Реферат

Реферат Вода в продуктах питания

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024





Содержание:

Введение                                                                                                                   2                                                                                                    

Свободная и связанная влага в пищевых продуктах                                            3                                                    

Активность воды. Изотермы сорбции                                                                   9                       

Активность воды и стабильность пищевых продуктов                                      13

Роль льда в обеспечении стабильности пищевых продуктов                                    17                               

Методы определения влаги в пищевых продуктах                                                     19

Заключение                                                                                                                         20

Список литературы                                                                                                           21                         
Введение

Вода — важная составляющая пищевых продуктов. Она присутствует и разнообразных растительных и животных продуктах как клеточный и внеклеточный компонент, как диспергирующая среда и растворитель, обусловливая их консистенцию и структуру и влияя на внешний вид, вкус и устойчивость продукта при хранении. Благодаря физическому взаимо­действию с белками, полисахаридами, липидами и солями, вода вносит значительный вклад в текстуру пищи.

Количество воды в пищевых продуктах влияет на их качество и сохраняемость. Скоропортящиеся продукты с повышенным содержанием влаги без консервирования длительное время не сохраняются. Вода, содержащаяся в продуктах, способствует ускорению в них химических, биохимических и других процессов. Продукты с малым содержанием воды лучше сохраняются.

Многие виды пищевых продуктов содержат большое количество вла­ги, что отрицательно сказывается на их стабильности в процессе хране­ния. Поскольку вода непосредственно участвует в гидролитических про­цессах, ее удаление или связывание за счет увеличения содержания соли или сахара тормозит многие реакции и ингибирует рост микроорганиз­мов, таким образом удлиняя сроки хранения продуктов. Важно также от­метить, что удаление влаги путем высушивания или замораживания существенно влияет на химический состав и природные свойства. 

Целью данной работы является исследование свойств  и особенностей поведения воды и льда в пищевых продуктах.

Для достижения поставленной цели решаются следующие основные задачи:

-изучение различных форм связи воды в пищевых продуктов;

-выяснение взаимосвязи активности воды пищевых продуктов с их физико-химическими, реологическими и технологическими свойствами, а также качественными изменениями при обработке и хранении.

Свободная и связанная влага в пищевых продуктах

      Вода в пищевых продуктах играет, как уже отмечалось, важную роль, т. к. обусловливает консистенцию и структуру продукта, а ее взаимодей­ствие с присутствующими компонентами определяет устойчивость про­дукта при хранении.

Общая влажность продукта указывает на количество влаги в нем, но не характеризует ее причастность к химическим, биохимическим и микроби­ологическим изменениям в продукте. В обеспечении его устойчивости при хранении важную роль играет соотношение свободной и связанной влаги. Связанная влага — это ассоциированная вода, прочно связанная с раз­личными компонентами — белками, липидами и углеводами за счет хи­мических и физических связей. Свободная влага — это влага, не связанная полимером и доступная для протекания биохимических, химических и микробиологических реакций. Рассмотрим некоторые примеры.

При влажности зерна 15 — 20% связанная вода составляет 10 — 15%. При большей влажности появляется свободная влага, способствующая уси­лению биохимических процессов (например, прорастанию зерна).

Плоды и овощи имеют влажность 75 — 95%. В основном, это свобод­ная вода, однако примерно 5% влаги удерживается клеточными коллоидами в прочно связанном состоянии. Поэтому овощи и плоды легко вы­сушить до 10 — 12%, но сушка до более низкой влажности требует приме­нения специальных методов.

Большая часть воды в продукте может быть превращена в лед при —5°С, а вся — при — 50°С и ниже. Однако определенная доля прочно свя­занной влаги не замерзает даже при температуре —60°С.

«Связывание воды» и «гидратация» — определения, характеризующие способность воды к ассоциации с различной степенью прочности с гидрофильными веществами. Размер и сила связывания воды или гидрата­ции зависит от таких факторов, как природа неводного компонента, со­став соли, рН, температура.

В ряде случаев термин «связанная вода» используется без уточнения его смысла, однако пред­лагается и достаточно много его определений. В соответствии с ними свя­занная влага:

характеризует равновесное влагосодержание образца при некоторой температуре и низкой относительной влажности;

не замерзает при низких температурах (—40°С и ниже);

не может служить растворителем для добавленных веществ;

дает полосу в спектрах протонного магнитного резонанса;

перемещается вместе с макромолекулами при определении скорости седиментации, вязкости, диффузии;

существует вблизи растворенного вещества и других неводных веществ и имеет свойства, значительно отличающиеся от свойств всей массы воды в системе.

Указанные признаки дают достаточно полное качественное описание связанной воды. Однако ее количественная оценка по тем или иным при­знакам не всегда обеспечивает сходимость результатов. Поэтому боль­шинство исследователей склоняются к определению связанной влаги только по двум из перечисленных выше признаков. По этому определе­нию, связанная влага — это вода, которая существует вблизи растворен­ного вещества и других неводных компонентов, имеет уменьшенную мо­лекулярную подвижность и другие свойства, отличающиеся от свойств всей массы воды в той же системе, и не замерзает при — 40°С. Такое опре­деление объясняет физическую сущность связанной воды и обеспечива­ет возможность сравнительно точной ее количественной оценки, т.к. вода, незамерзающая при — 40°С, может быть измерена с удовлетворительным результатом (например, методом ПМР или калориметрически). При этом действительное содержание связанной влаги изменяется в зависимости от вида продукта.

Причины связывания влаги в сложных системах различны. Наибо­лее прочно связанной является так называемая органически связанная вода. Она представляет собой очень малую часть воды в высоковлажных пищевых продуктах и находится, например, в щелевых областях белка или в составе химических гидратов. Другой весьма прочно связанной водой является близлежащая влага, представляющая собой монослой при большинстве гидрофильных групп неводного компонента. Вода, ассо­циированная таким образом с ионами и ионными группами, является наиболее прочно связанным типом близлежащей воды. К монослою при­мыкает мультислойная вода (вода полимолекулярной адсорбции), обра­зующая несколько слоев за близлежащей водой. Хотя мультислой — это менее прочно связанная влага, чем близлежащая влага, она все же еще достаточно тесно связана с неводным компонентом, и потому ее свой­ства существенно отличаются от чистой воды. Таким образом, связан­ная влага состоит из «органической», близлежащей и почти всей воды мультислоя.


Кроме того, небольшие количества воды в некоторых клеточных сис­темах могут иметь уменьшенные подвижность и давление пара из-за на­хождения воды в капиллярах. Уменьшение давления пара и активности воды (aw) становится существенным, когда капилляры имеют диаметр меньше, чем 0,1µ м. Большинство же пищевых продуктов имеют капил­ляры диаметром от 10 до 100 μм, которые, по-видимому, не могут замет­но влиять на уменьшение aw в пищевых продуктах.

В пищевых продуктах имеется также вода, удерживаемая макромолекулярной матрицей. Например, гели пектина и крахмала, растительные и животные ткани при небольшом количестве органического материала могут физически удерживать большие количества водых [3].

Хотя структура этой воды в клетках и макромолекулярной матрице точно не установлена, ее поведение в пищевых системах и важность для качества пищи очевидна. Эта вода не выделяется из пищевого продукта даже при большом механическом усилии. С другой стороны, в техноло­гических процессах обработки она ведет себя почти как чистая вода. Ее, например, можно удалить при высушивании или превратить в лед при замораживании. Таким образом, свойства этой воды, как свободной, не­сколько ограничены, но ее молекулы ведут себя подобно водным моле­кулам в разбавленных солевых растворах.

Именно эта вода составляет главную часть воды в клетках и гелях, и изменение ее количества существенно влияет на качество пищевых про­дуктов. Например, хранение гелей часто приводит к потере их качества из-за потери этой воды (так называемого синерезиса). Консервирование замораживанием тканей часто приводит к нежелательному уменьшению способности к удерживанию воды в процессе оттаивания.

В таблицах 1 и 2 описаны свойства различных видов влаги в пи­щевых продуктах.
 Таблица 1 -  Категории свободной влаги в пищевых продуктах



Свойства

Свободная

Вода в макромолекулярной матрице

Общее описание

вода, которая может быть легко удалена из продукта. Вода—вода –водородные связи преобладают. Имеет

свойства, похожие на воду в слабых растворах солей. Обладает свойством свободного истечения

вода, которая может быть

удалена из продукта. Вода-

вода—водородные связи

превалируют. Свойства воды

подобны воде в разбавленных солевых растворах. Свободное истечение затруднено

матрицей геля или ткани

Точка замерзания

несколько ниже по сравнению с чистой водой

Способность быть

растворителем

большая

Молекулярная подвижность по сравнению с чистой водой

несколько меньше

Энтальпия парообразования

по сравнению с чистой водой

без существенных изменений



Содержание в рас

чете на общее содержание влаги в продуктах с высокой

влажностью (90% Н20),%

96%

Зона изотермы

сорбции

вода в зоне III состоит из воды, присутствующей

в зонах I и II, + вода, добавленная или удаленная

внутри зоны III

в отсутствие гелей и

клеточных структур эта

вода является свободной,

нижняя граница зоны III

нечеткая и зависит от

продукта и температуры

в присутствии гелей или

клеточных структур вся вода

связана в макромолекулярной матрице. Нижняя

граница зоны III нечеткая и

зависит от продукта и тем­пературы

Обычная причина

порчи пищевых

продуктов

высокая скорость большинства реакций,

рост микроорганизмов







Таблица 2 - Категории связанной влаги в пищевых продуктах

Свойства

Органически связанная вода

Монослой

Мультислой

Общее описание

Вода как общая часть неводного компонента

Вода, которая сильно взаимодействует с гидрофильными группами неводных компонентов путем вода-ион, или вода — диполь ассоциации; вода в микрокапиллярах (d < 0,1 \м)

Вода, которая примыкает к монослою и которая образует несколько слоев вокруг гидрофильных групп неводного компонента. Превалируют вода—вода и вода—растворенное вещество—водородные связи





Точка замерзания по сравнению с чистой водой

Не замерзает при -40 °С

Не замерзает при -40 °С

Большая часть не замерзает при -40 "С.Остальная часть замерзает при значительно пониженной температуре

Способность служить растворителем

Нет

Нет

Достаточно слабая

Молекулярная подвижность

Очень малая

Существенно меньше

Меньше

Энтальпия парообразования по сравнению с чистой водой

Сильно увеличена

Значительно увеличена

Несколько увеличена

Зона изотермы сорбции

(рис. 10.6)

Органически связанная вода показывает практически нулевую активность и,таким образом, существует в экстремально левом конце зоны

Вода в зоне 1 изотермы состоит из небольшого количества органической влаги с остатком монослоя влаги. Верхняя граница зоны I не является четкой и варьирует в зависимости от продукта и температуры

Вода в зоне 11 состоит из воды, присутствующей в зоне I, + вода добавленная или удаленная внутри зоны II(мультислойная влага). Граница зоны II не является четкой и варьирует в зависимости от продукта и температуры

Стабильность пищевых продуктов

Самоокисление

Оптимальная стабильность при aw = 0,2-0,3

Если содержание воды увеличивается выше нижней части зоны II, скорость почти всех реакций увеличивается


Активность воды. Изотермы сорбции

Давно известно, что существует взаимосвязь (хотя и далеко не совершенная) между влагосодержанием пищевых продуктов и их сохранно­стью (или порчей). Поэтому основным методом удлинения сроков хра­нения пищевых продуктов всегда было уменьшение содержания влаги путем концентрирования или дегидратации.

Однако часто различные пищевые продукты с одним и тем же содер­жанием влаги портятся по-разному. В частности, было установлено, что при этом имеет значение, насколько вода ассоциирована с неводными компонентами: вода, сильнее связанная, меньше способна поддержать процессы, разрушающие (портящие) пищевые продукты, такие как рост микроорганизмов и гидролитические химические реакции.

Чтобы учесть эти факторы, был введен термин «активность воды». Этот термин безусловно лучше характеризует влияние влаги на порчу про­дукта, чем просто содержание влаги. Естественно, существуют и другие факторы (такие как концентрация 02, рН, подвижность воды, тип ра­створенного вещества), которые в ряде случаев могут сильнее влиять на разрушение продукта. Тем не менее, водная активность хорошо корре­лирует со скоростью многих разрушительных реакций, она может быть измерена и использована для оценки состояния воды в пищевых про­дуктах и ее причастности к химическим и биохимическим изменениям. Активность воды (aw) - это отношение давления паров воды наддан­ным продуктом к давлению паров над чистой водой при той же темпера­туре. Это отношение входит в основную термодинамическую формулу определения энергии связи влаги с материалом (уравнение Ребиндера):

ΔF = L = RTln  = -RT-lnaw

По величине активности воды (табл. 3) выделяют: продукты с вы­сокой влажностью (aw= 1,0-0,9); продукты с промежуточной влажнос­тью (aw= 0,9-0,6); продукты с низкой влажностью (а = 0,6-0,0).
Таблица  3 – Активность  воды (aw) в пищевых продуктах



Продукт

Влажность, %

aw



Продукт

Влажность, %

аw

Фрукты

90-95

0,97

Мука

16-19.

0,80

Яйца

70-80

0,97

Мед

10-15

0,75

Мясо

60-70

0,97

Карамель

7-8

0,65

Сыр

40

0,92-0,96

Печенье

6-9

0,60

Джем

30-35

0,82-0,94

Шоколад

5-7

0,40

Хлеб

40-50

0,95

Сахар

0-0,15

0,10

Кекс

20-28

0,83







Кривые, показывающие связь между содержанием влаги (масса воды, г Н20/г СВ) в пищевом продукте с активностью воды в нем при постоянной температуре, называются изотермами сорбции. Информа­ция, которую они дают, полезна для характеристики процессов концен­трирования и дегидратации (т.к. простота или трудность удаления воды связана с aw), а также для оценки стабильности пищевого продукта. На рис. 10.5 изображена изотерма сорбции влаги для продуктов с высокой влажностью (в широкой области влагосодержания).



Рисунок  1. Изотерма сорбции влаги для продуктов с высокой влажностью

Однако, с учетом наличия связанной влаги, больший интерес пред­ставляет изотерма сорбции для области низкого содержания влаги в пи­щевых продуктах (рис. 1)




Рисунок 2.Изотерма сорбции влаги для области низкого содержания влаги в пищевых продуктах.

Для понимания значения изотермы сорбции полезно рассмотреть зоны IIII.

Свойства воды в продукте сильно отличаются по мере перехода от зоны I (низкие влагосодержания) к зоне III (высокая влажность). Зона I изо­термы соответствует воде, наиболее сильно адсорбированной и наибо­лее неподвижной в пищевых продуктах. Эта вода абсорбирована, благо­даря полярным вода-ион и вода-диполь взаимодействиям. Энтальпия па­рообразования этой воды много выше, чем чистой воды, и она не замер­зает при — 40°С. Она неспособна быть растворителем, и не присутствует в значительных количествах, чтобы влиять на пластичные свойства твер­дого вещества; она просто является его частью.

Высоковлажный конец зоны I (граница зон I и II) соответствует мо­нослою влаги. В целом зона I — соответствует чрезвычайно малой части всей влаги в высоковлажном пищевом продукте.

Вода в зоне II состоит из воды зоны I и добавленной воды (ресорбция) для получения воды, заключенной в зону II. Эта влага образует мультислой и взаимодействует с соседними молекулами через вода-вода—водородные связи. Энтальпия парообразования для мультислойной воды несколько больше, чем для чистой воды. Большая часть этой воды не замерзает при — 40°С, как и вода, добавленная к пищевому про­дукту с содержанием влаги, соответствующим границе зон I и II. Эта вода участвует в процессе растворения, действует как пластифицирую­щий агент и способствует набуханию твердой матрицы. Вода в зонах II и I обычно составляет менее 5% от общей влаги в высоковлажных пищевых продуктах.

Вода в зоне III изотермы состоит из воды, которая была в зоне I и II, и добавленной для образования зоны III. В пищевом продукте эта вода наи­менее связана и наиболее мобильна. В гелях или клеточных системах она является физически связанной, так что ее макроскопическое течение зат­руднено. Во всех других отношениях эта вода имеет те же свойства, что и вода в разбавленном солевом растворе. Вода, добавленная (или удален­ная) для образования зоны III, имеет энтальпию парообразования прак­тически такую же, как чистая вода, она замерзает и является растворите­лем, что важно для протекания химических реакций и роста микроорга­низмов. Обычная влага зоны III (не важно, свободная или удерживаемая в макромолекулярной матрице) составляет более 95% от всей влаги в вы­соковлажных материалах. Состояние влаги, как будет показано ниже, имеет важное значение для стабильности пищевых продуктов.

В заключение следует отметить, что изотермы сорбции, полученные добавлением воды (ресорбция) к сухому образцу, не совпадают полно­стью с изотермами, полученными путем десорбции. Это явление назы­вается гистерезисом. Изотермы сорбции влаги для многих пищевых продуктов имеют гистерезис. Величина гистерезиса, наклон кривых, точки начала и конца петли гистерезиса могут значительно изменяться в зависимости от таких факторов, как природа пищевого продукта, температура, ско­рость десорбции, уровень воды, удаленной при десорбции.

Как правило, изотерма абсорбции (ресорбции) нужна при исследо­вании гигроскопичности продуктов, а десорбции — полезна для изуче­ния процессов высушивания.

Активность воды и стабильность пищевых продуктов

С учетом вышесказанного ясно, что стабильность пищевых продук­тов и активность воды тесно связаны.

В продуктах с низкой влажностью могут происходить окисление жи­ров, неферментативное потемнение, потеря водорастворимых веществ (витаминов), порча, вызванная ферментами. Активность микроорганиз­мов здесь подавлена. В продуктах с промежуточной влажностью могут протекать разные процессы, в том числе с участием микроорганизмов. В процессах, протекающих при высокой влажности, микроорганизмам принадлежит решающая роль.

Окисление липидов начинается при низкой aw. По мере ее увели­чения скорость окисления уменьшается примерно до границы зон I и II на изотерме, а затем снова увеличивается до границы зон II и III. Дальнейшее увеличение aw снова уменьшает скорость окисле­ния. Эти изменения можно объяснить тем, что при добавлении воды к сухому материалу сначала имеет место столкновение с кислородом. Эта вода (зона I) связывает гидропероксиды, сталкивается с их продуктами распада и, таким образом, препятствует окислению. Кроме того, добавленная вода гидратирует ионы металлов, которые катализируют окисление, уменьшая их действенность.

Наблюдаемый максимум потемнения может объясняться наступле­нием равновесия в процессе диффузии, которая регулируется величиной вязкости, степенью растворения и массообменом. При низкой активно­сти воды медленная диффузия реагентов замедляет скорость реакции. По мере увеличения влагосодержания более свободная диффузия ускоряет реакцию до тех пор, пока в верхней точке диапазона влажности раство­рение реагентов снова не замедляет ее. Точно так же более высокая кон­центрация воды замедляет ход реакции на тех обратимых стадиях, на ко­торых образуется вода.

Ферментативные реакции могут протекать при более высоком содер­жании влаги, чем влага монослоя, т.е. тогда, когда есть свободная вода. Она необходима для переноса субстрата. Учитывая это, легко понять, по­чему скорость ферментативных реакций зависит от aw.

При aw, соответствующей влаге монослоя, нет свободной воды для переноса субстрата. Кроме того, в ряде ферментативных реакций вода сама играет роль субстрата.

Для большинства бакте­рий предельное значения aw= 0,9, но, например, для St.aureus aw= 0,86. Этот штамм продуцирует целый ряд энтсротоксинов типа А, В, С, D, Е. Боль­шинство пищевых отравлений связаны с токсинами А и D. Дрожжи и плесени могут расти при более низких значениях активности воды.

При хранении пищевых продуктов активность воды оказывает влия­ние на жизнеспособность микроорганизмов. Поэтому актив­ность воды в продукте имеет значение для предотвращения его микро­биологической порчи.

В основном порчу продуктов с промежуточной влажностью вызыва­ют дрожжи и плесени, меньше — бактерии. Дрожжи вызывают порчу си­ропов, кондитерских изделий, джемов, сушеных фруктов; плесени — мяса, джемов, пирожных, печенья, сушеных фруктов (табл. 4).



Таблица  4 - Активность воды и рост микроорганизмов в пищевых продуктах

Область aw

Микроорганизмы, которые ингибируются при более низком значении aw, чем эта область

Пищевые продукты, характерные для этой области aw

1,00-0,95

pseudomonas; Escherichia;

фрукты, овощи, мясо, рыба,



Proteus; Shigella, Klebsiella;

молоко, домашняя колбаса и хлеб,



Bacillus; Clostridium perfingens;

продукты с содержанием сахара



некоторые дрожжи

(-40%) и хлорида натрия (~7%)

0,95-0,91

salmonella, Vibrio parahaemolyticus, Сbotulinum,Serratia Lactobacillus, Pediococcus, некоторые грибы,дрожжи (Rhodotorula, Pichia)

некоторые сыры, консервированная ветчина, некоторые фруктовые концентраты соков, продукты с содержанием сахара (~55%),хлорида натрия (~12%)







0,91-0,87

многие дрожжи (Candida;Torulopsis, Hansenula)Micrococcus

ферментированная колбаса типа салями, сухие сыры, маргарин, рыхлые бисквиты, продукты с содержанием сахара (65%), хлорида натрия (15%).

0,87—0,80

многие грибы(микотоксигенные пенициллы

большинство концентратов фруктовых соков, сладкое сгущенное молоко, шоколад, сироп, мука, рис, взбитые изделия с содержанием влаги 15—17%, фруктовые пирож­ные, ветчина





Penicillia); Staphylococcus



Aureus; большинство



Saccharomyces; Debaryomyces

0,80—0,75

большинство галофильных бактерий, микотоксигенные аспергиллы

джем, мармелад, замороженныефрукты

0,75-0,65

ксерофильные виды плесеней (грибов) (Asp. chevalieri; Asp. canidus; Wallemia sebi) Saccharomyces bisporus

патока, сухие фрукты, орехи

0,65-0,60

осмофильные дрожжи(Saccharomyces rouxii); некоторые плесени (Asp. echinulatus, Monascus bisporus)

сухофрукты, содержащие 15—20%

влаги, карамель, мед





нет микроорганизмов

тесто с влажностью 12%, специи с влажностью 10%

0,5

0,4

нет микроорганизмов

яичный порошок с влажностью -5%







0,3

нет микроорганизмов

печенье, крекеры, сухари с влажностью -3—5%

0,2

нет микроорганизмов

сухое молоко с влажностью -2—3%, сухие овощи с влажностью ~5%, зерновые хлопья с влажностью -5%, крекеры


     Эффективным средством для предупреждения микробиологической порчи и целого ряда химических реакций, снижающих качество пище­вых продуктов при хранении, является снижение активности воды в пи­щевых продуктах. Для снижения активности воды использу­ют такие технологические приемы, как сушка, вяление, добавление раз­личных веществ (сахар, соль и др.), замораживание. С целью достиже­ния той или иной активности воды в продукте можно применять такие технологические приемы, как:

адсорбция — продукт высушивают, а затем увлажняют до определенного уровня влажности;

сушка посредством осмоса — пищевые продукты погружают в раство­ры, активность воды в которых меньше активности воды пищевых про­дуктов.

Часто для этого используют растворы Сахаров или соли. В этом случае имеет место два противотока: из раствора в продукт диффундирует растворенное вещество, а из продукта в раствор — вода. К сожалению, природа этих про­цессов сложна, и в литературе нет доста­точных данных по этому вопросу.

Для достижения требуемой активно­сти воды добавляют различные ингредиенты в продукт, обработанный одним из указанных выше способов, и дают ему возможность прийти в равновесное со­стояние, т.к. один лишь процесс сушки часто не позволяет получить нужную кон-систенцию. Применяя увлажнители, можно увеличить влажность продукта, но снизить aw. Потенциальными увлажнителями для пищевых продуктов являются крахмал, молочная кислота, сахара, глицерин и др.

Роль льда в обеспечении стабильности пищевых продуктов

Замораживание является наиболее распространенным способом консервирования (сохранения) многих пищевых продуктов. Необходимый эффект при этом достигается в большей степени от воздействия низкой температуры, чем от образования льда. Образование льда в клеточных структурах пищевых продуктов и гелях имеет два важных следствия:

а) не­водные компоненты концентрируются в незамерзающей фазе (незамерзающая фаза существует в пищевых продуктах при всех температурах хранения);

б) вся вода, превращаемая в лед, увеличивается  на 9% в объеме.

Во время замораживания вода переходит в кристаллы льда различ­ной, но достаточно высокой степени чистоты. Все неводные компонен­ты поэтому концентрируются в уменьшенном количестве незамерзшей воды. Благодаря этому эффекту, незамерзшая фаза существенно изменя­ет такие свойства, как рН, титруемая кислотность, ионная сила, вязкость, точка замерзания, поверхностное натяжение, окислительно-восстанови­тельный потенциал. Структура воды и взаимодействие «вода — растворен­ное вещество» также могут сильно изменяться.

Эти изменения могут увеличить скорости реакций. Таким образом, замораживание имеет два противоположных влияния на скорость реакций: низкая температура как таковая будет ее уменьшать, а концентри­рование компонентов в незамерзшей воде — иногда увеличивать. Так, в ряде исследований показано увеличение при заморажива­нии скорости реакций неферментативного потемнения, имеющих место при различных реакциях.

Фактор возможности увеличения скорости различных реакций в замороженных продуктах необходимо учитывать при их хранении, посколь­ку этот фактор будет влиять на качество продуктах.

Многочисленными исследованиями показано, что существенное снижение скорости реакций (более чем в 2 раза) имеет место при хранении пищевых продуктов в условиях достаточно низкой темпера­туры (-18°С).

При отрицательных температурах, достаточно близких к темпера­туре замерзания воды (0°С) имеет место увеличение доли несолюбилизованного белка. При температуре — 18°С инсолюбилизация белка уменьшается существенно, и это создает оптимальные условия для хра­нения продуктов.

Методы определения влаги в пищевых продуктах                                                  

Определение общего содержания влаги

Высушивание до постоянной массы.Содержание влаги рассчитывают по разности массы образца до и после высушивания в сушильном шкафу при температуре 100— 105°С. Это — стандартный метод определения вла­ги в техно-химическом контроле пищевых продуктов. Поскольку в ос­нове метода лежит высушивание образца до постоянной массы, метод требует много времени для проведения анализа.


Титрование по модифицированному методу Карла Фишера.Метод ос­нован на использовании реакции окисления-восстановления с участи­ем йода и диоксида серы, которая протекает в присутствии воды. Использование специально подобранных органических реагентов позво­ляет достигнуть полного извлечения воды из пищевого продукта, а ис­пользование в качестве органического основания имидазола способ­ствует практически полному протеканию реакции. Содержание влаги в продукте рассчитывается по количеству йода, затраченному на титро­вание. Метод отличается высокой точностью и стабильностью резуль­татов (в том числе при очень низком содержании влаги) и быстротой проведения анализа.


Определение свободной и связанной влаги

Дифференциальная сканирующая калориметрия.Если образец охладить до температуры меньше 0°С, то свободная влага замерзнет, связанная — нет. При нагревании замороженного образца в калориметре можно из­мерить тепло, потребляемое при таянии льда. Незамерзающая вода оп­ределяется как разница между общей и замерзающей водой.

Термогравиметрический метод.Метод основан на определении скоро­сти высушивания. В контролируемых условиях граница между областью постоянной скорости высушивания и областью, где эта скорость снижа­ется, характеризует связанную влагу.

Диэлектрические измерения.Метод основан на том, что при 0°С зна­чения диэлектрической проницаемости воды и льда примерно равны. Но если часть влаги связана, то ее диэлектрические свойства должны силь­но отличаться от диэлектрических свойств объемной воды и льда.

Измерение теплоемкости.Теплоемкость воды больше, чем теплоем­кость льда, т.к. с повышением температуры в воде происходит разрыв во­дородных связей. Это свойство используют для изучения подвижности молекул воды. Значение теплоемкости воды в зависимости от ее содержания в полимерах дает сведения о количестве связанной воды. Если при низких концентрациях вода специфически связана, то ее вклад в тепло­емкость мал. В области высоких значений влажности ее в основном опре­деляет свободная влага, вклад которой в теплоемкость примерно в 2 раза больше, чем льда.


ЯМР.Метод заключается в изучении подвижности воды в неподвиж­ной матрице. При наличии свободной и связанной влаги получают две линии в спектре ЯМР вместо одной для объемной воды.

Заключение

Содержание воды в пищевых продуктах должно быть определенным. Уменьшение или увеличение содержания воды влияет на качество продукта. Так, товарный вид, вкус и цвет моркови, зелени, плодов и хлеба ухудшаются при снижении влажности, а крупы, сахара и макаронных изделий - при ее увеличении. Многие продукты способны поглощать пары воды, т. е. обладают гигроскопичностью (сахар, соль, сухофрукты, сухари). Так как влажность влияет на питательную ценность пищевых продуктов, а также на сроки и условия хранения, она является важным показателем в оценке их качества.

   Содержание воды в пищевых продуктах в процессе их перевозки и хранения не остается постоянным. В зависимости от особенности самих продуктов, а также условий внешней среды они теряют влагу или увлажняются. Высокой гигроскопичностью (способностью поглощать влагу) обладают продукты, содержащие много фруктозы (мед, карамель), а также сушеные плоды и овощи, чай, поваренная соль. Эти продукты хранят при относительной влажности воздуха не выше 65-70 %

Активность воды - один из самых критических параметров в определении качества и безопасности товаров, которые потребляются каждый день. Водная активность затрагивает срок годности, безопасность, структуру и запах пищевых продуктов. Это также жизненно важно для стабильности фармацевтических препаратов и косметики. Поскольку активность воды столь важна, необходимо измерить ее точно и быстро

Количество воды во многих продуктах, как правило, нормируется стандартами с указанием верхнего предела ее содержания, так как от этого зависят не только качество и сохраняемость, но и пищевая ценность продуктов.
Список литературы:

1.            Вода в пищевых продуктах / Под редакцией Р.Б. Дакуорта. — Перевод с англ. — М.: Пищевая промышленность,1980. — 376 с.

2.            Гинзбург A.C., Громов М.А., Красовская Г.И. Теплофизические характеристики пищевых продуктов: Справочник. - М.: Агропромиздат, 1990. -287 с.

3.            Ляйстнер, Л. Барьерные технологии: комбинированные методы обработки, обеспечивающие стабильность, безопасность и качество продуктов питания / Л. Ляйстнер, Г. Гоулд. — Перевод с англ. — М.: ВНИИ мясной промышленности им. В.М. Горбатова, 2006. — 236 с.

4.            Моик И.Б. Термо и влагометрия пищевых продуктов. Под ред. И.А.Рогова-М.: Агропромиздат, 1988. - 303 с.

5.            Пищевая химия/Нечаев А.П., Траубенберг С.Е., Кочеткова А.А. и др.Под ред. А.П. нечаева.Издание 3-е,испр.- СПб.:ГИОРД, 2004. – 640с.

6.             Ребиндер, П.А. О формах связи воды с материалом в процессе сушки / В кн. Всес. совещание по интенсивности процессов и улучшение качества материалов при сушке в основных отраслях промышленности и сельского хозяйства. — М.: Профиздат, 1958. —483с.

7.            http://labdepot.ru/lab/water1.html

8.            http://www.upack.by/articles.php

9.            http://www.giord.ru/0419205820310.php

10.          http://labdepot.ru/lab/water1.html


1. Реферат Понятие эластичного спроса математический и экономический смысл
2. Реферат 1 323
3. Реферат на тему New World Exploration Essay Research Paper Over
4. Реферат Д. И. Менделеев
5. Диплом на тему Роль медсестры в медстраховании
6. Реферат на тему Современная аптека
7. Сочинение на тему Друг свободы Сатиры смелый властелин Фонвизин
8. Доклад Перспективы инвестирования малого предпринимательства в современных условиях
9. Кодекс и Законы Бюджетный федерализм понятие, сущность и принципы организации в России
10. Реферат Природа расовых катастроф в мировой цивилизации