Реферат

Реферат Сборник Лекций по матану

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024


§12. Определенный интеграл


Пусть на промежутке [a;b] задана функция f(x). Будем считать функцию непрерывной, хотя это не обязательно. Выберем на промежутке [a;b] произвольные числа x1, 
x
2, 
x
3, ¼, xn-1, удовлетворяющие условию:
 a< x1,< x2<
¼< xn-1,<b. Эти числа разбивают промежуток [a;b] на n более мелких промежутков: [a;x1], [x1;x2], ¼, [xn-1;b]. На каждом из этих промежутков выберем произвольно по одной точке: c1Î[a;x1], c2Î[x1;x2], ¼, cnÎ[xn-1;b].

Введем обозначения: Dx1 = x– a; Dx2 = x x1; ¼, Dxn = b – xn-1.

Составим сумму:

                                             .



Она называется интегральной суммой функции f(x) по промежутку [a;b]. Очевидно, что интегральная сумма зависит от способа разбиения промежутка и от выбора точек ci.

Каждое слагаемое интеграль­ной суммы представляет собой площадь прямоугольника, покрытого штриховкой на рисунке 1.

Введем обозначение: l
 = 
max(Dxi), i = 1, 2, ¼, n.. Величину l иногда называют параметром разбиения.

Рассмотрим процесс, при котором число точек разбиения неограниченно возрастает таким образом, что величина l стремится к нулю. Определенным интегралом

                                               

от функции  по промежутку [a;b] называется предел, к которому стремится интегральная сумма при этом процессе, если предел существует:

                                              .

Если такой предел существует, то он не зависит от первоначального разбиения промежутка [a;b] и выбора точек ci.



Число a называется нижним пределом интегрирования, а число b ¾ верхним пределом интегриро­вания.

Рассмотрим фигуру, ограни­ченную графиком непрерывной, неотрицательной на промежутке [a;b] функции f(x), отрезком [a;b] оси X, и прямыми x = a; x = b. Такую фигуру называют криволинейной трапецией. На рисунке 2 криволинейная трапеция выделена штриховкой. Площадь S этой трапеции определяется формулой

                                             .



Если f(x) < 0 во всех точках промежутка [a;b] и непрерывна на этом промежутке (например, как изображено на рисунке 3), то площадь криволинейной трапеции, ограниченной отрезком [a;b] горизонтальной оси координат, прямыми x = a; x = b и графиком функции y = f(x), определяется формулой

.

Перечислим свойства определенного интеграла:

1)   (здесь k ‑ произвольное число);

2) ;

3) ;

4) Если cÎ[a;b], то .

Из этих свойств следует, например, что .

Все приведенные выше свойства непосредственно следуют из определения определенного интеграла.



Оказывается, что формула из пункта 4 справедлива и тогда, когда cÏ[a;b]. Пусть, например, c>b, как изображено на рисунке 4. В этом случае верны равенства

.

§13. Определенный интеграл как функция верхнего предела


Пусть функция f(t) определена и непрерывна на некотором промежутке, содержащем точку a. Тогда каждому числу x из этого промежутка можно поставить в соответствие число

                                              ,



определив тем самым на промежутке функцию I(x), которая называется определенным интегралом с переменным верхним пределом. Отметим, что в точке x = a эта функция равна нулю. Вычислим производную этой функции в точке x. Для этого сначала рассмотрим прира­щение функции в точке x при приращении аргумента Dx:

DI(x) = I(x + Dx) – I(x) =



.

Как показано на рисунке 1, величина последнего интеграла в формуле для приращения DI(x) равна площади криволинейной трапеции, отмеченной штриховкой. При малых величинах Dx (здесь, так же как и везде в этом курсе, говоря о малых величинах приращений аргумента или функции, имеем в виду абсолютные величины приращений, так как сами приращения могут быть и положительными и отрицательными) эта площадь оказывается приблизительно равной площади прямоугольника, отмеченного на рисунке двойной штриховкой. Площадь прямоугольника определяется формулой f(x)Dx. Отсюда получаем соотношение

                                     .

В последнем приближенном равенстве точность приближения тем выше, чем меньше величина Dx.

Из сказанного следует формула для производной функции I(x):

                          .

Производная определенного интеграла по верхнему пределу в точке xравна значению подынтегральной функции в точке x. Отсюда следует, что функция  является первообразной для функции f(x), причем такой первообразной, которая принимает в точке x = a значение, равное нулю. Этот факт дает возможность представить определенный интеграл в виде

                                          .                                           (1)

Пусть F(x) тоже является первообразной для функции f(x), тогда по теореме об общем виде всех первообразных функции I(x) = F(x) + C, где C — некоторое число. При этом правая часть формулы (1) принимает вид

                     I(x) – I(a) = F(x) + – (F(a) +C) = F(x) – F(a).                      (2)

Из формул (1) и (2) после замены x на b следует формула для вычисления определенного интеграла от функции f(t) по промежутку [a;b]:

                                        ,

которая называется формулой Ньютона-Лейбница. Здесь F(x) — любая первообразная функции f(x).

Для того, чтобы вычислить определенный интеграл от функции f(x) по промежутку [a;b], нужно найти какую-либо первообразную F(x) функции f(x) и подсчитать разность значений первообразной в точках b и a. Разность этих значений первообразной принято обозначать символом .

Приведем примеры вычисления определенных интегралов с помощью формулы Ньютона-Лейбница.

Примеры. 1. .

2. .

Сначала вычислим неопределенный интеграл от функции f(x) = xex. Используя метод интегрирования по частям, получаем: . В качестве первообразной функции f(x)  выберем функцию ex(x – 1) и применим формулу Ньютона-Лейбница:

I = ex(x – 1) = 1.

При вычислении определенных интегралов можно применять формулу замены переменной в определенном интеграле:

                                      .

Здесь a и b определяются, соответственно, из уравнений j(a) = aj(b) = b, а функции f, j, j
¢
должны быть непрерывны на соответствующих промежутках.

Пример:.

Сделаем замену: ln x = t или x = et, тогда если x = 1, то t = 0, а если x = e, то t = 1. В результате получим:
                                  .

При замене переменной в определенном интеграле не нужно возвращаться к исходной переменной интегрирования.

§14. Несобственные интегралы с бесконечными пределами


Если положить промежуток интегрирования бесконечным, то приведенное выше определение определенного интеграла теряет смысл, например, потому что невозможно осуществить условия n®¥l®0 для бесконечного промежутка. Для такого интеграла требуется специальное определение.

Пусть функция y = f(x) определена и непрерывна на полубесконечном промежутке [a;¥), тогда несобственным интегралом с бесконечным пределом  называется , если предел существует. Если этот предел не существует, то не существует и несобственный интеграл. В этом случае принято говорить, что несобственный интеграл расходится. При существовании предела говорят, что несобственный интеграл сходится.

Аналогично

 и .

Примеры: 1. . Очевидно: , откуда следует

.

2. ; этот предел не существует, следовательно, не существует или расходится интеграл I.

3. ; здесь предел также не существует, и интеграл расходится.

Упражнения


1. Найти производные от следующих функций:

1)

;

2)

;

3)

;

3)

;

5)

;

6)

;

7)

;

8)

;

9)

;

10)

 ;

11)

где x = 1;

12)

;

13)

 где t = p / 6;

14)



15)

;

16)

.


1. Реферат на тему The Tempest Essay Research Paper The Tempest 2
2. Реферат Легалізація доходів отриманих злочинним шляхом як міжнародна проблема
3. Реферат Организация труда на предприятии 2
4. Реферат на тему Общая характеристика предприятия КУП СМЭП Мингорисполкома
5. Реферат Исследование статистических взаимосвязей показателей на предприятиях общественного питания на пр
6. Реферат на тему Наследие Византии
7. Реферат на тему Граждане как субъекты административного права
8. Реферат на тему The Open Boat Essay Research Paper The
9. Реферат на тему The Mosquito Analysis Essay Research Paper Analysis
10. Реферат на тему The Lorax Essay Research Paper Seuss addresses