Реферат Интерференция света 3
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
Интерференция света
Закон независимости световых пучков геометрической оптики означает, что световые пучки встречаясь, не воздействуют друг на друга. В явлениях, в которых проявляется волновая природа света, этот закон утрачивает силу. При наложении световые волн в общем случае выполняется принцип суперпозиции: результирующий световой вектор является суммой световых векторов отдельных волн. При этом может получиться волна, интенсивность которой не будет равна сумме интенсивностей складывающихся волн.
Интерференция свойственна не только световым волнам, являющимися по своей природе электромагнитными волнами, но и волнам любого другого типа. Поскольку волны любого вида удовлетворяют одним и тем же волновым уравнениям, то при описании интерференции любых видов волн применяется один и тот же математический аппарат. Поэтому, сущность интерференции рассмотрим на примере сложения двух одномерных гармонических волн (волн вида
амплитуда которых определяется выражением
Интенсивность волны пропорциональна квадрату амплитуды
Результат сложения зависит от разности фаз d (меняющейся при переходе к другой пространственной точке). В тех точках пространства, для которых
Таким образом, при наложении гармонических (в общем случае когерентных) световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности. Это явление называется интерференцией волн.
Рассмотрим точечный источник света S, который излучает монохроматический свет (свет фиксированной частоты) (рис.). До точки P первый луч проходит в среде с показателем преломления
Множитель
где
есть величина, называемая оптической разностью хода.
Из формулы (2) видно, что если оптическая разность хода равна целому числу длин волн в вакууме
то разность фаз
Если D равна полуцелому числу длин волн в вакууме,
то
Когерентность. В реальности монохроматических волн (неограниченных во времени волн фиксированной частоты) не существует. Для реальных световых волн необходимым условием интерференции является их когерентность. Так называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.
Некогерентность естественных источников света обусловлена тем, что излучение светящегося тела складывается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью ~10-8 с и протяженностью около 3 м независимо друг от друга. Начальные фазы этих волновых цугов никак не связаны между собой. Помимо этого, даже для одного и того же атома начальные фазы цугов при следующих актах излучения меняются случайным образом.
Временной подход к анализу интерференции. Рассмотрим следующую простую модель излучения: точечный источник испускает последовательность гармонических цугов с равными длительностями t, равными амплитудами A и независимыми друг от друга случайными начальными фазами. При сложении двух таких волн интенсивность колебаний в некоторой точке будет равна
где разность фаз
Продолжительность одного цуга t естественно отождествить со временем когерентности
Рассмотренная модель излучения является идеализированной, так как в ней принималось, что свет состоит из последовательности цугов, имеющих одинаковую частоту w, длительность t и случайные начальные фазы. В более правдоподобных моделях излучения света атомами, включая реальное излучение, при рассмотрении интерференции также возникает временной параметр
Рассмотренный подход к анализу интерференции использует временные характеристики световых волн (время когерентности). Анализ можно провести и иным (спектральным) способом, в котором немонохроматический свет представляется в виде суперпозиции монохроматических пучков с различными частотами. Спектральный и временной подходы к анализу интерференции являются разными способами рассуждений о степени когерентности колебаний. Они приводят к идентичным выводам относительно интерференционной картины.
Спектральный подход к анализу интерференции. Пусть интервал длин волн ограничен и заключен между l и
Порядок интерференции m определяется разностью хода световых пучков и длиной волны соотношением
Она определяется свойствами источника света (либо применяемого монохроматора – устройства, пропускающего свет узкого диапазона длин волн). Пространственная когерентность и время когерентности связаны между собой соотношением
Эта связь имеет общий характер.
Расчет интерференционной картины от двух источников. Рассмотрим две цилиндрические когерентные световые волны, исходящие из источников
Следовательно
и оптическая разность хода равна
Разность хода
В большинстве случаев
Подстановка значения D в условие (4) дает, что максимумы интенсивности будут наблюдаться при значениях
Здесь
Подставив (10) в условие (5), получим координаты минимумов интенсивности
Расстояние между двумя соседними максимумами называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами –шириной интерференционной полосы. Из (11) и (12) следует, что эти расстояния имеют одинаковое значение
Интерференция двух плоских волн. Пусть происходит наложение двух плоских волн, амплитуды которых одинаковы, а направления их распространения образуют угол 2j (рис.). Направления колебаний светового вектора будем считать перпендикулярными к плоскости рисунка. Волновые векторы
и
лежат в плоскости рисунка и имеют одинаковый модуль, равный
. Уравнения волн имеют вид
а результирующие колебания –
Из последнего выражения следует, что в точках, где
Пространственная когерентность. Во всех практических интерференционных схемах большое значение имеют размеры источника света. Если размеры источника значительно меньше длины световой волны то, конечно, всегда получается резкая интерференционная картина (при выполнении условия временной когерентности), ибо оптическая разность пути до какой-либо точки интерференционного поля для всего источника будет одна и та же. Однако на практике размеры источников света обычно значительно превосходят длину световой волны. Каждая точка источника создает свою интерференционную картину. Результирующая картина получается наложением картин всех элементов протяженного источника, излучение которых считаем некогерентными между собой. Эти картины не совпадают друг с другом так, что результирующая картина окажется более или менее размытой и при значительной ширине источника перестанет наблюдаться.
Влияние размеров источника на резкость интерференционной картины можно выразить количественно, исходя из общей интерференционной схемы (рис.). Пусть AB – протяженный источник ширины b. Рассмотрим результирующую интерференционную картину в окрестности некоторой точки экрана. Максимумы, получаемые от разных точек источника, будут смещены относительно друг друга. Если максимумы от точки B совпадают с максимумами от точки A так, что их порядок интерференции отличается на единицу то, результирующая интерференционная картина будет смазанной и интерференция не наблюдается (рис.). Для того чтобы интерференция была возможна, размер источника света не должен превышать некоторой величины. Эту величину определим из условия совпадения максимума (m+1)–го порядка, получаемого от точки A, с максимумом m–го порядка, получаемым от точки B. Отличие оптических разностей хода точек A и B составляет, очевидно,
где l – расстояние между источником света и щелями. Определяя угловой размер источника
Формула (15) определяет угловые размеры источника, при которых наблюдается интерференция. Пусть теперь зафиксированы угловые размеры источника света. Тогда расстояние между щелями, при котором можно еще наблюдать интерференцию от источника с угловым размером j должно удовлетворять, согласно (15), условию
В соответствии с принципом Гюйгенса, реальный источник света в данной схеме можно заменить псевдоисточниками, расположенными на месте щелей. Отсутствие интерференционной картины означает, что волновые колебания этих источников некогерентны. Введем расстояние
Угловой размер Солнца составляет около 0,01 рад, длина световых волн ~0,5 мкм. Следовательно, радиус когерентности приходящих от Солнца световых волн имеет значение
Излучение лазера, по сравнению с естественным светом, обладает огромной временной и пространственной когерентностью. Временная когерентность имеет значение порядка 10–5 с (гелий-неоновый лазер) а пространственная когерентность наблюдается во всем поперечном сечении светового пучка.
Методы наблюдения интерференции света.
1. Метод Юнга. Источником сета служит ярко освещенная щель S (рис), от которой световая волна падает на две узкие равноудаленные щели
2. Зеркала Френеля. Два плоских зеркала (рис.), расположены относительно друг друга под небольшим углом (
Бипризма Френеля. Она состоит из двух одинаковых с общей гранью призм с малыми преломляющими углами (рис.). Свет от прямолинейного источника S преломляется в обеих призмах, в результате чего образуются две когерентные цилиндрические волны, исходящих из мнимых источников