають функцію
2. Моделювання випадкових величин із заданими ймовірнісними характеристиками
Оскільки моделювання випадкових процесів на ЕОМ зводиться до моделювання послідовності випадкових величин із заданими ймовірнісними характеристиками, спочатку розглянемо особливості моделювання деяких випадкових величин.
Моделювання випадкових величин, що приймають дискретні значення
Розглянемо моделювання випадкових величин
Введемо систему таких підмножин
де
Зважаючи на те, що БВВ розподілена рівномірно на інтервалі
Це означає, що імовірність попадання значення БВВ в інтервал
Рисунок 3 - Геометричне пояснення моделювання групи незалежних подій з допомогою БВВ
Таким чином, моделювання ВВ
де
Моделювання випадкових величин із заданими щільностями імовірностей методом обернених функцій
Розглянемо моделювання ВВ
Якщо функція
Підставивши замість
Таким чином, для моделювання на ЕОМ ВВ
знайти функцію розподілу, користуючись заданою щільністю ймовірності;
знайти функцію, що буде оберненою до функції розподілу;
одержувати реалізації БВВ
обчислювати значення ВВ
Виконуючи ці операції
Даний метод моделювання має недоліки тому, що не завжди вдається аналітично розрахувати для заданої щільності ймовірностей
Моделювання випадкових величин із заданими щільностями імовірностей методом суперпозиції
Цей метод базується на зображенні складних щільностей ймовірностей
де
В основі моделювання лежить такий математичний апарат. Нехай існують ВВ
Тоді безумовна щільність ймовірності ВВ
Припустимо, що
У цьому випадку
На рис.6 для прикладу показано, як за допомогою гаусових розподілів апроксимується щільність розподілу складнішого виду
Рисунок 6 - Апроксимація складної щільності ймовірності за допомогою гаусових розподілів
Таким чином, алгоритм моделювання ВВ методом суперпозиції містить у собі такі етапи:
вибір вигляду найпростішої щільності розподілу, за допомогою якої апроксимується задана щільність ймовірності;
моделюється реалізація ВВ, яка приймає дискретні значення
для отриманого значення i моделюються реалізація ВВ з
з нову моделюється реалізація ВВ, яка приймає дискретні значення
потім виконується процес моделювання реалізації ВВ із новим номером щільності ймовірності;
зазначені етапи моделювання повторюються доти, доки не буде отримана вибірка реалізацій ВВ необхідного обсягу.
Моделювання гаусових випадкових величин методом сумації
Введемо стандартну гаусову ВВ
де
У математичній статистиці доведено, що сумма значного числа незалежних між собою і рівномірно розподілених ВВ має гаусовий закон розподілу. Тому стандартну гаусову ВВ можна моделювати відповідно до виразу:
де
У загальному випадку довільних
де
Таким чином, алгоритм моделювання гаусової ВВ із заданими математичним сподіванням і дисперсією містить такі операції:
одержання
незалежних реалізацій БВВ і виконання над ними перетворення відповідно до зазначеного співвідношення (19);
виконання перетворень (20) для одержання ВВ із заданими
Моделювання випадкових величин із експоненціальним розподілом та розподілом Релея
Для моделювання вказаних ВВ використовуються стандартні гаусові випадкові величини
де
Випадкова величина
де
В окремому випадку
ВВ, що визначається співвідношенням
має розподіл Релея
Тут
Наведені співвідношення для одержання ВВ фактично є моделюючими алгоритмами, що містять такі етапи:
моделювання
виконання операцій обчислення ВВ згідно (21) (для
для експоненційного розподілу алгоритм той же, тільки
для розподілу Релея (24) моделювання згідно (24).
Размещено на Allbest.ru