Реферат

Реферат Конструкция силовой и осветительной сети и проект электроснабжения на предприятии

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025



МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ

ХАНТЫ-МАНСИЙСКОГО АВТОНОМНОГО ОКРУГА

НИЖНЕВАРТОВСКИЙ ПРОФЕССИОНАЛЬНЫЙ КОЛЛЕДЖ

КУСОВОЙ ПРОЕКТ


Предмет:                ____________________________________________                                            


                                ____________________________________________              

                                ____________________________________________              

                                ____________________________________________            

Тема:                      ____________________________________________               

                                ____________________________________________

                                ____________________________________________

                                ____________________________________________

Специальность:     ____________________________________________

                                ____________________________________________

                                ____________________________________________

                                ____________________________________________

Группа:                  ____________________________________________

Студент:                 ____________________________________________
Проект принят с оценкой________(______________)

«___»_________________2003г.

Руководитель

Курсового проекта             ______________   (_____ ____________)


подпись  
СОДЕРЖАНИЕ

ВВЕДЕНИЕ                                                                                                           3


1. ОПИСАТЕЛЬНАЯ ЧАСТЬ                                                                              4

1.1. Характеристика объекта                                                                                4

1.2. Описание схемы электроснабжения                                                             5

1.3. Конструкция силовой и осветительной сети                                               6

2. РАСЧЁТНАЯ ЧАСТЬ                                                                                      7

2.1.Расчет освещения                                                                                           7

2.2. Расчет электрических нагрузок                                                                     9

2.3.Компенсация реактивной мощности                                                           13 2.4. Выбор трансформаторов питающей подстанции                                      14

2.5. Выбор места расположения питающей подстанции                                 17

2.6. Расчёт сети 0,38кВ                                                                                        18

       Выбор аппаратов защиты                                                                                 

2.7. Расчет сети напряжением выше 1кВ                                                          24

2.8. Расчет токов короткого замыкания                                                             25              

2.9.Выбор оборудования питающей подстанции                                             28

ЗАКЛЮЧЕНИЕ                                                                                                   30

      СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ                                                   32


ГРАФИЧЕСКАЯ ЧАСТЬ

ЛИСТ1.НГПК.1806.15.8304.МЭ                                                          На отдель-

             СХЕМА ПОДСТАНЦИИ 6/0,4-2х250 ОДНОЛИНЕЙНАЯ  ных лис-            

ЛИСТ2.НГПК.1806.15.8304.МЭ                                                           тах

               ПЛАН СЕТИ ОСВЕЩЕНИЯ



ВВЕДЕНИЕ

     Повышение уровня электрификации производства и эффективности использования энергии основано на дальнейшем развитии энергетической базы, непрерывном увеличении электрической энергии. Повышение эффективности совместного использования тепловых и гидравлических станций основано на ускоренном развитии ЕЭС страны, объединяющей кроме европейской части бывшего СССР также Урал, Казахстан и районы Заподной Сибири. Для передачи больших потоков электрической энергии из этих районов в европейскую часть страны сооружаются линии электропередач сверхвысокого напряжения 1150кВ переменного и 1500 постоянного токов. В настоящее время при наличии мощных электрических станций, объединённых в электрические системы, имеющии высокую надёжность электроснабжения, на многих промышленых предприятиях продолжается сооружение электростанций. Необходимость их сооружения обуславливается большой удалённостью от энергетических систем, потребностью в тепловой энергии для производственных нужд и отопления, необходимостью резервного питания ответственных потребителей. Проектирование систем электроснабжения ведётся в ряде проектных организаций. В результате обобщения опыта проектирования вопросы электроснабжения предприятий получили форму типовых решений. В настоящее время разработаны метода расчётов и проектирования цеховых сетей, выбора мощности цеховых трансформаторов, методика определения цеховых нагрузок и т. д. В связи с этим большое значение приобретают вопросы подготовки высоко квалифицированных кадров, способных успешно решать вопросы проектирования электроснабжения и практических задач.


1.ОПИСАТЕЛЬНАЯ ЧАСТЬ



     1.1.Характеристика объекта
    Механический участок занимается ремонтом и изготовлением различных деталей и металлоконструкций, необходимых для основного производства. В состав цеха водят различные металлообрабатывающие станки, сварочное и грузоподъёмное оборудование, вентиляторы. Мощность электроприёмников цеха составляет от 5 до 105 кВт. Электроприёмники работают в длительном (металлообрабатывающий станки, вентиляторы) и в повторно кратковременном режимах (машины дуговой сварки, грузоподъёмное оборудование ). Электроприёмники цеха работают на переменном 3-х фазном токе (металлообрабатывающии станки, вентиляторы, грузоподъёмное оборудование ) и однофазном токе (машины дуговой сварки, освещение). Электроприёмники цеха относятся к третьей категории по требуемой степени надёжности электроснабжения. Окружающая среда в цехе нормальная, поэтому всё оборудование в цехе выполнено в нормальном исполнении. Площадь цеха составляет 1728м2

   Исходные данные представлены в табл. 1, план объекта – на рис. 1
Таблица 1



Номер

по   плану

Наименование электроприем-ников

Кол-во


Рном,

кВт

Uном,

кВ

1

2


3

4

5

6

Металлорежущий станок


8

5

0,38


1

2

3

4

5

8

Металлорежущий станок


5

5

0,38

3

Карусельный станок с ЧПУ

3

105

0,38

4

Универсальный станок с ЧПУ

1

70

0,38

10

Вентилятор

4

11

0,38

11

Кран-балка, ПВ=25%

2

5

0,38

14

Машины дуговой сварки, ПВ=65%

4

2,52

0,22




                                                                рис. 1
    1.2.Описание схемы электроснабжения
    Электроснабжение механического участка осуществляется от 2х трансформаторной подстанции 6/0,4кВ   с  мощностью   трансформаторов  по  250 кВА каждый. В свою очередь ТП6/0,4 кВ питается  по взаиморезервируемым кабельным линиям ААБ 3х35, проложенных   в   земле, от вышестоящей  подстанции 35/6кВ с трансформатором мощностью 4000кВА, которая запитывается от энергосистемы по одноцепной воздушной линии АС-25.     На  стороне 6кВ   ТП    6/0,4 в качестве защитного коммутационного оборудования установлены масляные выключатели и разъединители. На стороне 0,4 кВ в качестве аппаратов защиты от токов короткого замыкания установлены предохранители.
     1.3. Конструкция силовой и осветительной сети
     Для приема и распределения электроэнергии на механическом участке установлены распределительные щиты. Электроприемники  запитываются  от ШР проводом, проложенным в трубах. В качестве  аппаратов  защиты от токов короткого замыкания применены предохранители.

    Освещение цеха  выполнено  55-ю светильниками Гс с лампами накаливания мощностью  500Вт. Осветительные сети выполняются проводом АПВ-2,5мм² проложенным в трубе.

     Питание рабочего освещения производится от осветительного щитка ОЩВ-12,  в  котором  в качестве аппаратов   защиты  от токов короткого   замыкания  и   перегруза установлены автоматические выключатели.    
2.РАСЧЕТНАЯ ЧАСТЬ
        2.1. Расчет освещения
     Расчет освещения проводится по методу коэффициента использования

светового  потока. В качестве источника света примем к установке лампы накаливания мощностью 500Вт.

     Расчёт сводится к определению необходимого числа ламп в соответствии с нормированной освещённостью. Число ламп определяется по формуле:
                 N = E · Kз · Z · S / U · Фл,                                                                       (1)
                                                                                 

где E – нормированная освещенность, Е = 150лк [1, табл. П 15];

      Z – коэффициент, учитывающий снижение светового потока при                                                      эксплуатации, Z = 1,1 [1, С. 344];

      Kз – коэффициент, учитывающий неравномерность распределения светового

потока по освещаемой поверхности,  Kз = 1,3 [1, табл.19.1];

      S – площадь помещения,  м²;

      Фл – световой поток одной лампы, Фл = 8200лм, [2, табл.3.12];

      U – коэффициент использования светового потока, определяется в зависимости от типа светильника, лампы, показателя помещения и коэффициентов отражения: рn – от потолка, рс – от стен, рр – от рабочей поверхности.

     Показатель помещения ι находим по формуле:
            ι = (А · В)/ Нр · (А + В),                                                                     (2)
    где А – длина помещения, м;

           В – ширина помещения, м;

           Нр – высота подвеса светильника над рабочей поверхностью, м.

            ι = (36 · 48)/ 4 · (36 + 48) = 5,14

     Для светильника Гс при: рn - 50℅,  рс - 30℅,  рр -10℅,  ι=5,14  U=82%   [2,прил.5,табл.3], определяем по формуле (2) число ламп:

        N =150 · 1,3 · 1,1 · 1728/0,82 · 8200 = 55 шт

     Примем к установке 55 светильников типа Гс с лампой накаливания     Г220-500, которые установим в пять рядов по 11 светильников.

     Находим число ламп аварийного освещения ( 25℅ от рабочего ).

        55 · 0,25 = 14 шт
     2.2.Расчет электрических нагрузок
     Расчет силовых электрических нагрузок ведётся по узлу нагрузки ( шкаф распределительный, шинопровод, трансформаторная подстанция). Все приёмники данного узла нагрузки делятся на характерные технологические группы.

     Для каждой группы по [3, табл. 4.1] находят коэффицент использования Ки, коэффициент активной мощности cos φ и коэффициент реактивной мощности tg φ.

     Находят установленную мощность для  каждой группы электроприёмников по формуле:
                                                Руст=N * Рном ,                                                             (3) 
   где N – число электроприёмников;

          Рном – номинальная мощность одного электроприёмника, кВт.

    Для каждой технологической группы находят среднесменную активную Рсм и среднесменную реактивную Qсм мощности по формулам:

 
Рсм = Ки * Руст ,                                                (4) 

Qсм = Рсм * tg φ,                                               (5) 
    По узлу нагрузки находят суммарную установленную мощность ∑Pуст, активную суммарную среднесменную мощность ∑Pсм и сумарную среднесменную реактивную мощность ∑Qсм:
Pуст =  Pуст i ,                                                                   (6) 

   Pсм  = ∑Pсм i ,                                                                    (7) 

∑Qсм = ∑Qсм i ,                                                                    (8) 
где ∑Pуст i – суммарная установленная мощность i-ой технологической группы электроприёмников, кВт;

          Pсм I - активная суммарная среднесменная мощность i-ой технологической группы электроприёмников, кВт;

      Qсм I - суммарная среднесменная реактивная мощность i-ой технологической группы электроприёмников, кВт.

    Определяют групповой коэффициент использования по формуле:
Ки.гр = Pсм  / ∑Pуст ,                                                      (9) 
    Определим модуль нагрузки:
m = Рном. maxном. min,                                                     (10) 
где Рном. max - наибольшая активная номинальная мощность приёмника  в                                                                                                                                                                                                       группе, кВт;

       Рном. min - наименьшая активная номинальная мощность приёмника  в  группе, кВт.

    Определяют эффективное число приёмников.

    При m ≤ 3, nэ = N.

    Далее определяем в зависимости  от  группового коэффициента  использования и  эффективного  числа  электроприёмников  коэффициент  максимума Км [4, табл 2-7]

  Определяют расчётную максимальную активную Рм  и реактивную Qм мощности по формулам:

            
Рм = Км ∙ ∑Рсм,                                                              (11) 

Qм = Lм ∙ ∑Qсм,                                                              (12) 
где Lм – коэффициент максимума реактивной мощности.

    Определяют полную максимальную мощность Sм и максимальный расчётный ток Iр:
             

Sм = √Рм2 + Qм2 ,                                                          (13) 

Iр = S/√3 ∙ Uном,                                                          (14) 
    Для остальных распределительных шкафов расчёт аналогичен, результаты сведены в табл. 2
Таблица 2



Номер

по

плану

Кол-во

Руст

кВт

Ки

Мощность

 сред-несменная

Cos φ


tg φ

nэ

m

Км

Расчётная мощность

Iр

А


Рсм

кВт

Qсм

кВАр

Р


кВт

Q


кВАр

S


кВА



10/1

1

11

0,65

7,15

5,2

0,8

0,73

8

2,2

1,7

17,8

14

22,6

34,4

11/1  11/2

2

5

0,05

0,25

0,43

0,5

1,73

6/1   6/2   6/3

6/4   6/5

5

25

0,12

3

7,05

0,4

2,35

На шинах

 ШР-1

8

41

0,25

10,4

12,68



10/2

1

11

0,65

7,15

5,2

0,8

0,73

8

2,2

1,7

19,5

16,6

25,6

39

6/6  6/7  6/8  8/1 

8/2  8/3  8/4

7

35

0,12

4,2

9,87

0,4

2,35

На шинах

 ШР-2

8

46

0,25

11,4

15,07



10/3

1

11

0,65

7,15

5,2

0,8

0,73

2,5

2,8



87

106,8

138

212,3

8/5

1

5

0,12

0,6

1,41

0,4

2,35

14/1  14/2  14/3

14/4

4

10,2

0,3

3

7,9

0,35

2,58

4

1

70

0,17

11,9

13,7

0,65

1,15

На шинах

ШР-3

7

96,1

0,24

22,7

28,1



10/4

1

11

0,65

7,15

5,2

0,8

0,73















3/1  3/2  3/3

3

315

0,17

53,6

61,6

0,65

1,15

Освещение ОЩВ-12

55

27,5









На шинах

 ШР-4













9,5





293,4

325

438

674

На шинах

ТП



















439,7

462

638

982



    2.3. Компенсация реактивной мощности.
    Чтобы уменьшить потери мощности необходимо компенсировать реактивную нагрузку. Найдем необходимую мощность компенсирующего устройства:
 Qку = α ·  PрΣ  · (tg φ ср.вз. -  tgφс ) ,                                                                (15) 

 
где  α – коэффициент, учитывающий возможность снижения реактивной

       мощности естественными способами, принимается равным 0,9 [4];

       PрΣ – суммарная активная нагрузка на шинах 0,38кВТП;

tg φ ср.вз – средневзвешенное значение реактивного коэфициента          мощности;                 

       tgφс – реактивный коэфициент мощности, который необходимо достич после компенсации tgφс = 0,15 по заданию;

          Qку  = 0,9 · 439,7· ( 1,05 – 0,15 ) = 356,2 кВАр

          tg φ ср.вз. =  Q рΣ/PрΣ ,                                                                                    (16)    

          tg φ ср.вз. = 462 / 439,7 = 1,05,
где  РрΣ – суммарная расчётная активная нагрузка на шинах 0,38кВ ТП;

           QрΣ – суммарная расчётная реактивная нагрузка на шинах 0,38кВ ТП.

    По [5, табл. 10.11] выбираем комплектное компенсирующие устройство

УК – 0,38 – 150НУ3 и УК – 0,38 – 220НУ3. Мощность компенсирующего устройства 370 кВАр. Находим уточнённую расчётную нагрузку на шинах 0,38кВ ТП:
            Sр =  √ Рр∑2  + (Q рΣ - Qку                                                                      (17)

            Sр = √ 439,7² + ( 462 – 370)² = 452 кВА 

 

 

    2.4. Выбор трансформаторов питающей подстанци
    Выбор числа и мощности трансформаторов для цеховых промышленных предприятий должен быть технически и экономически обоснованным, так как он оказывает существенное влияние на рациональное построение схем промышленного электроснабжения.

  Критериями при выборе трансформаторов являются надёжность электроснабжения, условие обеспечения режима работы системы электроснабжения с минимумом потерь электроэнергии.

    Учитывая, что электропреимники цеха относятся к потребителям 3-й категории по надёжности электроснабжения, на питающей подстанции можно установить трансформатор.

    В соответствии с нагрузкой намечаем 2 варианта мощности трансформаторов:

 1вар.- 1х630 кВА

2вар.- 2х250 кВА

    Расчёт покажем на примере 2-ого варианта.

1)Определяем коэффициент загрузки трансформаторов:
Кз = Sр/N * Sном.тр,                                             (18) 
где N – число устанавливаемых трансформаторов;

  Sном.тр – номинальная мощность одного трансформатора

   Кз = 452/2 * 250 = 0,9 ,                                       

2)Проверяем трансформаторы по аварийному режиму.

Так как масляные трансформаторы в аварийном режиме допускают перегрузку на 40% по 6 часов в сутки в течении 5 суток, то при отключении одного трансформатора второй с учётом допустимого перегруза пропустит

                        0,4·250 = 350кВА

     Дефицит мощности составит

                          452-350 = 102кВА,

но т.к. электроприёмники относятся к 3 категории по надёжности электроснабжения, то часть их на время ремонта можно отключить.

3)Проверяем трансформаторы по экономически целесообразному режиму.

   Находим стоимость потерь энергии:
Сn = СоNTм[Рххи.пIхх∙Sном.тр/100+Кз2∙(РкзипUк∙Sном.тр/100)],             (19)
где Со – стоимость одного кВт·ч, на текущий, Со = 0,81 руб/кВт∙ч;

       Тм – число использования максимума нагрузки. Тм = 2000ч, [3, с. 38];

 Рхх – потери мощности холостого хода, Рхх=0,91кВт [5, табл. 27.6];

       Ки.п – Коэффициент изменения потерь, Ки.п = 0,03 кВт/кВАр [5];

  Iхх – ток холостого хода, Iхх= 2,3% [5, табл. 27.6];

  Ркз – потери мощности короткого замыкания,Ркз=3,7 [5, табл. 27.6];

  Uк – напряжение короткого замыкания, Uк = 6,5% [5, табл. 27.6]

Сn=0,81∙2∙2000[0,74+0,03∙2,3∙250/100+0,9(3,7+0,03∙6,5∙250/100]=8576,6 руб,

 Находим капитальные затраты:
К = N · Cс.тр,                                                                                       (20)
где Cс.тр – стоимость одного трансформатора, Cс.тр = [5, табл. 27.6];
   Са = Ка · К                                                                                                        (21)

 

       Са = 0,12 · 1500 = 180руб                                                                                                         
где Ка - коэффициент учитывающий отчисления на амортизацию и  эксплуатацию, для трансформаторов Ка = 0,12 [5] 

    Находим суммарные ежегодные затраты:
С= Сn + Са                                                                                                                                               (22)

  

               С= 8576,6 + 180 = 8756,6руб
    Для первого варианта расчёт аналогичен, результаты сведены в табл. 3
Таблица 3



Наименование параметров

Вариант 1

1 х 630 кВА

Вариант 2

2 х 250 кВА

Кз


0,72

0,9

∆Рх.х, кВт

1,31

0,74

∆Ркз, кВт

7,6

3,7

Uк, %

5,5

6,5

Iхх, %

2

2,3

Тм , ч

2000

2000

Со, руб/кВт∙ч

0,81

0,81

Сn, руб

8557,5

8576,6

К, руб

1600

1500

Ка, руб


0,12

0,12

Са, руб


192

180

С, руб

8749,5

8756,6


    Так как варианты по суммарным затратам отличаются менее чем на 3%:

      (8756 –8749,5)*100/8749,5 = 0,08%,                                       

то варианты считаются равноценными, поэтому выбираем вариант с наименьшими капитальными затратами т. е. 2 х 250 кВА.
    2.5. Выбор места расположения питающей подстанции
    Место расположения ШР определяется по картограммам нагрузок в зависимости от мощности, запитанных от него электроприёмников.

    Распределительные шкафы и цеховую трансформаторную подстанцию целесообразно устанавливать в центре  электрических нагрузок (ЦЭН). Координаты ЦЭН определяют по формуле:
Хцэн = ΣХiРi/ ΣРном.i ,                                                         (23) 

Yцэн = ΣYiРi/ ΣРном.i ,                                                         (24)                                                    
где Хi - координата i – го электроприёмника по оси абсцисс, м;

      Yi – координата i – го электроприёмника по оси ординат, м;

       Рном.i – номинальная мощность i – го электроприёмника, кВт.

    Для трансформаторной подстанции берутся координаты всех ШР. Расчёты рассмотрим на примере ШР-1:

    Покажем расчёт на примере ШР-1

Хцэн  =  (1,5 · 11 + 9 · 5 + (12,5 · 5) · 4 + 17 · 5 + 20 · 5) /46 = 496,5/46 = 11м ,

Yцэн  =  (50 · 11 + (50 · 5) · 2 + 45 · 5 + 42 · 5 + 39 · 5 + 36 · 5 + 45 · 5)/46 =

 = 2085/46 = 45,5м,

    Для остальных шкафов распределительных и подстанций расчёт аналогичен, результаты сведены в табл. 4 
Таблица 4


Номер ШР


Расчётные координаты (X;Y)

Координаты установки

(X;Y)

ШР-1


(11;45,5)

(11;51)

ШР-2

(25;41)

(25;51)

ШР-3

(32;22)

(35,5;22)

ШР-4

(15;8)

(15;1)

ТП

(19;7)

Вне цеха


  2.6. Расчёт сети 0,38кВ

         Выбор аппаратов защиты                                                               
    Выбор сечения проводника для отдельного электроприемника покажем на

примере вентилятора 10/1. Сечение питающего проводника выбираем по следующим условиям:

1)     По допустимому нагреву
IдопIр ,                                                                      (25)
  где Iдоп – допустимый ток проводника, определяется сечением     токоведущей жилы, ее материалом, количеством жил,  типом изоляции и условиями прокладки, А;
      Iрном/√3 · U ·cosφ,                                                                           (26)

    
                      Iр =11/√3 · 0,38 · = 21А,
    Данному  току  соответствует  провод  АПВ  сечением 4 мм² с                            Iдоп = 28 А [7, табл. 1.3.5]

2)     Проверяем выбранное сечение по допустимым потерям напряжения:
                                                       Uдоп ≥ ∆Uр                                                 (27)
где ∆Uдоп – допустимые потери напряжения, ∆Uдоп = 5%

      Uр  расчётные потери напряжения, %
Uр%  =  105 · Рном · L (ro + xo  tg φ)/ U ном²                                                             (28) 

                                                          
где L – длина проводника, км;

     ro  - активное сопротивление 1км проводника,  ro = 3,12Ом/км, [8, табл. 2-5];

    xo - реактивное сопротивление 1км проводника, xo = 3,12Ом/км, [8, табл. 2-5];                                                                                                                                                            

    Uр%= 105 · 11 · 0,012 · (3,12 + 0,073 · 0,75) / 380² = 0,28 %

т.к. и ∆Uр  < ∆Uдоп , то сечение 4 мм² соответствует допустимым потерям напряжения.

    В качестве аппарата защиты выбираем предохранитель по

следующим условиям:
Uном.пр >  Uном ,                                                                      (29)

Iном.пр  > Iр ,                                                                            (30)

Iпл.вс >  Iпик / α,                                                                       (31)
где Uном.пр – номинальное напряжение предохранителя, В;

       Iном.пр  - номинальный ток предохранителя, А;

       Iпл.вс – номинальный ток плавкой вставки, А;

       Iпик – пиковый ток, А;

       α – коэффициент, учитывающий условия пуска, α = 2,5 [3, табл. 6.3]
                       Iпик = КпIр ,                                                                                                                     (32)





  где Кп – кратность пускового тока по отношению к току нормального    режима, Кп = 5 [3];

                           Iпик = 21∙5 = 105А

Uном.пр >  380В ,                                                                             (33)

                       Iном.пр  > 21А ,                                                                                (34)

Iпл.вс >  105/2,5 = 42А ,                                                                  (35)

    Выбираем предохранитель ПН-2     Iном=100А    Iпл.вс=50А.

    Проверяем выбранный провод на соответствие выбранному предохранителю по условию:

Iдоп ≥ КзIз ,                                                                                  (36)
                                          
где  Кз – кратность допустимого тока проводника по отношению к току срабатывания аппарата защиты, Кз=1 [3, табл. 6.5];
  Iз – ток срабатывания защиты, Iз=50А.                    

    т.к. 28 < 1 ∙ 50, то провод не соответствует аппарату защиты поэтому выбираем провод АПВ-16мм2, Iдоп = 60А [7, табл. 1.3.5]

    Расчёт для группы электроприёмников покажем на примере ШР-1.


    В  соответствии  с  условием  (24)  Iр = 34,4А.  Выбираем    провод             АПВ-10мм2 [7, табл. 1.3.5].

    По формуле (28) находим:

                      Uр%= 105 · 17,8 · 0,05 · (3,12 + 0,073 · 0,75) / 380² = 2 %,

   Провод АПВ-10мм2 соответствует допустимым потерям напряжения, т.к. ∆Uр=2%≤∆Uдоп=5% [7]

    В качестве аппарата устанавливаем предохранитель

    Находим пиковый ток:
        Iпик = Iр – КиIнб + Iпуск.нб                                                                              (37)

                
где Iпик – пусковой ток наибольшего электроприёмника  

      Iпик = 34,4 – 0,65 ∙ 20,8 + 140 = 124,9  

    По условиям (29), (30), (31) выбираем предохранитель ПН-2  Iном.пр  =100А , Iпл.вс =50А,

    Проверяем предохранитель по селективности, однолинейная схема ШР-1 дона на рис. 2






















                                                        

                                                          Рис. 2
   Предохранитель на вводе не селективен,  поэтому  выбираем  предохранитель ПН-2  Iном.пр  =100А , Iпл.вс =80А

    Проверяем выбранный провод на соответствие выбранному предохранителю по условию (36), т.к. 34,4 ≤ 1 ∙ 80, то провод не соответствует аппарату защиты,  поэтому  находим,  что данному  предохранителю  соответствует   провод  АПВ-35мм2 [7, табл. 1.3.5].                                                                  

    Для остальных электроприемников и шкафов распределительных расчёт аналогичен, результаты сведены в табл. 5
Таблица 5





линии

Трасса

Проводник

Предохранитель

Откуда

Куда

Марка

Сечение

мм²

Кол-во жил

Длина

м

Тип

Iном

А

Iпл. вс А

1

ТП 35/6

ТП 6/0,4

ввод 1

ААБ

3*35

150







2

ТП 35/6

ТП 6/0,4

ввод 2

ААБ

3*35

150







3

ТП 6/0,4

Секция1

ШР-1

АПВ

35

4

55

ПН-2

100

80

4

ТП 6/0,4

Секция1

ШР-2

АПВ

70

4

65

ПН-2

250

150

5

ТП 6/0,4

Секция2

ШР-3

СБ

3*185+1*95

85

ПН-2

400

350

6

ТП 6/0,4

Секция2

ШР-4

СБ

2(3*185+ 1*95)

55

ПН-2

600

600

7

ШР-1

10/1

АПВ

16

4

15

ПН-2

100

50

8

ШР-1

6/1

АПВ

2,5

4

10

ПН-2

100

40

9

ШР-1

6/2

АПВ

2,5

4

15

ПН-2

100

40

10

ШР-1

6/3

АПВ

2,5

4

20

ПН-2

100

40

11

ШР-1

6/4

АПВ

2,5

4

25

ПН-2

100

40

12

ШР-1

6/5

АПВ

2,5

4

10

ПН-2

100

40

13

ШР-1

11/1

АПВ

2,5

4

5

ПР-2

15

15

14

ШР-1

11/2

АПВ

2,5

4

5

ПН-2

15

15

15

ШР-2

8/1

АПВ

10

4

10

ПН-2

100

40

16

ШР-2

8/2

АПВ

10

4

15

ПН-2

100

40

17

ШР-2

8/3

АПВ

10

4

20

ПН-2

100

40

18

ШР-2

8/4

АПВ

10

4

25

ПН-2

100

40

19

ШР-2

6/6

АПВ

2,5

4

25

ПН-2

100

40

20

ШР-2

10/2

АПВ

16

4

10

ПН-2

100

50

21

ШР-2

6/7

АПВ

2,5

4

25

ПН-2

100

40

22

ШР-2

6/8

АПВ

2,5

4

25

ПН-2

100

40

23

ШР-3

4

АПВ

50

4

10

ПН-2

250

250

24

ШР-3

8/5

АПВ

10

4

25

ПН-2

100

40

25

ШР-3

10/3

АПВ

16

4

25

ПН-2

100

50

26

ШР-3

14/1

АПВ

10

4

15

ПН-2

100

30

27

ШР-3

14/2

АПВ

10

4

20

ПН-2

100

30

28

ШР-3

14/3

АПВ


10

4

25

ПН-2

100

30

29

ШР-3

14/4

АПВ

10

4

25

ПН-2

100

30

30

ШР-4

3/1

АПВ

120

4

15

ПН-2

400

400

31

ШР-4

3/2

АВВГ

120

4

10

ПН-2

400

400

32

ШР-4

3/3

АВВГ

120

4

10

ПН-2

400

400

33

ШР-4

10/4

АПВ

16

4

15

ПН-2

100

50


    2.7. Расчет сети напряжением выше 1кВ
    Определяем экономически целесообразное сечение по формуле:
Sэк =      Iр/ Jэк ,                                                                                     (38)                                                                                                                                                                                                                                       

    где  Jэк – экономическая плотность тока, Jэк = 1,2 А/мм2 [3, табл. 6.8];

    В соответствии с формулой (26)

      Iр = 2 · 250 / √3 · 6 = 48А,                                                                       

       Sэк = 48 / 1,2 = 40 мм²,                                                                          

  Выбираем ближайшее стандартное сечение - 35 мм².

  Выбираем кабель ААБ-3х35мм2. 

  Проверяем выбранный кабель на термическую стойкость к токам к.з. Термически устойчивое сечение к токам к.з. определяется по формуле:
Fm.y.= I∞ · √t пр / С,                                                                                (39)
где I∞ - установившееся    значение    периодической       составляющей        тока    к.з.,   I∞ = 2850А(см. разд. 2.8);

С – коэффициент, учитывающий разницу теплоты выделенной проводником до и после короткого замыкания, С = 95 [3, с. 200];

 tпр – фиктивное время, при котором установившийся ток к.з выделяет то же количество теплоты, что и действительный ток к.з. за действительное время при tg =  0,15с, t пр = 0,2с, при β’’=2 [3, рис. 15.10].

Кабель ААБ 3 х 35 термически устойчив к токам короткого замыкания.

Окончательно выбираем кабель ААБ 3 х 35
2.8. Расчет токов короткого замыкания                                               

 

    Расчёт проводим в относительных единицах при базисных условиях. В соответствии с заданием и результатами проектирования составляем расчётную схему и схему замещения. Расчётная схема дона на рис. 3, схема замещения на рис. 4
   

                                   рис. 3                                              рис. 4                               
    Примем   что    базисная    мощность    Sб = 100МВА, базисное напряжение Uб = 6,3кВ.

    Сопротивление воздушной линии находится по формуле:
Хвл*б = ХоLSб/U2ном.ср ,                                                                    (40)
    где Uном.ср – среднее номинальное напряжение ступени, кВ                      

                      Хвл*б = 0,4 ∙ 45 ∙ 100/372 = 1,3 ,

    Сопротивление трансформатора находится по формуле:
                                                         (41)

                       

      Определяем реактивное сопротивление кабельной линии по формуле (40):

                  Хкл*б = 0,087 ∙ 0,15 ∙ 100/6,32 = 0,03

      Находим активное сопротивление по формуле:
  rкл*б = rоL  Sб/U2ном.ср.каб ,                                                                    (42)

                 rкл*б = 0,894 ∙ 0,15 ∙  100/6,32 = 0,33
     Используя признаки параллельного и последовательного соединения сопротивлений находим активное и индуктивное результирующие сопротивления:

                          Хрез*б = 1,3+1,9+0,015 =3,215,

                         Rрез*б = 0,165,

    Так как Rрез*б ≤Хрез*б /3 то Хрез*б  = Zрез*б.

    Определяем ток короткого замыкания по формуле:
Iк.з. = Iб/Zрез*б ,                                                                                                                                    (43)
    где Iб – базисный ток, кА.

    По формуле (14) находим базисный ток

                Iб = 100/√3∙ 6,3 = 9,17кА,

                Iк.з. = 9,17/3,215 = 2,85кА,

    Определяем ударный ток:
                Iу = 2,55 ∙Iк.з.,                                                                                             (44)

                 Iу = 2,55 ∙2,85 = 5,4кА,
    Находим мощность короткого замыкания:
Sк.з. = Sб/Zрез.*б ,                                                                                            (45)

             Sк.з. = 100/3,215 = 31,10 МВА .
    2.9.Выбор оборудования подстанции
Выбор разъединителей производим по следующим условиям:
Uном р >  Uном                                                                                            (46)

Iном р > Iрасч                                                                                               (47)

i а. ≥ iy.                                                                                                    (48)

It² ∙ t > Iк2 ∙ tпр                                                                                           (49)
где Uном р – номинальное напряжение разъединителя;

            Iном р – Номинальный ток разъединителя;

             i а – амплитудное значение предворительного сквозного тока к.з;

        It – предельный ток термической стойкости;

         t – время, в течении которого разъединитель выдерживает предельный ток термической стойкости.

    Номинальные данные разъединителя находим по [6, табл. 31.7]

    Выбор выключателя производим по следующим условиям:
Uном.в = Uном                                                                                               (50)

Iном.в > Iр                                                                                                                                                            (51)

i а. ≥ iy                                                                                                      (52)

 It² ∙ t > Iк2 ∙ tпр                                                                                           (53)

Iотк  > Iк                                                                                                      (54)

Sотк ≥ Sк                                                                                                    (55)
где Uном.в – номинальное напряжение выключателя;

        Iном.в – номинальны ток выключателя;

        Iотк – номинальный ток отключения выключателя;

        Sотк – мощность отключения выключателя

      Sотк =√3∙IоткUном.в                                                                                 (56)

Номинальные данные масленого выключателя находим [6, табл. 31.1].

Результаты выбора представлены в табл. 6
Таблица 6



Выкл. ВММ-10-320-10Т3

разъед. РВ – 6/400

Расчётные

данные

Католожные

данные

Расчётные

данные

Католожные

данные

Uном=6кВ

Iр=48,16 А

iy =5,9кА

I2к ∙ tпр = 6,5

Iк =2,85кА

Sк =31,1 МВА

Uном.в = 11кВ

Iном.в = 320А

i а =25кА

It2t =400

Iотк =10кА

Sотк =190,3 МВА

Uном =6кВ

Iр =48,16А

Iy =5,9кА

I2к ∙ tпр =6,5



Uном.р =6кВ

Iном.р =400А

Iа =

It2t =1023




    Выбираем автоматическии выключатели, установленые на стороне 0,4кВ подстанции по условиям:
  Uном ав >  Uном                                                                                                (57)

Iном ав > Iрасч                                                                                                   (58)

Iт р > Iр                                                                                                           (59)

Iэ.р > 1,25∙Iпик                                                                                                (60)
где Uном ав – номинальное напряжение автоматического выключателя;

        Iном ав – номинальный ток автоматического выключателя;

        Iт р – номинальный ток теплового расцепителя;

        Iэ.р  - ток срабатывания электромагнитного расцепителя.

    По формуле (37) находим

            Iпик = 982 – 0,17 ∙ 177 + 887,3 = 1839,21А

            Uном ав >  380В                                                                                           

             Iном ав > 982А                                                                                               

             Iт р > 982А                                                                                                      

             Iэ.р > 2299А                                                                                                  

    Выбирем выключатель АВМ-10    Uном ав =400  Iном ав = 1000А  Iт р =1000А

 Iэ.р  = 5000А                                                                                                                                                                                                                                                   

ЗАКЛЮЧЕНИЕ



    При проектировании получены следующие результаты:

1. Для соблюдения нормированной освещенности на механическом участке

необходимо установить 55 светильников.

2. В  соответствии  с  силовой  и   осветительной   нагрузками  с  учетом

экономических показателей для электроснабжения механического участка

необходимо  установить  на  питающей подстанции 6/0,4кВ, два трансформатора мощностью 250кВА каждый.

3. Силовые  сети   0,38кВ    выбирались по допустимому нагреву с учетом допустимых     потерь напряжения в  соответствии с аппаратом  защиты и выполнены кабелем марки ААБ, АВВГ, СБ, проводом АПВ

4. В качестве аппарата защиты выбрали предохранители.

Результаты проектирования даны в табл. 7:
Таблица 7

Спецификация

Наименование

электрооборудования

Марка

тип

Единица

измерения

Кол-во

Разъединитель трёхполюсный, Iном=320А, Uном=6кВ

Выключатель масляный

Uном =11кВ Iном=320А

Трансформатор маслянный мощностью – 250кВА

Автоматический выключатель

Uном =380В Iном=982А  Iт.р=982А

Предохранитель

Iном=1000А    Iпл.вс=800А

тоже Iном=400А    Iпл.вс=350А

тоже Iном=250А    Iпл.вс=250А

тоже Iном=100А    Iпл.вс=100А

РВ 6/400
ВММ-10-320-10Т3
ТМ-250/6
АВМ-10
ПН-2

ПН-2

ПН-2

ПН-2

шт
шт
шт
шт
шт

шт

шт

шт

6
3
2
3
3

3

3

3

Кабель на напряжение 6кВ

Сечением 3 х 35мм2



ААБ



м



135

Светильник

Щиток рабочего освещения

Щиток аварийного освещения

Лампы

Гс

ОЩВ-12

ОЩВ-3

Г220-500

шт

шт

шт

шт

55

1

1

55

Кабель на напряжение до 1кВ

сечением 3х185 + 1х95

сечением 70

сечением 16

Провод с алюминевыми жилами в поливенилхлоридной изоляцией

сечением 2,5

сечением 10

сечением 16

сечением 50

сечением 120



СБ

АВВГ

АВВГ
АПВ

АПВ

АПВ

АПВ

АПВ



м

м

м
м

м

м

м

м



15

125

35
135

180

65

10

60

Предохранители

Iном=15

Iном=100

Iном=250

Iном=400

Iном=600



ПН-2

ПН-2

ПН-2

ПН-2

ПН-2



шт

шт

шт

шт

шт



6

66

6

12

3

 

 
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
1.     Цигельман И.Е. Электроснабжение гражданских зданий и

     Коммунальных предприятий.- М.: Высшая школа, 1977

2.     Епанешников М.М. Электрическое освещение.- М.: Высшая школа, 1973

3. Постников Н.П., Рубашов Г.М. Электроснабжение промышленных

     предприятий.- Л.: Строййиздат, 1980

     4. Липкин Б.Ю. Электро снабжение промышленных предприятий и установок.- М.: Высшая школа, 1981

5.     Крючков И.П., Кувшинский Н.Н., Неклепаев Б.Н. Электрическая часть

станций и подстанций.- М.: Энергия, 1978

6.     Справочник по электроснабжению и оборудованию /Под ред.

    Федорова А.А., Барсукова А.Н. М., Электрооборудование, 1978

7.     Правила  устройства  электроустановок  /Минэнерго  СССР.- М.: Энергия, 1980

8.     Хромченко Г.Е. Проектирование кабельных сетей и проводок /Под общ. ред. Хромченко Г.Е. – М.:Высшая школа, 1973




   


1. Реферат на тему Beowulf Essay Research Paper Beowulf and Grendel
2. Контрольная работа MathCAD программа для математических расчетов
3. Реферат Обобщающий урок по аутэкологии
4. Сочинение Помощники
5. Реферат на тему Othello Tragedy Essay Research Paper One of
6. Реферат Нумізматика як допоміжна історична дисципліна
7. Реферат Банковские операции и формы безналичных расчетов
8. Контрольная работа на тему Экономические учения Древней Греции Ксенофонт Платон Аристотель
9. Реферат на тему Гігієна повітряного середовища житлових приміщень
10. Реферат на тему Domestic Violence In America Essay Research Paper