Реферат Применение атомной энергетики в народном хозяйстве
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Применение атомной энергетики в народном хозяйстве. Вред и польза
Введение
Актуальность вопросов, связанных с энергией, обусловлена огромной значимостью производства и потребления энергии во всех отраслях народного хозяйства. Развитие экономики, уровень материального благосостояния, людей находится в прямой зависимости от количества потребляемой энергии. Многие виды трудовой деятельности основаны на потреблении энергии, для добычи руды, выплавки из нее металла, для строительства дома и т. д., нужна энергия. Потребности людей постоянно растут, потребителей энергии становится все больше — все это приводит к необходимости увеличения объемов производимой энергии.
Природные энергоресурсы могут быть одним из основных источников процветания жизни. В качестве примера можно назвать нефть, добываемую в Арабских Эмиратах. Эту когда-то отсталую страну нефтяные энергоресурсы вывели на современный уровень развития. Построены большие города, по внешнему облику и инфраструктуре очень похожие на многие города такой развитой страны, как США. Проезжая, например, по городу Абу-Даби — столице Арабских Эмиратов, утопающей в ковровой зелени и многокрасочных цветах, — трудно поверить, что этот город, как и многие другие города Эмиратов, вырос на пустынной земле, сквозь песчаную толщу которой с большим трудом пробивается верблюжья колючка. Такие города — эдемские утолки Арабских Эмиратов — выросли очень быстро, за каких-то двадцать-тридцать лет. Было бы ошибочно думать, что только благодаря нефти — основному источнику энергии — можно преобразовать пустынную землю.
Цель данной работы рассмотреть применение атомной энергетики в народном хозяйстве. В соответствии с целью перед работой поставлены следующие задачи:
Рассмотреть область применения атомной энергетики
Рассмотреть пользу и вред примения атомной энергетики
Рассмотреть перспективы развития атомной энергетики
1. Применение энергетики в народном хозяйстве
Атомные электростанции относятся к тепловым, так как в их устройстве имеются тепловыделители, теплоноситель и генератор электрического тока - турбина. Существуют как одноконтурные АЭС, так и двух-трех-контурные (это зависит от типа ядерного реактора).
Рис. 1. Турбинный зал АЭС
На атомных электростанциях в качестве топлива используются радиоактивные элементы уран, торий и плутоний. Теплота выделяется при распаде ядер этих элементов на более легкие ядра. Реакция радиоактивного распада происходит в ядерных реакторах. Выделившееся тепло поглощается теплоносителем, циркулирующим через активную зону ядерного реактора. Теплоноситель доставляет энергию в теплообменник, где это тепло используется для превращения воды в пар. Далее пар направляется на паровую турбину, которая вращает электрогенератор, и эта система работает как на обычной тепловой электростанции. Схема реактора показана на рисунке 2.
Рис. 2. Схема атомного генератора
Богатые ураном породы добывают в шахтах и доставляют на топливные фабрики, где его превращают в окись урана. Она помещается в трубку из сплава циркония. Несколько таких трубок соединяют вместе и это называется тепловыделяющим элементом. Эти тепловыделяющие элементы доставляют на атомные электростанции.
Проблемы экономичности, экологичности и безопасности ядерной энергетики, естественно, не ограничиваются проблемой ЯТЦ. Одним из важнейших звеньев механизма функционирования ядерно-энергетического хозяйства является механизм "нормального" функционирования самой АЭС. В этой связи необходимо хотя бы кратко рассмотреть вопросы строительства, эксплуатации и демонтажа АЭС в их экономическом, экологическом и социальном аспектах. При строительстве АЭС необходимо учитывать, по крайней мере, пять групп факторов: - экономические факторы (прямые капиталовложения) ; - природоохранные и природные факторы (например, потеря ландшафтного вида, ущерб природе, увеличение количества туманных дней, значительные потери воды и т. д.); - социально-экономические факторы (социально-экономические изменения при осуществлении того или иного проекта, жилищное строительство, создание развитой инфраструктуры, строительство дорог, "вытаптывание" местности и т. п.); - здоровье и безопасность населения (удаление объектов от городов, иные меры по обеспечению их безопасности и т. п.); - общественное мнение (желание или нежелание населения иметь в непосредственной близости ядерно-энергетический объект). Учет и ранжирование этих факторов представляют собой одну из сложнейших задач управленческой науки, важнейший элемент механизма принятия решения, проблема, которой на Западе уделяется огромное внимание, а в СССР, судя по всему, никакого. Целая наука о критериях принятия решений, учета и взвешивания различных факторов, как известно, просто игнорируется и наших научных и административных кругах, несмотря на то, что работы по этой тематике, переведенные на русский язык и изданные смехотворно малым тиражом, мгновенно исчезли с прилавков книжных магазинов. Среди этих групп факторов наиболее пристальное внимание в настоящее время привлекают факторы воздействия на природную среду. Это связано с тем, что энергетика как техническая отрасль народного хозяйства в отличие от других отраслей в наибольшей степени связана с использованием природных факторов (земельные территории, природная вода, атмосфера) Все эти сферы природной среды конечны и имеют перекрещивающееся многохозяйственное использование. Кроме того, за последние годы резко возросла ценность экологических факторов и сознательность общества в отношении охраны природной среды. Поскольку дальнейший прирост электрогенерирующих мощностей в указанном регионе практически целиком намечено осуществлять за счет АЭС, то за неизбежное нарастание неразрешимых проблем при осуществлении природоохранных мероприятий будет нести "ответственность" ядерная энергетика. Из публикуемых данных относительно радиационного воздействия АЭС на население можно сделать вывод, что АЭС практически безвредны для окружающей среды, ввиду отсутствия потребности в кислороде, а также ввиду того, что атмосфера не загрязняется дымовыми газами. Однако при этом не учитывается так называемый "аккумулирующий" эффект радиоактивных выбросов АЭС, то есть попросту накопление в живых организмах радиоактивной "грязи", а также радиоактивных выбросов предприятий по получению, регенерации ядерного топлива, транспортированию РАО, а также их могильников. Не учитывается также эффект воздействия на окружающую среду целого ряда высокоактивных "долгоживущих" радиоактивных нуклидов. Потребность в рассеивании сбросного тепла (ввиду меньшего КПД) у современных АЭС в 1.5 раза больше, чем у ТЭС, что требует соответствующего увеличения потребности в природной воде пли акватории водоема-охладителя. Безвозвратные потери воды на испарение по условию рассеяния сбросного тепла от конденсаторов турбин АЭС составляют 1,0 м3/сек на 1 млн. кВт электрической мощности, а необходимая в настоящее время по условиям синергизма (совместное воздействие фак-торов) акватория водоема-охладителя при АЭС должна составлять не менее 15 м2/кВт электрической мощности. Это значит, что для типовой 4-блочной АЭС мощностью 4 млн. кВт акватория пруда-охладителя должна составить не менее 60 км2. Использование градирен хотя и не требует затопления земель для пруда-охладителя, зато заметно увеличивает стоимость АЭС, а также в 1,5 раза безвозвратные потери воды на испарение. Итак, площадь водоема-охладителя АЭС мощностью 4 млн. кВт должна составлять 60 квадратных километров! С ростом мощностей АЭС будут неуклонно увеличиваться и безвозвратные потери воды, необходимой для технологических нужд станции, прежде всего для охлаждения. Как мы уже говорили, безвозвратные потери воды (при испарении) для водоемов-охладителей составляют 1,0 м3/сек при мощности энергоблока 1 млн. кВт.
2. Технико-экономические показатели технологических процессов производства энергии
Независимо от вида электростанций, технологический процесс можно характеризовать по двум параметрам: потребление ресурсов и объем производства энергии. Небольшой объем настоящей контрольной работы позволяет лишь в общих чертах охарактеризовать технико-экономические показатели этих двух сторон производства электроэнергии. Также к технико-экономическим показателям производства энергии следует отнести финансовое состояние энергетической отрасли России и тарифы реализации энергии.
В
В
В последние годы доля АЭС в производстве электроэнергии в России постоянно возрастает: если в
Одной из основных проблем российских энергетических компаний остаются неплатежи за потребленную электроэнергию. Объем задолженности потребителей по состоянию на 1 января
Предприятиям РАО "ЕЭС России" в
Несвоевременная и неполная оплата энергии потребителями приводит к образованию дефицита денежных средств у предприятий, что ведет к снижению рентабельности производства и не позволяет энергокомпаниям вовремя осуществлять текущие расчеты, в том числе и по заработной плате. Из-за тяжелого финансового состояния некоторые региональные энергосистем в
3. Перспективы развития получения энергии и ее использования
Перспективы развития получения энергии и ее использования в России определяются Концепцией энергетической политики России. Вот ее основные положения.
Разработки коллективов отраслевых и академических институтов легли в основу Концепции энергетической политики России в новых экономических условиях. Концепция была представлена на рассмотрение в Правительство России рядом организаций - Минтопэнерго, Минэкономики, Миннауки России и Российской академией наук. Правительство Российской Федерации одобрило основные положения концепции на заседании правительства от 10.10.2002 и после доработки проект документа был передан в Верховный Совет России.
Для реализации энергетической политики России в рамках комплексной энергетической программы было предложено несколько конкретных федеральных, межотраслевых и научно-технических программ. Среди основных программ предложены следующие:
Национальная программа энергосбережения. Результатом осуществления этой программы должна явиться ежегодная экономия в 50-70 млн. тонн условного топлива к 2010 году. В подпрограмме предлагается несколько принципиально новых мер экономии первичных энергоресурсов, но и по замещению дефицитных видов энергоносителей на более дешевые и доступные. Предлагается, например, модернизировать нефтеперабатывающие заводы, улучшить переработку природного газа. Также здесь предлагается полностью использовать попутный газ, который в настоящее время попросту сжигается в факелах. Предполагается, что эти меры дадут эффект, соизмеримый с ежегодными размерами рентных платежей отраслей ТЭК.
Национальная программа повышения качества энергоснабжения. Здесь предусмотрено повышение потребление энергии в бытовом секторе, газификация целых регионов, средних и малых населенных пунктов в сельской местности.
Национальная программа по защите окружающей среды от вредных воздействий энергетики. Целью программы является снижение в несколько раз выбросов газов в атмосферу, прекращение сброса вредных веществ в водоемы. Полностью отвергается здесь и идея равнинных ГЭС.
Национальная программа поддержки обеспечивающих ТЭК отраслей. Здесь предусматривается развитие энергостроения, предусмотренна подпрограмма по улучшению подготовки специалистов.
Газоэнергетическая программа "Ямал". Программа предусматривает развитие газовой промышленности, рост производства конденсата и углубление нефтепереработки, реконструкцию электроэнергетики и системы теплоснабжения.
Программа освоения восточно-сибирской нефтегазовой провинции. Предполагается создать новый нефтегазодобывающий регион с годовой добычей 60-100 млн. тонн нефти, 20-50 млрд. м3 газа, мощную нефте- и газотерерабатывающую промышленность. Развитие восточно-сибирской нефтегазовой провинции позволит России выйти на азиатско-тихокеанский рынок энергоносителей с экспортом 10-20 млн. тонн нефти и 15-20 млрд. м3 природного газа в Китай, Корею, Японию.
Программа повышения безопасности и развития ядерной энгетики. Предусмотрено использование компонентов ядерного оружия в электроэнергетике, создать более безопасные реакторы для АЭС.
Программа создания Канско-Ачинского угольно-энергетичекого комплекса, ориентированного на экологически приемлемое и экономически эффективное использование бурого угля для производства электроэнергии в огромном регионе России: от Урала и Поволжья на западе до Приморья на востоке.
Программа альтернативного моторного топлива. Предусмотрен крупномасштабный перевод транспорта на сжиженный газ.
Программа использования нетрадиционных возобновляемых источников энергии. При вводе мировых цен на энергоносители независимое энергоснабжение коттеджей, ферм и даже отдельностоящих городских домов становится экономически выгодным. Планируется, что рост использования нетрадиционных возобновляемых видов энергоресурсов для местного энергоснабжения к 2003 году достигнет 10-15 млн. тонн условного топлива.
Научно-техническая программа "Экологически чистая энергетика" на период 2002-
Опишем вкратце современное состояние энергетической отрасли России, и перейдем к описанию перспектив ее развития.
Электроэнергетическая отрасль России занимает 4 место в мире по установленной мощности после США, Китая и Японии и является одной из базовых отраслей экономики страны. На сегодняшний день доля электроэнергетики в ВВП России составляет 10-11%, что говорит о высокой электроемкости промышленности. С
В настоящее время в России функционируют более 700 тепловых и гидроэлектростанций и 9 атомных электростанций. Общая установленная мощность российских электростанций на 1 января
Основными проблемами энергетического комплекса России являются:
- снижение запасов углеводородного сырья, являющегося основным видом топлива для тепловых электростанций;
- снижение рентабельности АО-энерго вследствие низких тарифов на электроэнергию, не способных компенсировать затраты предприятий на ее производство, и сохраняющихся неплатежей со стороны потребителей;
- низкая инвестиционная активность предприятий электроэнергетики, обусловленная отсутствием средств на ввод новых мощностей.
В
Согласно Энергетической стратегии России на период до
Рис. 3. Динамика производства электроэнергии в России, млрд кВтч
В следующей таблице приведены цифры, характеризующие объемы производства энергии в России за последние несколько лет[1].
Таблица 1.
Производство электрической и тепловой энергии в России
Наименование показателя | 1996 | 2000 | 2001 | 2002 | 2003 | 2004 |
Производство электроэнергии в целом по отрасли, млрд кВтч | 847,0 | 834,0 | 826,0 | 845,4 | 876,0 | 888 |
В т.ч. АЭС | 108.8 | 108.3 | 103.5 | 122,0 | 131,0 | 137 |
ГЭС | 174,0 | 171,0 | 158,4 | 160,9 | 165,0 | 175 |
ТЭС | 564,8 | 554,7 | 564,1 | 562,6 | 580,0 | 576 |
Производство теплоэнергии в целом по отрасли, млн Гкал | 1260 | 1187 | 1141 | 1129 | 1169 | 1179 |
Также можно проиллюстрировать современную структуру энергетической отрасли страны.
Таблица 2.
Структура производства электроэнергии в России
Электростанции | Мощность, млн кВт | 2000 | 2001 | 2002 | 2003 | 2004 |
Установленная мощность электростанций | 213,9 | 100,0 | 100,0 | 100,0 | 100,0 | 100 |
Тепловые | 148,5 | 68,1 | 68,2 | 66,5 | 66,3 | 64,9 |
Гидроэлектростанции | 44,2 | 21,5 | 19,2 | 19,1 | 18,8 | 19,7 |
Атомные | 21,2 | 10,4 | 12,6 | 14,4 | 14,9 | 15,4 |
Для наглядности проиллюстрируем данные этой таблицы графически (рис. 4).
Рис. 4. Структура энергетической отрасли России в 2004 году
Большинство предприятий отрасли нуждается в модернизации и замене части производственных мощностей, для чего требуются значительные средства. За последнее десятилетие объем инвестиций в электроэнергетике снизился в 5 раз со 120 млрд руб. до 30 млрд руб. в сопоставимых ценах. Если в 70-е годы прошлого века ежегодный ввод генерирующих мощностей составлял 70 млн кВтч, в 80-е он сократился до 55 млн кВтч, а в 90–е – до 16 млн кВтч. Однако в
В
В связи с этим РАО «ЕЭС России» была разработана инвестиционная программа, предусматривающая строительство новых энергетических мощностей в ближайшие годы.
Крупнейшими вводами генерирующих мощностей в
В
В электросетевом хозяйстве в
С целью привлечения внешнего финансирования в объекты генерации, а также снижения инвестиционной нагрузки на абонентную плату РАО "ЕЭС России" реализует программу "5000 МВт", которая предполагает ввод 5414 МВт мощностей и привлечение более 2 млрд долл. Срок реализации программы - 2-3 года. Программой инвестиций
В
Также РАО "ЕЭС России" в
До
Все вышеозначенные мероприятия позволяют сделать следующий прогноз объемов производства и потребления энергии в России.
Таблица 3.
Прогноз производства и потребления электроэнергии до
Показатели | 2003 | 2005 | 2010 | 2015 | 2020 |
Производство электроэнергии, млрд кВтч | 876 | 970-1020 | 1055-1180 | 1135-1370 | 1240-1620 |
Внутреннее потребление электроэнергии, млрд кВтч | 864 | 895-948 | 975-1079 | 1062-1253 | 1156-1509 |
Электроемкость ВВП, кВтч/долл. | 1,37 | 1,32-1,21 | 1,22-1,10 | 1,12-0,99 | 1,04-0,91 |
Теплоемкость ВВП, Гкал/долл. | 2,37 | 2,2-1,95 | 1,9-1,63 | 1,7-1,33 | 1,5-1,07 |
Для завершения строительства гидроэлектростанций до
В целом можно спрогнозировать результаты реализации Концепции развития энергетики России следующим образом.
Таблица 4.
Результаты реализации Стратегии развития энергетики России
Показатели развития | В | В |
Рост установленной мощности АЭС*, раз | 1,4 | 2,4 |
Рост выработки электроэнергии*, раз | 1,6 | 2,6 |
Рост доли выработки электроэнергии в Европейской части России*, раз | 1,4 | 1,9 |
Прирост замещения газа за счет АЭС, млрд м3/год* | 25 | 63 |
Доля АЭС в приросте энерговыработки*, % | 43 | 56 |
Расчетный тариф АЭС по отношению к ТЭС | 0,6 | - |
Величина снижения тарифа в электроэнергетике за счет АЭС, цент/кВтч | 0,25 | - |
* в сравнении с
Основными направлениями инвестиционной деятельности в энергетике до
1. обеспечение безопасности действующих АЭС;
2. повышение эффективности эксплуатации действующих АЭС - эквивалентно приросту 3 ГВт;
3. модернизация и продление сроков эксплуатации энергоблоков I поколения - сохранение 6 ГВт;
4. рост установленной мощности АЭС до
После
1. воспроизводство выбивающих мощностей АЭС I поколения - замещение 6 ГВт;
2. рост мощностей по новым ядерным технологиям - прирост 22 ГВт (ВВЭР-1500, АТЭЦ, БН-800, БРЕСТ).
Заключение
В настоящей контрольной работе речь шла об оборудовании и технологических процессах производства энергии, о современных технико-экономических показателях и перспективах развития производства в энергетической отрасти России.
В заключении скажем следующие несколько слов.
Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.
На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.
Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получить в реакторах-размножителях плутоний. Практически неисчерпаемы запасы термоядерного топлива - водорода, однако управляемые термоядерные реакции пока не освоены, и неизвестно когда они будут использованы для промышленного получения энергии в чистом виде, т.е. без участия в этом процессе реакторов деления.
В связи с указанными проблемами становится все более необходимым использование нетрадиционных энергоресурсов, в первую очередь солнечной, ветровой, геотермальной энергии, наряду с внедрением энергосберегающих технологий.
Список литературы
1. Васильева И.Н. Экономические основы технологического развития: учебное пособие. – М.: Банки и биржи, 1995.
2. Городецкий А., Павленко Ю. Реформирование естественных монополий. // Вопросы экономики. – 2005. - №1.
3. Городецкий А., Френкель А. Демонополизация и развитие конкуренции в российской экономике // Вопросы Экономики. – 2005, №5. – С. 48-57.
4. Козлов М.С. Экономика природопользования. – М.: ЮНИТИ-ДАНА, 2003.
5. Кривощеков В.Ю. Проблемы энергоносителей. – М.: ПРИОР, 2003.
6. Семенов К.Р. Устройство и функционирование электростанций. – М.: Дело, 2003.
7. Янецкий О.Д. Технология энергетической отрасли. – М.: Юнити, 2002.
[1] Городецкий А., Павленко Ю. Реформирование естественных монополий. // Вопросы экономики. – 2005. - №1. – с. 11.