Реферат Электростатика
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Электромагнитное
поле.
- это дискретное явление, при котором минимальный заряд равен заряду электрона.
q e =
q p =
Fкул =
где q – источник электрического поля
(Рисунок)
Электростатическое поле в вакууме
.
(поле неподвижных зарядов)
1.
Напряжённость электростатического поля.
(Рисунок)
Для непрерывного распределения заряда суммирование определяется всеми зарядами в произвольной точке пространства:
(Рисунок)
Пример.
(Рисунок)
точка О – начало отсчёта
2.
Линии вектора напряжённости.
- линии, направления которых в каждой точке совпадают с вектором напряжённости.
Количество линий, пересекающих единичную перпендикулярную поверхность должно быть равно модулю вектора напряжённости.
(Рисунок)
3. Поток вектора напряжённости.
Количество линий напряжённости пронизывающих данную поверхность:
(по поверхности)
(Рисунок)
Если
Теорема
Гаусса.
Поток вектора напряжённости через произвольную замкнутую поверхность равен алгебраической сумме зарядов, охваченных этой поверхностью, делённых на электрическую постоянную.
(Рисунок)
Результирующий вектор напряжённости равен векторной сумме векторов напряжённости входящих зарядов.
Расчёт напряжённости с помощью теории Гаусса.
Можно выбрать расчёт dS так, чтобы E можно было вынести за знак интеграла.
1. Напряжённость поля однородно заряженного шара.
(Рисунок)
а) если r > R,
то
б) если r < R,
(Рисунок)
то
(Рисунок)
Замечание.
1) При неоднородном распределении заряда (но сохраняется сферическая симметрия):
(Рисунок)
2) Если заряда внутри нет, то и поля внутри нет. Если имеется поле, то внутри поле отсутствует.
(Рисунок)
Расчёт напряжённости бесконечной плоскости (заряженной).
(Рисунок)
Поток через замкнутую поверхность цилиндра равен потоку основания и боков поверхности.
(Рисунок)
Поле однородно заряженного бесконечного цилиндра.
(Рисунок)
r > R,
(Рисунки)
Для цилиндрической оболочки поле внутри отсутствует.
Для получения используют теорему Остроградского.
Потенциал электрического поля.
j - отношение потенциальной энергии точечного пробного заряда, помещённого в другую точку поля, к величине этого заряда.
Докажем консервативность сил и потенциальность электрических сил поля.
(Рисунок)
Связь между напряжённостью и потенциалом.
Рассмотрим в дифференциальном виде:
(Рисунки)
Элементы математической теории поля.
Полем называется волна, зависящая от положения в пространстве (является функцией координат). Поле называется стационарным, если оно не меняется с течением времени.
Скалярное поле – это такое поле, которое в каждой точке пространства характеризуется одним единственным числом (например, температурное поле).
Векторное поле – это такое поле, которое в каждой точке пространства характеризуется вектором (например, поле скоростей в потоке жидкости).
Градиент.
Скорость изменения некоторой величины во времени можно описать, задавая её производную по времени t. Если же мы хотим узнать скорость изменения некоторой величины в пространстве, то, очевидно, мы должны взять её производную по координатам x, y, z.
(Рисунок)
В трёхмерном случае:
или
Поверхностью уровня – называется геометрическое место точек, в которых скалярная величина имеет одно и тоже значение.
В двумерном случае поверхность уровня называется линией уровня.
Градиент устанавливает связь между скалярными и векторными характеристиками поля.
Дивергенция. Теорема Гаусса.
(Рисунок)
Рассмотрим поле вектора несжимаемой жидкости. Если поток жидкости в объем V через поверхность S
Характеристикой стоков и источников служит величина, называемая дивергенцией – расхождение вектора скорости.
Таким образом, дивергенция представляет собой удельную мощность источника в точке P и является скалярной функцией координат.
(Рисунки)
Найдём выражение для декартовой системы координат, для чего рассмотрим поток
(Рисунок)
Поток из кубика наружу будет равен:
Для одной грани:
Проекции векторов
Поток через первую и вторую грани будет равен:
Аналогично получим:
Полный поток:
Отсюда:
Дивергенция связывает векторную величину, характеризующую поле, со скалярной величиной.
Зная
Опыт показывает, что к кулоновским силам применим, рассмотренный в механике, принцип независимости действия сил, т.е. результирующая сила
Согласно (2):
Где
Подставим последнее выражение в (8):
Принцип суперпозиции (наложения) электростатических полей заключается в том, что наложенность напряжённости результирующего поля, создаваемого системой заряда, равна геометрической сумме напряжений полей, создаваемых в данной точке каждым из зарядов в отдельности.