Реферат

Реферат Построение интерполяционного многочлена и вычисление по нему значения функции для заданного аргумента

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 28.12.2024



МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Международная «Лига развития науки и образования» (Россия)

Международная ассоциация развития науки, образования и культуры России (Италия)

Международный «ИНСТИТУТ УПРАВЛЕНИЯ»

(г. Архангельск)
КУРСОВАЯ РАБОТА

ПО ДИСЦИПЛИНЕ

«Информатика и программирование»

Тема : «Построение интерполяционного многочлена и вычисление по нему значения функции для заданного аргумента»

Выполнил: студент экономического факультета, группы 12-И Воробьев А.А.

Проверил: Горяшин Ю.В.


Архангельск

2004

Аннотация

Цель курсовой: для функции заданной в таблице построить интерполяционный многочлен и вычислить по нему значение функции для заданного значения аргумента. Составить блок схему алгоритма и программу на одном из языков высокого уровня (С++) для вычисления заданного интерполяционного многочлена. В программе предусмотреть возможности ввода любого числа значений функции для чего организовать хранение ее значении при помощи линейного списка.
Содержание

1.      Аннотация

2.      Содержание

3.      Глава №1

4.     Глава №2

5.     Заключение

6.      Список литературы

7.      Приложение

8.     Программа
Введение.

         Возможность постановки вычислительного эксперимента на ЭВМ приводит к существенному ускорению процессов математизации науки и техники, к постоянному расширению области приложения современных разделов математики. Количественные методы внедряются практически во все сферы человеческой деятельности, что приводит к расширению круга профессий, для  которых математическая грамотность становится необходимой. Однако, развитие науки и техники, современная технология производства ставят перед специалистами задачи, для которых либо не возможно, либо крайне громоздко и сложно получение алгоритма классическими методами математического анализа. Отсюда стремление использовать различные численные методы, разрабатываемые вычислительной математикой и позволяющие получить конечный числовой результат с приемлемой для практических целей точностью.

         Численный метод решения задачи - это определенная последовательность операций над числами, т.е. вычислительный алгоритм, языком которого являются числа и арифметические действия. Такая примитивность языка позволяет реализовать численные методы на ЭВМ, что делает их мощными и универсальными инструментами исследования. Численные методы используются в тех случаях, когда не удается найти точное решение возникающей математической задачи. Это происходит главным образом, потому, что искомое решение обычно не выражается в привычных для нас элементах или других известных функциях. Даже для достаточно простых математических моделей иногда не удается получить результат решения в аналитической форме. В таких случаях основным инструментом решения многих математических задач выступают численные методы, позволяющие свести решение задачи к выполнению конечного числа арифметических действий над числами, при этом результаты получаются также в виде числовых значений.

Многие численные методы разработаны давно, однако при ручных вычислениях они могли использоваться лишь для решения узкого круга не слишком сложных задач, и только с появлением высоко производительных ЭВМ начался период бурного развития методов вычислительной математики и их внедрения в практику. Численные методы приобрели важнейшее значение как мощное математическое средство решения практических задач в различных областях науки и техники.

Интерполирование, интерполяция,- приближенное или точное нахождение какой-либо величины по известным отдельным значениям или других величин, связанных с ней. В первоначальном понимании- восстановление функции (точное или приближенное) по известным ее значениям или значениям ее производных в заданных отрезках.

Основное применение интерполяции - это вычисление значении табулированной функции для неузловых (промежуточных) значений аргумента, поэтому интерполяцию часто называют «искусством чтения таблиц между строками». (П.Ф. Фильчаков)
Глава 1

         Основные направления исследования: разрешимость задачи интерполирования, простейших интерполяционных формул, применение интерполяции для построения приближенных интерполяционных формул, применение интерполяции для построения приближенных и численных методов решения различных задач математики и ее приложений.

         Приближенное представление функций. Интерпояционные функции  на отрезке  по значениям ее в узлах  сетка - означает постоение другой функции  такой, что  В более общей постановке задача интерполирования функции  состоит в постоении  не только из условий совпадения значений функций  и  на стеке , но и совпадения в отдельных узлах производных до какого-то порядка или некоторых других соотношений, связанных  и .

         Обычно  стоится в виде

,

где - некоторая заранее выбранная система линейно независимых функций. Такое интерполирование называется л и н е й н ы м относительно системы , а  интерполяционным многочленом по системе .

         Выбор системы  определяется свойством класса функций, для приближения которого предназначаются интерполяционные формулы. Например, для приближения - периодической функции на   за   естественно взять тригонометрическую систему функций, для приближения на полу оси  ограниченных или возрастающих функции- систему рациональных или показательных функций, учитывающих поведение приближаемых функций на бесконечности и т.д.

         Чаще всего используя а л г е б р а и ч е с к о е  интерполирование: . Существует ряд явных представлений алгебраических интерполяционных многочленов. Например интерполяционный многочлен Лагранжа имеет вид:


         В задаче приближения функции и на всём отрезке  алгебраическое интерполирование высокого порядка выполняется сравнительно редко. Алгебраический интерполяционный процесс не является сходящимся в классе непрерывных на  функций. Обычно ограничиваются линейным интерполированием по узлам  и  на каждом отрезке  или квадратичным по трем узлам ,, на отрезке .

         Эффективным аппаратом приближения функции являются интерполяционные сплайны, но их построение в ряде частных случаях требует значительных вычислительных затрат.

На практике чаще всего используются параболические  или кубические полиноминальные сплайны. Интерполяция кубическим сплайном дефекта 1 для функции  относительно сетки  называет функцию , являющуюся многочленом 3-й степени на каждом из отрезков , принадлежащую классу дважды непрерывно дифференцируемых функции и удовлетворяющую условиям

.

         При таком определении кубического сплайна, он имеет еще свободных параметра, для нахождения которых на сплайн налагаются дополнительные краевые условия. Например   или  и , или некоторые другие.

         Полиномиальный интерполяционный  сплайн произвольной степени m
дефекта r определяется как функция , удовлетворяющая, кроме условий  и , еще дополнительно условиям совпадения в узлах сетки значений функции  и интерполированной функции  и их производных до некоторого порядка.

         Часто при обработке эмпирических данных  коэффициенты  в  определяют исходя из требования минимизации суммы



- заданные числа, .

         Такое построение функции называют интерполированием по методу наименьших квадратов.

         Интерполирование  функций многих переменных имеет ряд принципиальных и алгебраических трудностей. Например в случае алгебраической интерполяции интерполяционный многочлен Лагранжа фиксированной степени, вообще говоря, не существует для произвольной схемы различных узлов интерполяции. В частности для функций двух переменных  такой многочлен  суммарной степени не выше n
может быть построен по узлам  лишь при условии, что эти узлы не лежат на алгебраической кривой порядка n.

         Другой поход к интерполированию функции многих переменных  стоит в том, что сначала интерполируется функция по переменной  при фиксированных  потом по следующей переменной при фиксированных  и т.д. интерполяционные сплайны для функций многих переменных определяются по многомерной сетке при соответствующих изменениях по аналогии с одномерным случаем.

         Интерполирование функций и численные методы. Интерполирование функции используется:

1.     для замены сложно вычисляемой функции другой, вычисляемой проще

2.     для приближенного восстановления функции на всей области задания по значениям её в отдельных точках или по другим известным величинам

3.     для получения сглаживающих функций

4.     для приближенного нахождения предельных значений функции

5.     в задачах ускорения сходимости последовательностей и рядов и в других вопросах.
Общие идеи построения интерполяционных методов решения уравнения =0 и систем уравнения , одни и те же. Трудности задачи интерполирования функций многих преременных особенно  сказывается при исследовании и практическом использовании такого рода методов для большого числа уравнений. В основу получении интерполяционных методов решения уравнения =0 положена замена функции  ее интерполяционным многочленом  и последующим решением уравнения =0 берутся за приближенные решении уравнения =0 интерполяционный многочлен  используется так же при построении итерационных методов решения уравнения =0.

         Например взяв за  корень линейного интерполяционного алгебраического многочлена, построенного по значениям  и  в узле   или по значениям  и  в узлах  и , приходят соответственно к методу Ньютона и метода секущих

,

где - разделенная разность функций для узлов  и .

         Другой подход к построению численных методов решения уравнения =0 основан на интерполировании обратной функции . Пусть в качестве интерполяционной формулы для функции  взят интерполяционный алгебраический многочлен Лагранжа , построенный по узлам  Тогда за следующее приближению к корню  уравнения =0 берется величина .

         Численное интегрирование. Аппарат интерполирования функции лежит в основе построения многих квадратурных и кубатурных формул. Такого рода формулы строятся путем замены интегрируемой функции на всей области или на её составных частях интерполяционными многочленами того или иного вида и последующим интегрированием этих многочленов. Например квадратурные формулы наивысшей алгебраической степени точности, так называемые квадратурные формулы Гаусса:



где - знакопостоянная весовая функция, получаемая в результате замены функции   интерполяционным алгебраическим многочленом, построенным по корням  ортогонального относительно веса  многочлена степени n.

         Изложенная выше схема построения формул для приближенного вычисления интегралов применима и в многомерном случае

         Формулы численного дифференцирования, в основе которых лежит интерполирование, получаются в результате дифференцирования интерполяционных многочленов. Ввиду неустойчивости задачи численнго дифференцирования относительно ошибок использования значений функций в узлах шаг интерполирования должен согласоваться с погрешносьтью значений функций. Поэтому на практике нередки случаи, когда известная на густой сетке функция используется в данной задаче не во всех точках, а на более редкой сетке.

         При численном решении интегральных уравнений, известная функция  заменяется в интегральном уравнении  каким-либо интерполяционным приближением (интерполяционным алгебраическим многочленом, интерполяционным сплайном и т.д.) с узлами интерполирования , а приближенные значения  для  находятся из системы, полученной после подстановке вместо независимости переменной x
узлов интерполирования . В случае нелинейных интегральных уравнений приближенные значения  находятся соответственно из нелинейной системы.

         Интерполяционная формула- для приближенного вычисления значений функции , основанного вычисления на замене приближаемой функции  более простой в каком- то смысле функцией







наперед заданного класса, причем параметры  выбираются так чтобы значения  совпадали с известными заранее значениями  для данного множества попаро различных значений аргумента:

такой способ приближенного представления функций называется интерполированием, а точки , для которых должны выполняться условия , - узлами интерполяции.

         В ряде случаев (например, при интерполировании алгебраическими многочленами) параметры  могут быть явно выражены из системы , и тогда непосредственно используется для приближенного вычисления значений функции .

         Интерполяционный процесс- процесс получения последовательности  интерполирующих функций  при неограниченном возрастании числа n
узлов интерполирования. Если интерполирующие функции  представлены в виде частных сумм некоторого функционального ряда, то последний иногда называется интерполяционным рядом.Целью построения интерполяционного полинома чаще всего является, по крайней мере в простейших первоначальных задачах интерполирования, приближение в каком- то смысле по средствам интерполирующих функций , о которой или имеется неполная информация, или форма которой слишком сложна для непосредственного использования.
         Интерполяционная формула Эверетта:

Интерполяционные формулы Грегори- Ньютона построенные по нисходящим или восходящим разностям, наиболее целесообразно применять в начале или конце таблицы. При этом для достижения высокой степени точности иногда приходится рассматривать разности, отстоящие достаточно далеко от интересующих нас значений функции  или . Поэтому на средних участках таблицы лучше результаты дают интерполяционные формулы, построенные на базе центральных разностей, то есть разностей, которые ближе всего расположены к центральной сотке, содержащей .

         К интерполяционным формулам с центральными разностями относятся формулы Гаусса, Стирлинга, Бесселя, Эверетта и многие другие; формула Эверетта получила наибольшее распространение, она была получена 1900 г.:



 где ; ; .

         Формуле Эверетта так же можно придать форму, наиболее удобную для вычисления:



если для ее коэффициентов ввести обозначения

     

  

         Коэффициенты  удобнее всего вычислять по следующей рекуррентной формуле, которая непосредственно вытекает из :

; ;

         Таблица разностей:

x

y









































































































































Таблицу можно продолжать строить, в нашем случае до последнего , число разностей зависит от количества значений y
.
Таблица разностей высчитывается

 , и так далее(можно заметить такую систему в приведенной выше таблице)
        
Тестовый пример.

            П р и м е р. Функция  задана таблицей на сегменте . Определим при помощи интерполяции значение .

Р е ш е н и е. По данным значениям функции составляем таблицу разностей (табл. 1), из которых видно, что четвертые разности в данном примере практически равны постоянны, а пятые разности практически равны нулю, и поэтому мы их в дальнейших вычислениях не будем принимать во внимание.

            Принимаем =0,85; =0,9; =0,874.

            Тогда =0,8273695; =0,8075238, и, далее, так как шаг таблицы =0,05, то



Т а б л и ц а 2

x













0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.9120049

0.8971316

0.8812009

0.8642423

0.8462874

0.8273695

0.8075238

0.7867871

0.7651977

-0.0148733

-0.0159307

-0.0169586

-0.0179549

-0.0189179

-0.0198457

-0.0207367

-0.0215894

-0.0010574

-0.0010279

-0.0009963

-0.0009630

-0.0009278

-0.0008910

-0.0008527

0.0000295

0.0000316

0.0000333

0.0000352

0.0000368

0.0000383

0.0000021

0.0000017

0.0000019

0.0000014

0.0000015



-0.0000004

0.0000002

-0.0000005

0.0000001




Т а б л и ц а 2

Эверетта







0

1

2

0.52000

-0.06323

0.01179

0.82273695

-0.0009278

0.0000014

0

1

2

0.48000

-0.06157

0.01160

0.8075238

-0.0008910

0.0000015



            Все вычисления по формуле Эверетта представлены в табл. 2.

            Все необходимые значения разностей(и самой функции, которые мы в табл. 2 обозначили как разности нулевого порядка ) взяты из табл. 1. Первые три строки в табл. 2 заполнены значениями  для  и , а последующие три строки соответственно значениями  для  и .

Перемножив (не снимая промежуточных результатов) коэффициенты  на расположенные в той же строке , мы и получим искомое значение функции , как сумму произведений

            Проверка производится непосредственно при помощи степенного ряда для рассматриваемой функции Эверетта   согласно которому получим  
ГЛАВА №2

MAIN












Заключение

Удалось построить интерполяционный многочлен и вычислить по нему значение функции для заданного значения аргумента. Составлена блок схема алгоритма и программа на языке С++ (Приложение) для вычисления заданного интерполяционного многочлена. В программе предусмотрена возможность ввода любого числа значений функции для чего организованно хранение ее значения при помощи линейного списка.
Список литературы

1.     Архангельский Н.А. Вычислительные методы алгебры в приемах и задачах. М.: МАИ, 1976.

2.     Васильев Ф.П. Численные методы решения экстремальных задачь. М.: Наука,1988.

3.     Васильков Ф.В., Василькова Н.Н. Компьютерные технологии вычислений в математическом моделировании: Учеб. Пособие. М.: Финансы и статистика, 1999.

4.     Фильчаков П.Ф., Справочник по высшей математике. Киев: Наукова думка, 1974.

5.     Фильчаков П.Ф., Численные методы. Киев: Наукова думка, 1976.

6.     Большая математическая энциклопедия. М.: Олма-Пресс, 2004

7.     Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Наука, 1970.

8.     Тихонов А.Н., Вводные лекции по прикладной математике. М.: Наука, 1984.

9.     Калиткин Н.Н., Численные методы. М.: Наука, 1987.

10. Корн Г., Корн Т. Справочник по математике. М.: Наука, 1984.


1. Реферат на тему Right To Die
2. Книга Аффилиация и власть как социально-психологический феномен в организации совместных отношений,
3. Реферат Организация контроля качества продукции
4. Биография на тему Голицына Клара Николаевна
5. Реферат Кредитный договор и его виды 2
6. Курсовая на тему Специфика воспитания детей младшего школьного возраста средствами народного искусства
7. Реферат Безработица 13
8. Реферат на тему Gun Control 2 Essay Research Paper email
9. Статья Электромагнитный диапазон излучений и его особенности
10. Статья Валеология проблема, воспитание и образование студентов в техническом вузе