Реферат Радиопротекторы 2
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Радиопротекторы
ПЛАН
1.
Радиопротекторы — понятие стр. 2
2. Основы патогенеза радиационного поражения стр. 3
3. Классификация и характеристика радиозащитных веществ стр. 7
4. Механизм радиозащитного действия стр. 8
5. Практическое применение радиопротекторов стр. 10
1.
РАДИОПРОТЕКТОРЫ -- ПОНЯТИЕ
Широкие масштабы мирного использования атомной энергии в ряде областей — энергетике, медицине, сельском хозяйстве, промышленности, исследовании космоса, а также сохраняющаяся угроза военного конфликта с применением ядерного оружия представляют потенциальную опасность для нынешнего и будущих поколений. Число лиц, контактирующих с источниками ионизирующих излучений, будет постоянно возрастать.
Уже более 30 лет ученым известны радиозащитные свойства некоторых химических веществ. Их изучение проводится в интересах защиты здоровых тканей у тех больных, которые в связи с онкологическими заболеваниями подвергаются интенсивной радиотерапии. Очевидна и необходимость защиты человека от воздействия ионизирующих излучений при ликвидации последствий аварий на атомных установках и в случае военного конфликта, с применением ядерного оружия. Дальнейшее проникновение человека в космос также не мыслится без разработки соответствующих радиозащитных мероприятий.
Радиационная защита в широком смысле включает любые действия, направленные на уменьшение риска радиационного поражения. К ним в первую очередь относятся все профилактические мероприятия в области радиационной безопасности лиц, работающих с ионизирующими излучениями. В 1977 г. изданы Рекомендации (№ 26) Международной комиссии по радиологической защите. В 1982 г. Международное агентство по атомной энергии в Вене опубликовало Основные правила безопасности при радиационной защите.
При контакте человека с ионизирующими излучениями высокой мощности практические меры защиты могут представлять собой:
а) физическое (механическое) экранирование части или всего тела во время облучения;
б) фракционирование облучения с помощью рационального чередования работы в зоне радиоактивного загрязнения и вне ее;
в) назначение перед облучением радиозащитных средств (радиозащита в узком смысле слова).
Радиопротекторы могут быть подразделены на группы с учетом их химической природы, продолжительности и вероятного механизма защитного действия или фармакологического эффекта. Для понимания действия радиопротекторов и их роли в современной радиационной защите мы сочли необходимым включить в книгу вступительную главу о механизмах радиационного поражения живого организма. Исчерпывающего представления о них пока не существует, поэтому не могут быть раскрыты с окончательной ясностью и механизмы защитного действия радиопротекторов. В то же время данные о процессе послелучевого повреждения, с одной стороны, и расширение информации о действии радиопротекторов на различных уровнях живого организма — с другой, взаимно обогащают наше понимание как пострадиационного процесса, так и радиозащитного эффекта.
Наряду с радиопротекторами интерес радиобиологов вызывают вещества с противоположным действием — радиосенсибилизаторы. Одной из главных целей здесь является изыскание химических соединений, повышающих чувствительность раковых клеток к воздействию ионизирующей радиации. Таким образом, проблемы защиты здоровых тканей с помощью радиопротекторов и повышение чувствительности раковых клеток к облучению путем использования радиосенсибилизаторов оказываются связанными общностью задач. Радиопротекторы и радиосенсибилизаторы вместе представляют так называемые радиомодифицирующие средства. Их комбинированное использование открывает новые возможности для радиотерапии злокачественных опухолей.
Радиозащитное действие впервые было описано в 1949 году исследователем Паттом. Цистеин, введенный мышам перед летальным рентгеновским облучением, предотвращал гибель большого числа животных. Полученные данные, подтверждающие реальную возможность уменьшения влияния ионизирующих излучений на биологические процессы у млекопитающих, положили начало широкому развитию исследовательских программ в целях поиска средств с выраженным защитным действием, способных обеспечить защиту человеческого организма.
К настоящему времени проверены радиозащитные свойства тысяч химических соединений. В 1961—1963 гг. ученые Huber и Spode систематически публиковали отчеты об испытаниях химических средств на радиозащитную активность. Клиническое применение получили только некоторые из них. К наиболее эффективным средствам относятся цистеамин (МЭА), цистамин, аминоэтил-изотиуроний (АЭТ), гаммафос (WR-2721), серотонин и мексамин. Радиозащитное действие цистеамина (меркаптоэтиламин, или МЭА) и цистамина (дисульфид МЭА) впервые описали Bacq и соавт. (1951), АЭТ—Doherty и Burnet (1955), серотонина—Gray и соавт. (1952), мексамина (5-метокситриптамин, 5-МОТ)— Красных и соавт. (1962). Гаммафос, в англоязычной литературе обозначаемый WR-2721, в химическом отношении представляет собой 8-2-(3-аминопропиламино) тиофосфорноэтиловый эфир. Он был синтезирован Piper и соавт. (1969), а его радиозащитный эффект установлен Yuhas и Storer (1969).
2. ОСНОВЫ ПАТОГЕНЕЗА РАДИАЦИОННОГО ПОРАЖЕНИЯ
РАЗВИТИЕ РАДИАЦИОННОГО ПОРАЖЕНИЯ
Вслед за поглощением энергии ионизирующего излучения, сопровождаемым физическими изменениями клеток, происходят процессы химического и биологического характера, которые закономерно приводят прежде всего к повреждению критических биомолекул в клетке. Этот процесс протекает менее 10-6 с, тогда как окончательное проявление биологического поражения может растягиваться ца часы, дни и даже десятилетия.
Для жизненной функции клеток решающее значение имеют белки и нуклеиновые кислоты. Белки — главный органический компонент цитоплазмы. Некоторые белки относятся к структурным элементам клетки, другие — к имеющим важное значение ферментам. Радиационное повреждение белков состоит в уменьшении их молекулярной массы в результате фрагментации полипептидных цепочек, в изменении растворимости, нарушении вторичной и третичной структуры, агрегировании и т. п. Биохимическим критерием радиационного повреждения ферментов является утрата ими способности осуществлять специфические реакции. При интерпретации пострадиационных изменений ферментативной активности in vitro наряду с радиационными нарушениями самого фермента следует учитывать и другие повреждения клетки, прежде всего мембран и органелл. Чтобы вызвать явные изменения ферментативной активности в условиях in vitro, требуются значительно большие дозы, чем in vivo.
Наиболее существенные повреждения клетки возникают в ядре, основной молекулой которого является ДНК. Ядро у млекопитающих проходит четыре фазы деления; из них наиболее чувствителен к облучению митоз, точнее его первая стадия — поздняя профаза. Клетки, которые в момент облучения оказываются в этой стадии, не могут вступить в митоз, что проявляется первичным снижением митотической активности спустя 2 ч после облучения. Клетки, облученные в более поздних стадиях митоза, или завершают цикл деления без каких-либо нарушений, или в результате инверсии обменных процессов возвращаются в профазу. Речь идет о радиационной синхронизации митозов, когда клетки с запозданием снова начинают делиться и производят чисто внешнюю компенсацию первоначального снижения митотической активности. Нарушения ДНК могут вести к атипическому течению клеточного деления и появлению хромосомных аберраций. Неделящиеся клетки пребывают в длительной интерфазе, оставаясь по большей части вне влияния тех доз излучения, которые вызывают репродуктивный отказ делящихся клеток.
С нарушением клеточной мембраны связаны радиационные изменения поведенческих функций ЦНС. Радиационное повреждение эндоплазматического ретикулума приводит к уменьшению синтеза белков. Поврежденные лизосомы высвобождают катаболические ферменты, способные вызвать изменения нуклеиновых кислот, белков и мукополисахаридов. Нарушение структуры и функции митохондрий снижает уровень окислительного фосфорилирования.
Перечисленные изменения субклеточных структур только намечены, исследования в данной области ведутся.
Стволовые клетки костного мозга, зародышевого эпителия тонкого кишечника, кожи и семенных канальцев характеризуются высокой пролиферативной активностью. Еще в 1906 г. J. Bergonie и L. Tribondeau сформулировали основной радиобиологический закон, согласно которому ткани с малодифференцированными и активно делящимися клетками относятся к радиочувствительным, а ткани с дифференцированными и слабо или вообще не делящимися клетками — к радиорезистентным. По этой классификации кроветворные клетки костного мозга, зародышевые клетки семенников, кишечный и кожный эпителий являются радиочувствительными, а мозг, мышцы, печень, почки, кости, хрящи и связки — радиорезистентными. Исключение составляют небольшие лимфоциты, которые (хотя они дифференцированы и не делятся) обладают высокой чувствительностью к ионизирующему излучению. Причиной, вероятно, является их выраженная способность к функциональным изменениям. При рассмотрении радиационного поражения радиочувствительных тканей следует учитывать, что и чувствительные клетки, находясь в момент облучения в разных стадиях клеточного цикла, обладают различной радиочувствительностью. Очень большие дозы вызывают гибель клеток независимо от фазы клеточного цикла. При меньших дозах цитолиз не происходит, но репродуктивная способность клеток снижается в зависимости от полученной ими дозы. Часть клеток остается неповрежденной либо может быть полностью восстановленной от повреждений. На субклеточном уровне репарация радиационного поражения происходит, как правило, в течение нескольких минут, на клеточном уровне — нескольких часов, на уровне ткани — дней и недель, а в целом организме млекопитающего — в течение месяцев. Обратимая компонента составляет примерно 90% начального радиационного поражения. Считается, что репарация 50% обратимого поражения у человека занимает примерно 30 (25-45) дней. Остальная часть обратимого поражения полностью репарируется через 200 ± 60 дней после окончания однократного сублетального облучения. Чем больше относительная биологическая эффективность (ОБЭ) излучений, тем меньше у организма возможности восстановления. Необратимая компонента нейтронного облучения составляет более 10% начального поражения.
Пострадиационная убыль клеток вследствие их гибели в интерфазе, а также утрата репродуктивной способности части клеток особенно серьезны для тех непрерывно обновляющихся клеточных популяций, зрелые формы которых имеют физиологически ограниченное время жизни, после чего они отмирают. Чем короче цикл созревания и средний срок жизни зрелых клеток какой-либо системы, тем выраженное и чаще бывают нарушения этой системы в период после облучения. Те важные органы и системы, выход из строя которых приводит к гибели организма, называются критическими. Так, к основному тканевому поражению в диапазоне доз (на все тело) 1-10 Гр относится нарушение кроветворной функции, получившее название костномозгового синдрома. Доза, при которой выживает 37% стволовых кроветворных клеток (Д0) у мышей, составляет 1 Гр. При костномозговом синдроме возникают серьезные нарушения репродуктивной способности гемопоэза. Эти нарушения с течением времени после облучения определяют изменения в периферической крови в зависимости от среднего времени жизни форменных элементов крови и дозы излучения.
Для убыли форменных элементов в периферической крови характерна определенная последовательность во времени, сопровождаемая следующими функциональными изменениями.
1. Сокращение числа лимфоцитов отмечается сразу же после облучения и достигает максимума на 1–3-й сутки. Оно проявляется ослаблением или подавлением как клеточных, так и гуморальных иммунологических реакций.
2. Уменьшение количества нейтрофильных гранулоцитов (после временного 1–2-суточного лейкоцитоза, обусловленного выбросом нейтрофилов из депо организма) достигает нулевой отметки на 4-е и 5-е сутки в случае летального облучения. При меньших дозах количество нейтрофилов постепенно сокращается, его минимум приходится на 2–4-ю неделю после экспозиции. Гранулоцитопения понижает сопротивляемость организма к инфекциям.
3. Уменьшение числа тромбоцитов происходит параллельно с сокращением количества нейтрофилов или на несколько суток позже. Дефицит тромбоцитов вместе с радиационным поражением эндотелия сосудов проявляется геморрагическим синдромом.
4. Содержание эритроцитов ежесуточно снижается примерно на 0,8%, что усугубляется кровотечениями и явлениями гемолиза. За первый месяц после облучения потеря эритроцитов может достигнуть 25% от исходного уровня. Анемия замедляет процессы репарации, а дефицит кислорода в костном мозге нарушает его способность восстанавливать гемопоэз.
Когда речь идет о чувствительности организма к ионизирующему излучению, рассматривается, как правило, диапазон доз, вызывающих гибель при проявлениях костномозгового синдрома. Пострадиационные изменения в других (не критических) тканях могут оказать значительное воздействие на важные функции организма (зрение, репродуктивные функции), в то же время не оказывая решающего влияния на жизненный исход. В связи с нарушением нервно-гуморальной регуляции в пострадиационный патогенетический механизм вовлекаются все органы и ткани. Радиочувствительность же всего организма у млекопитающих приравнивается к радиочувствительности кроветворных клеток, так как их аплазия, возникающая после общего облучения в минимальных абсолютно смертельных дозах, приводит к гибели организма.
ФАКТОРЫ, ВЛИЯЮЩИЕ НА РАДИАЦИОННОЕ ПОРАЖЕНИЕ
На конечный биологический эффект влияют различные факторы, которые в основном делятся на физические, химические и биологические.
Среди физических факторов на первом месте стоит вид излучения, характеризуемый относительной биологической эффективностью. Различия биологического действия обусловлены линейным переносом энергии данного вида ионизирующего излучения, связанным с плотностью ионизации и определяющим способность излучения проникать в слои поглощающего его вещества. ОБЭ представляет величину отношения дозы стандартного излучения (изотоп 60Со или рентгеновское излучение 220 кВ) к дозе исследуемого излучения, дающей равный биологический эффект. Так как для сравнения можно выбрать множество биологических эффектов, для испытуемого излучения существует несколько величин ОБЭ. Если показателем пострадиационного действия берется катарактогенный эффект, величина ОБЭ для нейтронов деления лежит в диапазоне 5—10 в зависимости от вида облученных животных, тогда как по важному критерию — развитию острой лучевой болезни — ОБЭ нейтронов деления равняется примерно 1.
Следующим существенным физическим фактором является доза ионизирующего излучения, которая в Международной системе единиц (СИ) выражается в грэях (Гр). 1 Гр=100 рад, 1 рад=0,975 Р. От величины поглощенной дозы зависят развитие синдромов радиационного поражения и продолжительность жизни после облучения.
При анализе отношения между дозой, получаемой организмом млекопитающего, и определенным биологическим эффектом учитывается вероятность его возникновения. Если эффект появляется в ответ на облучение независимо от величины поглощенной дозы, он относится к разряду стохастических. За стохастические принимаются, например, наследственные эффекты излучения. В отличие от них нестохастические эффекты наблюдаются по достижении определенной пороговой дозы излучения. В качестве примера можно указать помутнение хрусталика, бесплодие и др.
В Рекомендациях Международной комиссии по радиологической защите (№ 26, 1977 г.) стохастические и нестохастические эффекты определены следующим образом: “Стохастическими называют те беспороговые эффекты, для которых вероятность их возникновения (а не столько их тяжесть) рассматривают как функцию дозы. Нестохастическими называют эффекты, при которых тяжесть поражения изменяется в зависимости от дозы и, следовательно, для появления которых может существовать порог”.
Химические радиозащитные вещества в зависимости от их эффективности снижают биологическое воздействие излучений в лучшем случае в 3 раза. Предотвратить возникновение стохастических эффектов они не могут.
К существенным химическим факторам, модифицирующим действие ионизирующего излучения, относится концентрация кислорода в тканях организма у млекопитающих. Его наличие в тканях, особенно во время гамма- или рентгеновского облучения, усиливает биологическое воздействие радиации. Механизм кислородного эффекта объясняется усилением главным образом непрямого действия излучения. Присутствие же кислорода в облученной ткани по окончании экспозиции дает противоположный эффект.
Для характеристики облучения, наряду с величиной общей дозы, важное значение имеет продолжительность экспозиции. Доза ионизирующей радиации независимо от времени ее действия вызывает в облученном организме одно и то же число ионизаций. Различие, однако, состоит в объеме репарации радиационного поражения. Следовательно, при облучении меньшей мощности наблюдается меньшее биологическое поражение. Мощность поглощенной дозы выражается в грэях за единицу времени, например Гр/мин, мГр/ч и т. д.
Изменение радиочувствительности тканей организма имеет большое практическое значение. Данная книга посвящена радиопротекторам, а также веществам, снижающим радиочувствительность организма, однако это не означает, что мы недооцениваем исследования радиосенсибилизаторов; их изучение ведется прежде всего в интересах радиотерапии.
3.
КЛАССИФИКАЦИЯ И ХАРАКТЕРИСТИКА РАДИОЗАЩИТНЫХ ВЕЩЕСТВ
Радиозащитный эффект обнаружен у целого ряда веществ различной химической структуры. Поскольку эти разнородные соединения обладают самыми различными, подчас противоположными свойствами, их трудно разделить по фармакологическому действию. Для проявления радиозащитного эффекта в организме млекопитающего в большинстве случаев достаточно однократного введения радиопротекторов. Однако имеются и такие вещества, которые повышают радиорезистентность лишь после повторного введения. Различаются радиопротекторы и по эффективности создаваемой ими защиты. Существует, таким образом, множество критериев, по которым их можно классифицировать.
С практической точки зрения радиопротекторы целесообразно разделить по длительности их действия, выделив вещества кратковременного и длительного действия.
1. Радиопротекторы или комбинация радиопротекторов, обладающих кратковременным действием (в пределах нескольких минут или часов), предназначены для однократной защиты от острого внешнего облучения. Такие вещества или их комбинации можно вводить тем же особям и повторно. В качестве средств индивидуальной защиты эти вещества могут найти применение перед предполагаемым взрывом ядерного оружия, вхождением в зону радиоактивного загрязнения или перед каждым радиотерапевтическим местным облучением. В космическом пространстве они могут быть использованы для защиты космонавтов от облучения, вызванного солнечными вспышками.
2. Радиозащитные вещества длительного воздействия предназначены для более продолжительного повышения радиорезистентности организма. Для получения защитного эффекта, как правило, необходимо увеличение интервала после введения таких веществ примерно до 24 ч. Иногда требуется повторное введение. Практическое применение этих протекторов возможно у профессионалов, работающих с ионизирующим излучением, у космонавтов при долговременных космических полетах, а также при длительной радиотерапии.
Поскольку протекторы кратковременного защитного действия чаще всего относятся к веществам химической природы, говорят о химической радиозащите.
С другой стороны, длительное защитное действие возникает после введения веществ в основном биологического происхождения; это обозначают как биологическую радиозащиту.
Требования к радиопротекторам зависят от места применения препаратов; в условиях больницы способ введения не имеет особого значения. В большинстве случаев требования должны отвечать задачам использования радиопротекторов в качестве индивидуальных средств защиты. Согласно Саксонову и соавт. (1976) эти требования должны быть как минимум следующими:
— препарат должен быть достаточно эффективным и не вызывать выраженных побочных реакций;
— действовать быстро (в пределах первых 30 мин) и сравнительно продолжительно (не менее 2 ч);
— должен быть нетоксичным с терапевтическим коэффициентом не менее 3;
— не должен оказывать даже кратковременного отрицательного влияния на трудоспособность человека или ослаблять приобретенные им навыки;
— иметь удобную лекарственную форму: для перорального введения или инъекции шприц-тюбиком объемом не более 2 мл;
— не должен оказывать вредного воздействия на организм при повторных приемах или обладать кумулятивными свойствами;
— не должен снижать резистентность организма к другим неблагоприятным факторам внешней среды;
— препарат должен быть устойчивым при хранении, сохранять свои защитные и фармакологические свойства не менее 3 лет.
Менее строгие требования предъявляются к радиопротекторам, предназначенным для использования в радиотерапии. Они усложняются, однако, важным условием — необходимостью дифференцированного защитного действия. Следует обеспечить высокий уровень защиты здоровых тканей и минимальный — тканей опухоли. Такое разграничение позволяет усилить действие местно примененной терапевтической дозы облучения на опухолевый очаг без серьезного повреждения окружающих его здоровых тканей.
РАДИОЗАЩИТНЫЕ ВЕЩЕСТВА КРАТКОВРЕМЕННОГО ДЕЙСТВИЯ
К ним относятся разные типы химических соединений. Их классификация по химической структуре и предполагаемому механизму действия впервые дана в монографии Bacq (1965), а позже — в работе Суворова и Шашкова (1975). В 1979 г. Sweeney опубликовал обзор химических радиопротекторов, изученных в рамках обширной исследовательской программы вооруженных сил США. В радиобиологических лабораториях Армейского исследовательского института им. Уолтера Рида в Вашингтоне, а также в целом ряде американских университетов в 1959—1965 гг. испытано около 4400 различных химических веществ. Помимо этого, в радиационной лаборатории ВВС США в Чикаго было проверено радиозащитное действие еще 1500 веществ.
В результате проведенного анализа к клиническому применению была рекомендована небольшая группа препаратов, прежде всего вещество, обозначенное WR-2721. Речь шла о производном тиофосфорной кислоты (см. далее), названном также гаммафосом. Оно относится к большой группе серосодержащих радиопротекторов.
Современные наиболее эффективные радиопротекторы делятся на две основные группы:
а) серосодержащие радиозащитные вещества;
б) производные индолилалкиламинов.
4. МЕХАНИЗМ РАДИОЗАЩИТНОГО ДЕЙСТВИЯ
Несмотря на обширные исследования, радиобиологи не достигли единого, полного и общепризнанного представления о механизме действия химических радиопротекторов, что отчасти является следствием ограниченности современных познаний о развитии радиационного поражения при поглощении энергии ионизирующего излучения живыми организмами.
Представления о механизме защитного действия сосредоточены вокруг двух основных групп.
1. Радиохимические механизмы
По этим представлениям, радиозащитные вещества либо их метаболиты непосредственно вмешиваются в первичные пострадиационные радиохимические реакции. К ним относятся:
— химическая модификация биологически чувствительных молекул-мишеней созданием смешанных дисульфидов между SH-группой аминокислоты белковой молекулы и SH-группой протектора;
— передача водорода протектора пораженной молекуле-мишени;
— инактивация окислительных радикалов, возникающих преимущественно при взаимодействии ионизирующего излучения с водой пораженной ткани.
2. Биохимико-физиологические механизмы
Эти представления объясняют действие радиозащитных веществ их влиянием на клеточный и тканевый метаболизм. Не участвуя в самой защите, они косвенно способствуют созданию состояния повышенной радиорезистентности, мобилизуя собственные резервы организма. К этой группе можно отнести:
— высвобождение собственных эндогенных, способствующих защите веществ, таких как эндогенные SH-вещества, в особенности восстановленный глутатион или эндогенные амины (например, гистамин);
— подавление ферментативных процессов при окислительном фосфорилировании, синтезе нуклеиновых кислот, белков и др., ведущих к снижению общего потребления кислорода, а в пролиферативных тканях—к отсрочке или торможению деления клеток. Этот эффект объясняется взаимодействием протектора с группами ферментов в митохондриях и эндоплазматическом ретикулуме или с белками клеточных мембран. Он носит также название “биохимический шок”;
— влияние на центральную нервную систему, систему гипофиз — надпочечники, на сердечно-сосудистую систему с созданием общей или избирательной тканевой гипоксии. Сама по себе гипоксия снижает образование пострадиационных окислительных радикалов и радиотоксинов, восстанавливает тканевый метаболизм. Затем она может привести к высвобождению эндогенных SH-веществ.
Современный исследователи склоняются в пользу биохимических механизмов радиозащиты. Особенно обращает внимание фармакологический аспект взаимодействия радиопротекторов с рецепторами на различных уровнях организма. Возможности защитного действия вещества ограничены количеством воспринимающих рецепторов. Радиозащитное действие серосодержащих веществ, в том числе цистамина и гаммафоса, вероятнее всего, реализуется благодаря их взаимодействию с рецепторами радиочувствительных клеток.
Производные индолилалкиламинов — мексамин и серотонин, вызывающие в тканях организма поствазоконстрикторную гипоксию, связаны с рецепторами сердечно-сосудистой системы. Однако известны результаты опытов in vitro и in vivo, которые вызывают сомнения в гипоксической теории защитного действия мексамина и серотонина, в отдельных случаях дополняя ее другими компонентами защитного действия. По данным Свердлова и соавторов (1971), мексамин не утрачивал защитного действия у мышей в условиях тканевой гипероксии. Клеточный компонент защитного действия мексамина обнаружили Богатырев и соавторы (1974) in vitro на облученных клетках костного мозга, полученных от мышей, которым за 15 мин до этого вводили защитную дозу мексамина. Не существует точной корреляции между тканевой гипоксией, вызванной мексамином, и его защитным действием. Мексамин вызывает гипоксию в селезенке продолжительностью несколько часов, хотя в более позднее время после введения он уже не обладает радиозащитным действием.
Радиозащитный эффект мексамина нельзя объяснять только его несомненным и значительным гипоксическим действием. Следует согласиться с представлением, что мексамин реализует свое защитное действие и непосредственным влиянием на обменные процессы в клетках.
Проблема понимания механизма радиозащитного действия химических веществ тесно связана с выяснением закономерности развития пострадиационных, изменений. Любая существенная информация в этих областях основных радиобиологических исследований уточняет наши представления о механизмах как радиационного поражения, так и радиозащиты.
5. ПРИМЕНЕНИЕ РАДИОПРОТЕКТОРОВ У ЧЕЛОВЕКА
Предостерегающий опыт знакомства человечества с поражающим действием атомных взрывов в Японии в конце второй мировой войны обязал радиобиологов всего мира постоянно изыскивать возможности снижения риска непосредственных и отдаленных последствий ионизирующего излучения. Большую лепту в радиационный риск вносят различные антропогенные загрязнения.
Современные радиозащитные вещества до сих пор далеко не соответствуют требованиям, которые к ним предъявляются. Их действие нельзя по понятным причинам испытывать при остром тотальном облучении людей.
Единственным путем обнаружения защитного эффекта у людей является введение исследуемого протектора в предполагаемой эффективной дозе перед локальным облучением. При этом следует учитывать, что в действительности локальное облучение не может быть оптимальным для оценки вещества, предназначенного для защиты человека преимущественно от тотального облучения. Таким способом ученому Владимирову и соавторам (1971) удалось установить радиозащитное действие цистамина дигидрохлорида, введенного онкологическим больным в дозе 0,8—1,2 г (перорально) за час до начала локального облучения грудной клетки в дозе 2,15 Гр. Действие оценивали по выходу аберрантных митозов в стадиях анафазы и телофазы в костном мозге грудины, взятом через 24 ч после облучения. Другим критерием защитного действия служит в локально облученном организме количественное исследование хромосомных аберраций в ядрах лимфоцитов периферической крови. Анализу подвергаются митозы в метафазе. В ряде сравнительных опытов Владимиров и Джаракян (1982) определили возможности этих и других методов по оценке радиозащитного действия преимущественно цистамина при тотальном и локальном облучении экспериментальных животных и человека. На основе обширного экспериментального и клинического материала был сделан вывод, что однократная пероральная доза цистамина дигидрохлорида (1,2 г) обеспечивает человеку защиту с ФУД, равным 1,35.
В России цистамин разрешен для клинического применения при радиотерапии с целью уменьшения нежелательных пострадиационных эффектов. Таблетка содержит 0,4 г действующего вещества. Цистамин вводится по 0,6 г один раз в сутки за час до облучения при количестве лейкоцитов не менее 5000 в 1 мкл крови, лимфоцитов—18—20% и общей дозе 40— 50 Гр (местно). При суммарных дозах 100—120 Гр и количестве лейкоцитов 4000 в 1 мкл рекомендуется пероральная доза (0,8 г в сутки) перед каждым следующим облучением. У чувствительных лиц после приема цистамина могут появиться признаки раздражения пищеварительного аппарата, которые обычно не служат препятствием для продолжения приема препарата. Острые заболевания желудочно-кишечного тракта, острая сердечно-сосудистая недостаточность и нарушения функций печени являются относительными противопоказаниями к приему цистамина.
Другим радиопротектором, применяемым у нас в стране, является гидрохлорид мексамина. Таблетка содержит 0,05 г препарата. Эта доза рекомендована для однократного перорального приема за 30—40 мин до каждого сеанса лучевой терапии. При хорошей переносимости доза может быть увеличена до 0,1 г. Исключение составляют признаки непереносимости, такие как тошнота, головокружение и рвота. Нежелательные эффекты устраняются или смягчаются введением кофеина. При продолжающейся непереносимости прием мексамина следует прекратить. Противопоказаниями к приему мексамина служат выраженный склероз сосудов сердца и мозга, сердечно-сосудистая недостаточность, бронхиальная астма, болезни почек с функциональными нарушениями и беременность. Цистамин и мексамин необходимо предохранять от света при хранении.
Использование химических радиопротекторов при радиотерапии не получило широкого распространения, поскольку, по мнению радиологов, нельзя различить защиту здоровых и опухолевых тканей. Защита опухолевых клеток от действия ионизирующего излучения, безусловно, нежелательна. Цистеамин или АЭТ явно обеспечивают защиту экспериментальных опухолей. Некоторое различие в защите нормальных и злокачественных тканей не зависит от использованного протектора, а обусловлено неодинаковым кровотоком. Здоровые ткани с хорошим кровенаполнением будут иметь, несомненно, более высокую концентрацию радиопротектора, нежели область опухоли со значительно ограниченным кровоснабжением.
В США клинические испытания гаммафоса начались в марте 1979 г. Испытания проводились параллельно с двумя целями. Прежде всего следовало определить однократную максимально переносимую дозу гаммафоса в клинических условиях. Затем предстояло подобрать схему повторной дозировки гаммафоса на протяжении нескольких недель. Гаммафос ввели 50 больным однократно в нарастающих дозах от 25 до 910 мг/м2, 15 больных получили его повторно. До однократной дозы 100 мг/м2 у больных не отмечалось никаких побочных эффектов. Гаммафос вводили путем медленного вливания в течение 20—50 мин, контролируя кровяное давление, пульс, ЭКГ и дыхание. Вливание заканчивали за 15—20 мин до начала облучения. Максимальная переносимая однократная внутривенная доза была определена в 750 мг/м2. Внутривенно дозу 170 мг/м2 можно повторять 4-кратно в течение недели. Однократное и повторное введение гаммафоса сопровождалось тошнотой и рвотой, понижением кровяного давления, сонливостью и аллергическими кожными реакциями. В другой группе из 53 больных было установлено, что гаммафос не влияет отрицательно на противоопухолевое действие алкилирующих средств, что в сочетании с результатами экспериментов побуждает к дальнейшему клиническому исследованию свойств гаммафоса.
При индивидуальной защите людей от действия ионизирующего излучения вследствие взрыва ядерного оружия внутривенное вливание не может рассматриваться в качестве способа применения радиопротектора. Наиболее адекватен пероральный способ введения. По данным сотрудников отделения медицинской химии Армейского исследовательского института им. Уолтера Рида в Вашингтоне, опубликованным в работе Harris и Phillips (1971), люди переносят пероральную дозу гаммафоса 140 мг/кг, что для человека со средней массой тела 70 кг составляет общую однократную дозу 9,8 г, которая могла бы приниматься после растворения в достаточном объеме питьевой воды.
Другую практическую возможность представляет собой внутримышечная инъекция радиопротектора. На основе межвидового сравнения распределения и концентрации гаммафоса в тканях при внутривенном введении Washburn и соавторы (1976) предположили, что доза 20 мг/кг может обеспечить защиту человека от тотального облучения с ФУД 1,5. Для человека с массой тела 70 кг однократная парентеральная доза составила бы 1,4 г гаммафоса. Такую дозу можно приготовить в приемлемом для введения объеме соответствующего растворителя.
Несмотря на все подающие надежды данные, свидетельствующие о хорошем защитном действии гаммафоса в эксперименте и клинике, даже этот препарат не обладает идеальными свойствами для использования в радиотерапии. По мнению очень многих ученых желательно иметь более эффективное и менее токсичное вещество. Национальный институт исследований рака в США субсидирует поиск новых химических радиопротекторов. Его проведение было поручено исследовательскому центру в Филадельфии (Fox Chase Cancer Center). Из 50 до сих пор испытанных веществ около 20 защищали мышей от костномозговой гибели при острой лучевой болезни. Однако ни одно из них по своим свойствам не превосходило гаммафос.
В Японии было испытано радиозащитное вещество 2-меркаптопропионилглицин, который уже с 1963 г. используется в клинике как средство детоксикации. Оно вводится людям в дозах 100 и 500 мг перорально или внутривенно. Каких-либо побочных эффектов не отмечается. В опытах на мышах оптимальная внутрибрюшинная защитная доза составляет 20 мг/кг. От летального действия тотального гамма-облучения она защищает с ФУД 1,4. Терапевтический индекс высок, поскольку внутрибрюшинная токсическая доза МПГ у мышей по ЛД50 составляет 1400 мг/кг.
При радиотерапии злокачественных опухолей в тазовой области с суточной дозой облучения 1,5 Гр (5-кратно в течение недели) до суммарной дозы 60 Гр или до общей дозы 40,5 Гр при послеоперационном облучении внутривенное введение МПГ больным в дозе 250 мг в 20% растворе глюкозы за 15—30 мин до каждого облучения оказывало благоприятное влияние на количество лейкоцитов в периферической крови и на выход хромосомных аберраций.
В случае, если бы удалось получить высокоэффективный радиопротектор, не обладающий побочными токсическими эффектами, его использование в ядерной войне было бы ограничено продолжительностью защитного действия, так как трудно с точностью во времени предсказать применение противником ядерного оружия. Существует, однако, случай обоснованного использования радиопротекторов в рамках самопомощи, а именно: перед вынужденным вxoждeниe в зону радиоактивного следа от ядерного взрыва. Здесь возможны и организационные меры, прежде всего рациональное чередование пребывания отдельных лиц в зоне и вне ее, чтобы ограничить суммарную дозу радиации.
Наряду с этим действенная защита людей создается механической (физической) защитой. К ней относится как общая защита в убежищах, подвалах зданий, самих домах, в складках местности и за природными преградами, так и частичная физическая защита преимущественно радиочувствительных тканей, кроветворного костного мозга и слизистой оболочки пищеварительного аппарата.
В чрезвычайных условиях необходимо помнить об использовании любой возможности защиты от действия ионизирующего излучения. Введение химических радиопротекторов представляет собой в настоящее время малоэффективную меру, которую, однако, можно предоставить большому количеству подверженных опасности людей.
В мирных условиях нельзя рекомендовать долговременное повторное (например, ежедневное) введение доступного радиопротектора цистамина лицам, работающим с ионизирующим излучением, исследователям, медицинскому персоналу, работникам АЭС и т.п. Риск возникновения побочных эффектов цистамина, особенно при хроническом введении, намного превышает вероятность риска возможного внешнего облучения. Цистамин также не предназначен для защиты людей от действия излучений при загрязнении организма радиоактивными веществами. Цистамин показан к применению у лиц, работающих с источниками ионизирующих излучений только в такой явно аварийной ситуации, которая угрожает им однократным облучением в основном всего тела в дозе более 1 Гр. Рекомендованная однократная защитная доза цистамина составляет 0,8–1,2 г. В случае необходимости можно вводить цистамин повторно с 6-часовыми интервалами до общей дозы 30 г.
К клиническому применению цистамина у больных, подвергающихся лучевой терапии, следует подходить индивидуально с учетом их переносимости самой терапии. В наших экспериментах на крупных лабораторных животных комбинация цистамина с метоклопрамидом оказалась пригодной для устранения послецистаминовой рвоты. Эта комбинация рекомендуется и больным для приема внутрь. По экспериментальным данным, гаммафос — более перспективный радиопротектор, чем цистамин. Вопрос об адекватности применения доступного радиопротектора цистамина у больных, подвергающихся лучевой терапии,— решит практика.
Радиопротекторы представляют большой интерес как с научной, так и с практической точки зрения.
ЛИТЕРАТУРА:
1. Куна П. Химическая радиозащита. Монография. –М.: Медицина, 1989. –193с.: ил.
2. Ярмоненко С.П. Противолучевая защита организма. –М.: Атомиздат, 1969. –264с.
3. Романцев Е.Ф. Радиация и химическая защита. (Изд. 2-е, переработ. и доп.). –М.: Атомиздат, 1968. –248с.
4. Радиация. Дозы, эффекты, риск. (Обзор НКДАР при ООН): Пер. с англ. –М.: Мир, 1990. –79с., ил.