Реферат Построение интерполяционного многочлена и вычисление по нему значения функции для заданного аргумента
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Международная «Лига развития науки и образования» (Россия)
Международная ассоциация развития науки, образования и культуры России (Италия)
Международный «ИНСТИТУТ УПРАВЛЕНИЯ»
(г. Архангельск)
КУРСОВАЯ РАБОТА
ПО ДИСЦИПЛИНЕ
«Информатика и программирование»
Тема : «Построение интерполяционного многочлена и вычисление по нему значения функции для заданного аргумента»
Выполнил: студент экономического факультета, группы 12-И Воробьев А.А. Проверил: Горяшин Ю.В. |
Архангельск
2004
Аннотация
Цель курсовой: для функции заданной в таблице построить интерполяционный многочлен и вычислить по нему значение функции для заданного значения аргумента. Составить блок схему алгоритма и программу на одном из языков высокого уровня (С++) для вычисления заданного интерполяционного многочлена. В программе предусмотреть возможности ввода любого числа значений функции для чего организовать хранение ее значении при помощи линейного списка.
Содержание
1. Аннотация
2. Содержание
3. Глава №1
4. Глава №2
5. Заключение
6. Список литературы
7. Приложение
8. Программа
Введение.
Возможность постановки вычислительного эксперимента на ЭВМ приводит к существенному ускорению процессов математизации науки и техники, к постоянному расширению области приложения современных разделов математики. Количественные методы внедряются практически во все сферы человеческой деятельности, что приводит к расширению круга профессий, для которых математическая грамотность становится необходимой. Однако, развитие науки и техники, современная технология производства ставят перед специалистами задачи, для которых либо не возможно, либо крайне громоздко и сложно получение алгоритма классическими методами математического анализа. Отсюда стремление использовать различные численные методы, разрабатываемые вычислительной математикой и позволяющие получить конечный числовой результат с приемлемой для практических целей точностью.
Численный метод решения задачи - это определенная последовательность операций над числами, т.е. вычислительный алгоритм, языком которого являются числа и арифметические действия. Такая примитивность языка позволяет реализовать численные методы на ЭВМ, что делает их мощными и универсальными инструментами исследования. Численные методы используются в тех случаях, когда не удается найти точное решение возникающей математической задачи. Это происходит главным образом, потому, что искомое решение обычно не выражается в привычных для нас элементах или других известных функциях. Даже для достаточно простых математических моделей иногда не удается получить результат решения в аналитической форме. В таких случаях основным инструментом решения многих математических задач выступают численные методы, позволяющие свести решение задачи к выполнению конечного числа арифметических действий над числами, при этом результаты получаются также в виде числовых значений.
Многие численные методы разработаны давно, однако при ручных вычислениях они могли использоваться лишь для решения узкого круга не слишком сложных задач, и только с появлением высоко производительных ЭВМ начался период бурного развития методов вычислительной математики и их внедрения в практику. Численные методы приобрели важнейшее значение как мощное математическое средство решения практических задач в различных областях науки и техники.
Интерполирование, интерполяция,- приближенное или точное нахождение какой-либо величины по известным отдельным значениям или других величин, связанных с ней. В первоначальном понимании- восстановление функции (точное или приближенное) по известным ее значениям или значениям ее производных в заданных отрезках.
Основное применение интерполяции - это вычисление значении табулированной функции для неузловых (промежуточных) значений аргумента, поэтому интерполяцию часто называют «искусством чтения таблиц между строками». (П.Ф. Фильчаков)
Глава 1
Основные направления исследования: разрешимость задачи интерполирования, простейших интерполяционных формул, применение интерполяции для построения приближенных интерполяционных формул, применение интерполяции для построения приближенных и численных методов решения различных задач математики и ее приложений.
Приближенное представление функций. Интерпояционные функции
Обычно
где
Выбор системы
Чаще всего используя а л г е б р а и ч е с к о е интерполирование:
В задаче приближения функции и на всём отрезке
Эффективным аппаратом приближения функции являются интерполяционные сплайны, но их построение в ряде частных случаях требует значительных вычислительных затрат.
На практике чаще всего используются параболические или кубические полиноминальные сплайны. Интерполяция кубическим сплайном дефекта 1 для функции
При таком определении кубического сплайна, он имеет еще свободных параметра, для нахождения которых на сплайн налагаются дополнительные краевые условия. Например
Полиномиальный интерполяционный сплайн произвольной степени m
дефекта r определяется как функция
Часто при обработке эмпирических данных
Такое построение функции называют интерполированием по методу наименьших квадратов.
Интерполирование функций многих переменных имеет ряд принципиальных и алгебраических трудностей. Например в случае алгебраической интерполяции интерполяционный многочлен Лагранжа фиксированной степени, вообще говоря, не существует для произвольной схемы различных узлов интерполяции. В частности для функций двух переменных
может быть построен по узлам
Другой поход к интерполированию функции многих переменных
Интерполирование функций и численные методы. Интерполирование функции используется:
1. для замены сложно вычисляемой функции другой, вычисляемой проще
2. для приближенного восстановления функции на всей области задания по значениям её в отдельных точках или по другим известным величинам
3. для получения сглаживающих функций
4. для приближенного нахождения предельных значений функции
5. в задачах ускорения сходимости последовательностей и рядов и в других вопросах.
Общие идеи построения интерполяционных методов решения уравнения
Например взяв за
где
Другой подход к построению численных методов решения уравнения
Численное интегрирование. Аппарат интерполирования функции лежит в основе построения многих квадратурных и кубатурных формул. Такого рода формулы строятся путем замены интегрируемой функции на всей области или на её составных частях интерполяционными многочленами того или иного вида и последующим интегрированием этих многочленов. Например квадратурные формулы наивысшей алгебраической степени точности, так называемые квадратурные формулы Гаусса:
где
Изложенная выше схема построения формул для приближенного вычисления интегралов применима и в многомерном случае
Формулы численного дифференцирования, в основе которых лежит интерполирование, получаются в результате дифференцирования интерполяционных многочленов. Ввиду неустойчивости задачи численнго дифференцирования относительно ошибок использования значений функций в узлах шаг интерполирования должен согласоваться с погрешносьтью значений функций. Поэтому на практике нередки случаи, когда известная на густой сетке функция используется в данной задаче не во всех точках, а на более редкой сетке.
При численном решении интегральных уравнений, известная функция
узлов интерполирования
Интерполяционная формула- для приближенного вычисления значений функции
| |
наперед заданного класса, причем параметры
такой способ приближенного представления функций называется интерполированием, а точки
В ряде случаев (например, при интерполировании алгебраическими многочленами) параметры
Интерполяционный процесс- процесс получения последовательности интерполирующих функций
узлов интерполирования. Если интерполирующие функции
Интерполяционная формула Эверетта:
Интерполяционные формулы Грегори- Ньютона построенные по нисходящим или восходящим разностям, наиболее целесообразно применять в начале или конце таблицы. При этом для достижения высокой степени точности иногда приходится рассматривать разности, отстоящие достаточно далеко от интересующих нас значений функции
К интерполяционным формулам с центральными разностями относятся формулы Гаусса, Стирлинга, Бесселя, Эверетта и многие другие; формула Эверетта получила наибольшее распространение, она была получена 1900 г.:
где
Формуле Эверетта так же можно придать форму, наиболее удобную для вычисления:
если для ее коэффициентов ввести обозначения
Коэффициенты
Таблица разностей:
x | y | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
Таблицу можно продолжать строить, в нашем случае до последнего
. Таблица разностей высчитывается
Тестовый пример.
П р и м е р. Функция
Р е ш е н и е. По данным значениям функции составляем таблицу разностей (табл. 1), из которых видно, что четвертые разности в данном примере практически равны постоянны, а пятые разности практически равны нулю, и поэтому мы их в дальнейших вычислениях не будем принимать во внимание.
Принимаем
Тогда
Т а б л и ц а 2
x | | | | | | |
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 | 0.9120049 0.8971316 0.8812009 0.8642423 0.8462874 0.8273695 0.8075238 0.7867871 0.7651977 | -0.0148733 -0.0159307 -0.0169586 -0.0179549 -0.0189179 -0.0198457 -0.0207367 -0.0215894 | -0.0010574 -0.0010279 -0.0009963 -0.0009630 -0.0009278 -0.0008910 -0.0008527 | 0.0000295 0.0000316 0.0000333 0.0000352 0.0000368 0.0000383 | 0.0000021 0.0000017 0.0000019 0.0000014 0.0000015 | -0.0000004 0.0000002 -0.0000005 0.0000001 |
Т а б л и ц а 2
Эверетта | ||
| | |
0 1 2 | 0.52000 -0.06323 0.01179 | 0.82273695 -0.0009278 0.0000014 |
0 1 2 | 0.48000 -0.06157 0.01160 | 0.8075238 -0.0008910 0.0000015 |
|
Все вычисления по формуле Эверетта представлены в табл. 2.
Все необходимые значения разностей(и самой функции, которые мы в табл. 2 обозначили как разности нулевого порядка
Перемножив (не снимая промежуточных результатов) коэффициенты
Проверка производится непосредственно при помощи степенного ряда для рассматриваемой функции Эверетта
ГЛАВА №2
Заключение
Удалось построить интерполяционный многочлен и вычислить по нему значение функции для заданного значения аргумента. Составлена блок схема алгоритма и программа на языке С++ (Приложение) для вычисления заданного интерполяционного многочлена. В программе предусмотрена возможность ввода любого числа значений функции для чего организованно хранение ее значения при помощи линейного списка.
Список литературы
1. Архангельский Н.А. Вычислительные методы алгебры в приемах и задачах. М.: МАИ, 1976.
2. Васильев Ф.П. Численные методы решения экстремальных задачь. М.: Наука,1988.
3. Васильков Ф.В., Василькова Н.Н. Компьютерные технологии вычислений в математическом моделировании: Учеб. Пособие. М.: Финансы и статистика, 1999.
4. Фильчаков П.Ф., Справочник по высшей математике. Киев: Наукова думка, 1974.
5. Фильчаков П.Ф., Численные методы. Киев: Наукова думка, 1976.
6. Большая математическая энциклопедия. М.: Олма-Пресс, 2004
7. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Наука, 1970.
8. Тихонов А.Н., Вводные лекции по прикладной математике. М.: Наука, 1984.
9. Калиткин Н.Н., Численные методы. М.: Наука, 1987.
10. Корн Г., Корн Т. Справочник по математике. М.: Наука, 1984.