Реферат

Реферат Земля и Солнце основной фактор жизни на Земле

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 14.1.2025





Содержание:
Введение                                                                                                                                         3

1.                  Земля и её место во Вселенной                                                                                         5

2.                  Солнце – ближайшая к нам звезда осн. фактор существования жизни на Земле        7

3.                  Солнечное излучение методы и способы его изучения                                                  12

4.                  Атмосфера и магнитное поле Земли                                                                                14

5.                  Заключение. «Влияние Космоса» на Земную цивилизацию                                          17

6.                  Сноски                                                                                                                                 18

7.                  Список литературы и источников                                                                                    25


Введение

Солнце – как загадочный небесный объект интересовало людей с древнейших времен. В истории и культуре практически всех народов можно увидеть культ глубочайшего почитания Солнца, как божества.

Достижения астрономии позволили понять процессы, происходящие внутри и на поверхности Солнца и их непосредственное влияние на нашу планету. Самим зарождением жизни на Земле, мы обязаны уникальным обстоятельствам. Ведь форма нашей жизни могла появиться только у такой звезды, как Солнце, и на планете, находящейся на таком расстоянии от звезды, как Земля.

Наш век стал временем глубочайших астрономических и земных открытий. Современные технологии позволяют изучать многие, ранее недоступные вопросы.

Исследования процессов, происходящих на различных небесных телах, позволяют астрономам изучать материю в таких ее состояниях, какие еще не достигнуты в земных лабораторных условиях. Поэтому астрономия, и в частности астрофизика, тесно связанная с физикой, химией, математикой, способствует развитию последних, а они, как известно, являются основой всей современной техники. Достаточно сказать, что вопрос о роли внутриатомной энергии впервые был поставлен астрофизиками, а величайшее достижение современной техники - создание искусственных небесных тел (спутников, космических станций и кораблей) вообще было бы немыслимо без астрономических знаний.

Этому конечно предшествовали исследователи прошлых времён.

Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н. э. Однако известно, что еще за 3 тысячи лет до н. э. египетские жрецы подметили, что разливы Нила, регулировавшие экономическую жизнь страны, наступали вскоре после того, как перед восходом Солнца на востоке появлялась самая яркая из звезд, Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих наблюдений египетские жрецы довольно точно определили продолжительность тропического года.

В Древнем Китае за 2 тысячи лет до н. э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать наступление солнечных и лунных затмений.

Астрономия, как и все другие науки, возникла из практических потребностей человека. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением па ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летосчислении (составлении календарей).

Все это могли дать и давали наблюдения над движением небесных светил, которые велись в начале без всяких инструментов, были не очень точными, но вполне удовлетворяли практические нужды того времени. Из таких наблюдений и возникла наука о небесных телах - астрономия.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Постепенно стали создаваться простейшие астрономические инструменты и разрабатываться математические методы обработки наблюдений.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх (II в. до н. э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н. э.). Будучи принципиально неверной, система Птолемея тем не менее позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии. Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени - Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др. В период возникновения и становления капитализма в Европе, который пришел на смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV-XVI вв.). Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых земель и снаряжал многочисленные экспедиции для их открытия. Но далекие путешествия через океан требовали более точных и более простых методов ориентировки и исчисления времени, чем те, которые могла обеспечить система Птолемея. Развитие торговли и мореплавания настоятельно требовало совершенствования астрономических знаний и, в частности, теории движения планет. Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, - с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.

Учение Коперника явилось началом нового этапа в развитии астрономии. Кеплером в 1609-1618 гг. были открыты законы движений планет, а в 1687 г. Ньютон опубликовал закон всемирного тяготения.

Новая астрономия получила возможность изучать не только видимые, но и действительные движения небесных тел. Ее многочисленные и блестящие успехи в этой области увенчались в середине XIX в. открытием планеты Нептун, а в наше время - расчетом орбит искусственных небесных тел.

Следующий, очень важный этап в развитии астрономии начался сравнительно недавно, с середины XIX в., когда возник спектральный анализ, и стала применяться фотография в астрономии. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Возникла астрофизика, получившая особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни. В 40-х гг. XX в. стала развиваться радиоастрономия, а в 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению фактически нового раздела астрофизики - рентгеновской астрономии.
Актуальность выбранной темы обусловлена тем, что солнечные процессы непрерывно влияют на нашу планету и с ними связаны практически все изменения в земной жизни.

Цель данной работы: описать уже имеющиеся знания современной науки о Солнце и взаимодействия, происходящие в системе Солнце-Земля.
Работа состоит из введения, четырёх глав и заключения.

В первой главе описываются физические свойства и состав Земли и ее естественного спутника – Луны.

Во второй главе говорится о структуре Солнца и процессах, происходящих в нем и влиянии на земную жизнь.

В третьей главе речь идет о Солнечных излучениях и их влиянии на биосферу Земли.

Четвертая глава посвящена атмосфере и магнитному полю Земли и изменениям, происходящим в них под воздействием Солнца.

В заключении подведены итоги проделанной работы.

Список литературы по теме содержит 4 источника.




1. Земля и её место во Вселенной

Земля
. Форма, размеры и рельеф. Внутреннее строение. Луна
.

Земля, третья от Солнца большая планета Солнечной системы. Благодаря своим уникальным, быть может, единственным во Вселенной природным условиям, стала местом, где возникла и получила развитие органическая жизнь.

Форма, размеры и рельеф

По форме Земля близка к эллипсоиду, сплюснутому у полюсов и растянутому в экваториальной зоне. Средний радиус Земли 6371,032 км, полярный — 6356,777 км, экваториальный —6378,160 км. Масса Земли 5,976·1024 кг, средняя плотность 5518 кг/м3.

Земля движется вокруг Солнца со средней скоростью 29,765 км/с по эллиптической, близкой к круговой орбите;

среднее расстояние от Солнца 149,6 млн. км,

период одного обращения по орбите 365,24 солнечных суток.

Вращение Земли вокруг собственной оси происходит со средней угловой скоростью 7,292115·10-5рад/с, что примерно соответствует периоду в 23 ч 56 мин 4,1 с.

Линейная скорость поверхности Земли на экваторе — около 465 м/с. Ось вращения наклонена к плоскости эклиптики под углом 66° 33' 22''. Этот наклон и годовое обращение Земли вокруг Солнца обуславливают исключительно важную для климата Земли смену времен года, а собственное ее вращение — смену дня и ночи. Вращение Земли из-за приливных воздействий неуклонно (хотя и очень медленно — на 0,0015 с. за столетие) замедляется. Имеются и небольшие нерегулярные вариации продолжительности суток.

Положение географических полюсов меняется с периодом 434 суток. Кроме того, имеются и небольшие сезонные их перемещения.

Площадь поверхности Земли 510,2 млн. км2, из которых примерно 70,8% приходится на Мировой океан. Его средняя глубина около 3,8 км, максимальная (Марианская впадина в Тихом океане) равна 11,022 км; объем воды 1370 млн. км3, средняя соленость 35 г/л. Суша составляет соответственно 29,2% и образует шесть материков и острова. Она поднимается над уровнем моря в среднем на 875 м; наибольшая высота (вершина Джомолунгма в Гималаях) 8848 м. Горы занимают свыше 1/3 поверхности суши. Пустыни покрывают около 20% поверхности суши, саванны и редколесья — около 20%, леса — около 30%, ледники — свыше 10%. Свыше 10% суши занято под сельскохозяйственными угодьями.

По современным космогоническим представлениям Земля образовалась примерно 4,6-4,7 млрд. лет назад из захваченного притяжением Солнца протопланетного облака. На образование первых, наиболее древних из изученных горных пород потребовалось 100-200 млн. лет. Примерно 3,5 млрд. лет назад возникли условия, благоприятные для возникновения жизни. Homo sapiens («Человек разумный») как вид появился примерно полмиллиона лет назад, а формирование современного типа человека относят ко времени отступления первого ледника, то есть около 40 тыс. лет назад.

У Земли имеется единственный спутник —Луна. Ее орбита близка к окружности с радиусом около 384400 км.

Внутренне строениеВнутреннее строение Земли: ядро (показано красным); мантия (коричневым); земная кора (желтым); океаны (голубым).

Основную роль в исследовании внутреннего строения Земли играют сейсмические методы, основанные на исследовании распространения в ее толще упругих волн (как продольных, так и поперечных), возникающих при сейсмических событиях — при естественных землетрясениях и в результате взрывов. На основании этих исследований Землю условно разделяют на три области: кору, мантию и ядро (в центре). Внешний слой — кора — имеет среднюю толщину порядка 35 км. Основные типы земной коры — континентальный (материковый) и океанический; в переходной зоне от материка к океану развита кора промежуточного типа. Толщина коры меняется в довольно широких пределах: океаническая кора (с учетом слоя воды) имеет толщину порядка 10 км, тогда как толщина материковой коры в десятки раз больше.

Поверхностные отложения занимают слой толщиной около 2 км. Под ними находится гранитный слой (на континентах его толщина 20 км), а ниже — примерно 14-километровый (и на континентах, и в океанах) базальтовый слой (нижняя кора). Средние плотности составляют: 2,6 г/см3 — у поверхности Земли, 2,67 г/см3 —у гранита, 2,85 г/см3 — у базальта.

На глубину примерно от 35 до 2885 км простирается мантия Земли, которую называют также силикатной оболочкой. Она отделяется от коры резкой границей (так называемая граница Мохоровича, или «Мохо»), глубже которой скорости как продольных, так и поперечных упругих сейсмических волн, а также механическая плотность скачкообразно возрастают. Плотности в мантии увеличиваются по мере возрастания глубины примерно от 3,3 до 9,7 г/см3.

В коре и (частично) в мантии располагаются обширные литосферные плиты. Их вековые перемещения не только определяют дрейф континентов, заметно влияющий на облик Земли, но имеют отношение и к расположению сейсмических зон на планете.

Еще одна обнаруженная сейсмическими методами граница (граница Гутенберга) — между мантией и внешним ядром — располагается на глубине 2775 км. На ней скорость продольных волн падает от 13,6 км/с (в мантии) до 8,1 км/с (в ядре), а скорость поперечных волн уменьшается от 7,3 км/с до нуля. Последнее означает, что внешнее ядро является жидким. По современным представлениям внешнее ядро состоит из серы (12%) и железа (88%). Наконец, на глубинах свыше 5120 км сейсмические методы обнаруживают наличие твердого внутреннего ядра, на долю которого приходится 1,7% массы Земли. Предположительно, это железо-никелевый сплав (80% Fe, 20% Ni).

В числе многих химических элементов, входящих в состав Земли, имеются и радиоактивные. Их распад, а также гравитационная дифференциация (перемещение более плотных веществ в центральные, а менее плотных в периферические области планеты) приводят к выделению тепла. Температура в центральной части Земли порядка 5000 °С. Максимальная температура на поверхности приближается к 60 °С (в тропических пустынях Африки и Северной Америки), а минимальная составляет около -90 °С (в центральных районах Антарктиды). Давление монотонно возрастает с глубиной от 0 до 3,61 ГП. Тепло из недр Земли передается к ее поверхности благодаря теплопроводности и конвекции.

Плотность в центре Земли около 12,5 г/см3.

Луна, естественный спутник Земли, находится от нее на среднем расстоянии 384 400 км. Наклон орбиты к плоскости эклиптики 5° 8' 43", масса 7,35.1022 кг (1/81,3 массы Земли), средний радиус Луны 1738 км, ускорение силы тяжести на поверхности 1,62 м/с2. Средняя плотность 3343 кг/м3, сидерический период обращения 27,3 сут, синодический период обращения 29,5 сут. Светит отраженным солнечным светом, визуальное сферическое альбедо 0,75. Поверхность Луны в основном гориста, покрыта многочисленными кратерами ударного (метеоритного) происхождения. Лунный грунт — реголит. Температура на поверхности Луны 100-400 К, магнитное поле Ј 4 гамм. Первый человек ступил на поверхность Луны 21 июля 1969 (Н. Армстронг, США).




2. Солнце – ближайшая к нам звезда основной фактор существования жизни на Земле

Солнце. Физические характеристики Солнца. Строение Солнца.

СОЛНЦЕ, центральное тело нашей планетной системы возникло около 4,7 млрд. лет тому назад вместе с другими планетами, типичная звезда-карлик спектрального класса G2; масса М~2.103 кг, радиус R=696 т. км.

Средняя плотность солнечного вещества 1400 кг/м3. Однако, это среднее число, и плотность в наружных слоях несоизмеримо меньше, а в центре в 100 раз больше.

Светимость L=3,86.1023кВт, эффективная температура поверхности (фотосферы)ок. 6000К.

Период вращения (синодический) изменяется от 27 сут на экваторе до 32 сут у полюсов, ускорение свободного падения 274 м/с2.

Солнце – ближайшая к Земле звезда, у которой в отличие от всех других звёзд мы можем наблюдать диск и при помощи телескопа изучать на нём мелкие детали. Среднее расстояние от Земли (астрономическая единица или а. е.) 149. 6 млн. км.

Солнце – типичная звезда, а потому его изучение помогает понять природу звёзд вообще.

Масса Солнца в 333 тыс. раз больше массы Земли, мощность полного излучения Солнца составляет 4 * 1023 кВт,

Как и все звёзды, Солнце – раскалённый газовый шар. В основном оно состоит из водорода с примесью 10% (по числу атомов) гелия, 1-2% массы Солнца приходится на другие более тяжёлые элементы.

Согласно современным представлениям, Солнце принадлежит к звёздам так называемой главной последовательности, т. е. к близким по химическому составу звёздам, в недрах которых протекают термоядерные реакции превращения водорода в гелий.

Химический состав, определенный из анализа солнечного спектра: водород — ок. 90%, гелий — 10%, остальные элементы — менее 0,1% (по числу атомов). Источник солнечной энергии — ядерные превращения водорода в гелий в центральной области Солнца, где температура 15 млн. К. Энергия из недр переносится излучением, а затем во внешнем слое толщиной ок. 0,2 R — конвекцией. С конвективным движением плазмы связано существование фотосферной грануляции, солнечных пятен, спикул и т. д. Интенсивность плазменных процессов на Солнце периодически изменяется. Солнечная атмосфера (хромосфера и солнечная корона) очень динамична, в ней наблюдаются вспышки, протуберанцы, происходит постоянное истечение вещества короны в межпланетное пространство (солнечный ветер). Земля, находящаяся на расстоянии 149 млн. км от Солнца, получает ок. 2.1017Вт солнечной лучистой энергии. Солнце — основной источник энергии для всех процессов, совершающихся на земном шаре. Вся биосфера, жизнь существуют только за счет солнечной энергии. На многие земные процессы влияет корпускулярное излучение Солнца.

В нашей Галактике насчитывается несколько миллиардов жёлтых карликов, звёзд подобных нашему Солнцу, которые тоже должны быть источниками излучения типа солнечного ветра.

Звёздный ветер, как и солнечный, возникает в результате теплового расширения внешней оболочки звезды, когда сила внутреннего давления газа не уравновешивается гравитацией.

Звёздный ветер – это движущийся со сверхзвуковыми скоростями поток заряженных частиц.

Не последнюю роль в образовании звёздного ветра играет и вращение звезды вокруг собственной оси. Быстрое вращение звезды может приводить к образованию разного рода неустойчивостей, в следствии чего, наступает перестройка структуры звезды, а это в свою очередь сопровождается выбросом плазмы.

Впервые вращение Солнца наблюдал Галилей по движению пятен по поверхности. Различные зоны Солнца вращаются вокруг оси с различными периодами. Так точки на экваторе имеют период около 25 суток, на широте 40° период вращения равен 27 суток, а вблизи полюсов – 30 суток. Это доказывает, что Солнце вращается не как твердое тело, скорость вращения точек на поверхности Солнца уменьшается от экватора к полюсам.

Поверхность солнца (фотосфера) имеет гранулярную структуру, т. е. состоит из «зёрнышек» размером в среднем около 1000 км. Грануляция является следствием движения газов, в зоне, расположенной под фотосферой. Временами в отдельных областях фотосферы тёмные промежутки между пятнами увеличиваются, и образуются большие тёмные пятна. Наблюдая солнечные пятна в телескоп, Галилей заметил, что они перемещаются по видимому диску Солнца. На этом основании он сделал вывод, что Солнце вращается вокруг своей оси, с периодом 25 сут. на экваторе и 30 сут. вблизи полюсов.

На сегодня известно существование двух типов ветров «срывающихся» с поверхности звёзд. К первому типу относится ветер, подобный солнечному. Он характеризуется малой потерей массы, но высокой, порядка 500 км/с, скоростью распространения плазмы в пространстве. Ветер второго типа в миллиард раз интенсивнее солнечного, хотя и перемещается в пространстве с относительно малыми скоростями (около 100 км/с).

Солнце и подобные ему звёзды выбрасывают в пространство мягкое корпускулярное излучение.

Наше Солнце ежегодно «выбрасывает на ветер» около 10(в-14) своей массы.

Общая структура: энерговыделяющее ядро (от центра до расстояния в четверть радиуса), область лучистой теплопроводности (от 1/4 до 2/3 радиуса) и конвективная зона (последняя треть радиуса). Физические условия в этих внутренних слоях Солнца определяются теоретическими расчетами и проверяются методами гелиосейсмологии и нейтринной астрономии. Выше конвективной зоны начинаются непосредственно наблюдаемые внешние слои солнечной атмосферы, состоящие (по числу атомов) в основном из водорода, 10% гелия, 1/1000 углерода, азота и кислорода и 1/10000 металлов вместе со всеми остальными химическими элементами. Атмосфера Солнца условно разделяется на три оболочки: почти нейтрального водорода и однократно ионизованных металлов (фотосфера, толщина 200-300 км), неоднородного слоя, в котором по мере продвижения вверх последовательно ионизуются водород, гелий и др. химические элементы (хромосфера, протяженность 10-20 тыс. км) и разреженной изотермической короны, в которой все атомы ионизованы вплоть до самых глубоких электронных оболочек. Солнечная корона постепенно переходит в динамическое образование постоянно расширяющегося потока ионизованных атомов (в основном протонов, альфа-частиц и свободных электронов), образующих солнечный ветер, простирающийся за орбиты Земли и Марса.

На Солнце вещество сильно ионизировано, т. е. атомы потеряли свои внешние электроны и вместе с ними стали свободными частицами ионизированного газа – плазмы.

Пятна – непостоянные образования, чаще всего появляются группами. Вокруг пятен иногда видны почти незаметные светлые образования, которые называют факелами. Главной особенностью пятен и факелов является присутствие магнитных полей с индукцией, достигающей 0,4-0,5 Тл.

Всем известно, что и животным, и растениям очень важен свет Солнца, в частности, это касается и людей. Некоторые люди просыпаются и бодрствуют только тогда, когда светит Солнце (это касается и большинства млекопитающих, земноводных и даже большинства рыб). Продолжительность солнечного дня оказывает значительное влияние на жизнедеятельность организмов на Земле. Зимой и осенью, когда Солнце в Северном полушарии стоит низко над горизонтом, и продолжительность светового дня мала и мало поступление солнечного тепла, природа увядает и засыпает — деревья сбрасывают листья, многие животные впадают на длительный срок в спячку (медведи, барсуки) или же сильно снижают свою активность. Вблизи полюсов даже во время лета поступает мало солнечного тепла, из-за этого растительность там скудная — причина унылого тундрового пейзажа, и мало какие животные могут проживать в таких условиях. Весной же вся природа просыпается, трава распускается, деревья выпускают листья, появляются цветы, оживает животный мир. И всё это благодаря всего одному-единственному Солнцу. Его климатическое влияние на Землю бесспорно. Именно благодаря неравномерному поступлению солнечной энергии в разные районы Земли и в разные времена года на Земле сформировались климатические пояса.

В зелёных листьях растений содержится зелёный пигмент хлорофилл — этот пигмент является важнейшим катализатором на Земле. С его помощью происходит реакция диоксида углерода и воды - фотосинтез, и одним из продуктов этой реакции является кислород — элемент, который необходим для жизни почти всему живому на Земле и глобально повлиял на эволюцию нашей планеты. Реакция воды и углекислого газа происходит с поглощением энергии, поэтому в темноте фотосинтез не происходит. Фотосинтез, преобразуя солнечную энергию и производя при этом кислород, дал начало всему живому на Земле. При этой реакции образуется глюкоза, которая является важнейшим сырьём для синтеза целлюлозы, из которой состоят все растения. Поедая растения, в которых за счёт солнца накоплена энергия, существуют и животные. Растения Земли поглощают и усваивают всего около 0,3 % энергии излучения Солнца, падающей на земную поверхность. Но и этого, на первый взгляд, мизерного количества энергии достаточно, чтобы обеспечить синтез огромного количества массы органического вещества биосферы. В частности, постепенно, переходя от звена к звену, солнечная энергия достаётся всем живым организмам в мире, включая и людей. Благодаря использованию минеральных солей почвы растениями в состав органических соединений включаются также следующие химические элементы: азот, фосфор, сера, железо, калий, натрий, а также многие другие элементы. В последствие из них строятся огромные молекулы белков, нуклеиновых кислот, углеводов, жиров, веществ, жизненно необходимых для клеток.

Земная поверхность и нижние слои воздухатропосфера, где образуются облака и возникают другие метеорологические явления, непосредственно получают энергию от Солнца. Солнечная энергия постепенно поглощается земной атмосферой по мере приближения её к поверхности Земли — далеко не все виды излучения, испущенного Солнцем, попадают на Землю. На Землю доходит только 40 % солнечного излучения, 60 % излучения же отражаются и уходят обратно в космос. Полное количество энергии, излучаемой Солнцем, составляет L = 3,86?1033 эрг/с = 3,86?1026 Вт. Это соответствует 6,5 кВт с каждого квадратного сантиметра его поверхности! Лишь одну двухмиллиардную часть этой энергии получает Земля.

В настоящее время наблюдается очень негативная тенденция к увеличению поглощаемого Землёй количества солнечного тепла по причине увеличения количества в атмосфере Земли парниковых газов (Парниковый эффект). Под действием солнечного света на Земле происходят такие грандиозные природные явления, как дождь, снег, град, ураган. Происходит перемещение огромного количества воды на Земле, действуют такие океанические течения, как Гольфстрим, Течение западных ветров и т. д. Происходит интенсивное испарение влаги, которая затем охлаждается и выпадает в виде дождя. Не будь всего этого — на Земле не было бы жизни. Под действием солнечного тепла образуются облака, бушуют ураганы, дует ветер, существуют волны на море, а также происходят медленные, но неумолимые процессы выветривания, эрозии горных пород. Все эти явления и делают нашу планету настолько разнообразной, неповторимой и красивой. И хотя такие метеорологические явления, как грозы или ветра, есть на большинстве планет солнечной системы, где вообще присутствует атмосфера (Венера, Юпитер), они имеют однотипный характер, и вся погода на этих планетах в целом однообразна и не может меняться настолько же резко, как это происходит на Земле. Все эти процессы на Земле происходят за счёт воздействия на Землю не всех видов солнечного излучения, а только некоторыми его видами — это, в основном, видимое излучение и инфракрасное. Именно воздействие последнего вида излучения нагревает Землю и создаёт погоду на ней, определяет тепловой режим планеты.

Помимо этого в атмосферу земли проникает поток ионизированных частиц (в основном гелиево-водородной плазмы), истекающий из солнечной короны со скоростью 300—1200 км/с в окружающее космическое пространство (Солнечный ветер).

Множество природных явлений связано с солнечным ветром, в том числе магнитные бури, полярные сияния и различная форма кометных хвостов, всегда направленных от Солнца.

Кроме того, инфракрасные лучи Солнца полезны для здоровья человека — они проникают глубоко под слой кожи человека и вызывают заметное тепловое действие, очень полезное при лечении многих видов заболеваний. Поэтому не зря многие животные, когда болеют, «греются на солнышке».

Ультрафиолетовое излучение Солнца разрушает молекулу кислорода, которая распадается на два составляющих её атома (атомарный кислород), и возникшие таким путём свободные атомы кислорода соединяются с другими молекулами кислорода, которые ещё не успели разрушиться солнечным ультрафиолетовым излучением, и в результате получается его аллотропная модификация, состоящая из трёх атомов кислорода — озон. Озон жизненно важен для существования жизни на Земле. Образуется он за счёт солнечного излучения, а также благодаря атмосферным электрическим разрядам — молниям. Благодаря озоновому слою до поверхности Земли доходит лишь малая часть жёсткого ультрафиолетового излучения. Ультрафиолетовые лучи опасны для человека и животных, и поэтому образование озоновых дыр представляет серьёзную угрозу для человечества.

Озо́новая дыра́ — локальное падение концентрации озона в озоновом слое Земли. По общепринятой в научной среде теории, во второй половине XX века всё возрастающее воздействие антропогенного фактора в виде выделения хлор- и бромсодержащих фреонов привело к значительному утоньшению озонового слоя, см. например доклад Всемирной метеорологической организации:

Согласно другой гипотезе, процесс образования «озоновых дыр» в значительной мере естественный и не связанный исключительно с вредным воздействием человеческой цивилизации.

Озоновая дыра диаметром свыше 1000 км впервые была обнаружена в 1985 в Южном полушарии над Антарктидой группой британских учёных. Каждый август она появлялась, к декабрю или январю прекращая своё существование. Над Северным полушарием в Арктике образовывалась другая дыра меньших размеров.

Последствия Ослабление озонового слоя усиливает поток солнечной радиации на землю и вызывает у людей рост числа раковых образований кожи. Также от повышенного уровня излучения страдают растения и животные.

Восстановление озонового слоя. Хотя человечеством были приняты меры по ограничению выбросов хлор- и бромсодержащих фреонов путём перехода на другие вещества, например фторсодержащие фреоны, процесс восстановления озонового слоя займёт несколько десятилетий. Прежде всего, это обусловлено огромным объёмом уже накопленных в атмосфере фреонов, которые имеют время жизни десятки и даже сотни лет. Поэтому затягивание озоновой дыры не стоит ожидать ранее 2048 года




Однако в небольшом количестве ультрафиолет необходим человеку. Все знают, что под действием ультрафиолета образуется жизненно необходимый витамин D. При его недостатке возникает серьёзное заболевание — рахит, которое может возникнуть по оплошности родителей, которые прячут своих детей вдали от солнечного света. Недостаток витамина D опасен и для взрослых, при недостатке данного витамина наблюдается размягчение костей не только у детей, но и у взрослых (остеомаляция). Из-за недостатка поступления ультрафиолетовых лучей может нарушиться нормальное поступление кальция, вследствие чего усиливается хрупкость мелких кровеносных сосудов, увеличивается проницаемость тканей. Недостаточность солнечного света проявляется также в бессоннице, быстрой утомляемости и др. Поэтому человеку периодически необходимо бывать на Солнце.

Ультрафиолетовые лучи также в небольшом количестве (в большом количестве они могут вызвать рак кожи) усиливают работу кровеносных органов: повышается количество белых и красных кровяных телец (эритроцитов и тромбоцитов), гемоглобина, увеличивается щелочной резерв организма и повышается свёртывание крови. При этом дыхание клеток и усиливается, процессы обмена веществ идут активнее. Ультрафиолетовые лучи позитивно воздействуют на организм и посредством других природных факторов — они способствуют ускорению самоочищения атмосферы от загрязнения, вызванного антропогенными факторами, способствуют устранению в атмосфере частичек пыли и дыма, устраняя смог.

Образование Солнечной системы

Образовалась Солнечная система около 4,6 млрд. лет назад из холодного газопылевого облака. В настоящее время с помощью современных телескопов (в частности космического телескопа им. Хаббла) астрономы обнаружили несколько звезд с подобными протопланетными туманностями, что подтверждает эту космогоническую гипотезу. Общая структура Солнечной системы была раскрыта в середине 16 в. Н. Коперником, который обосновал представление о движении планет вокруг Солнца. Такая модель Солнечной системы получила название гелиоцентрической. В 17 в. И. Кеплер открыл законы движения планет, а И. Ньютон сформулировал закон всемирного тяготения. Изучение физических характеристик космических тел, входящих в состав Солнечной системы, стало возможным только после изобретения Г. Галилеем в 1609 телескопа. Так, наблюдая солнечные пятна, Галилей впервые обнаружил вращение Солнца вокруг своей оси.

Движение тел Солнечной системы. Земля как и все планеты Солнечной системы, помимо того, что они, подчиняясь притяжению Солнца, вращаются вокруг него, имеют и собственное вращение. Вращается вокруг своей оси и Солнце, хотя и не как единое жесткое целое. Как показывают основанные на эффекте Доплера измерения, скорости вращения различных участков солнечной поверхности несколько различаются. На широте 16° период полного обращения составляет 25,38 земных суток. Направление вращения Солнца совпадает с направлением вращения вокруг него планет и их спутников и с направлением собственного вращения планет вокруг своих осей (за исключением Венеры, Урана и ряда спутников). Масса Солнца в 330 000 раз превосходит массу Земли.




3. Солнечное излучение и методы и способы его изучения.

Основа астрономии - наблюдения. Наблюдения доставляют нам основные факты, которые позволяют объяснить то или иное астрономическое явление. Дело в том, что для объяснения многих астрономических явлений необходимы тщательные измерения и расчеты, которые помогают выяснению действительных, истинных обстоятельств, вызвавших эти явления. Так, например, нам кажется, что все небесные тела находятся от нас на одинаковом расстоянии, что Земля неподвижна и находится в центре Вселенной, что все светила вращаются вокруг Земли, что размеры Солнца и Луны одинаковы и т. д. Только тщательные измерения и их глубокий анализ помогают отрешиться от этих ложных представлений.

Основным источником сведений о небесных телах являются электромагнитные волны, которые либо излучаются, либо отражаются этими телами. Определение направлений, по которым электромагнитные волны достигают Земли, позволяет изучать видимые положения и движение небесных тел. Спектральный анализ электромагнитного излучения дает возможность судить о физическом состоянии этих тел.

Активные образования на Солнце. Их влияние на биосферу Земли.

Солнечное излучение поддерживает жизнь на Земле (фотоны необходимы для начальных стадий процесса фотосинтеза), влияет на климат.

Как уже упоминалось, поверхность Солнца фотосфера, (ее температура около 5800 K). Солнечные пятна - это "холодные" области, температура которых около 3800 K (они выглядят темными только по сравнению с окружающими областями). Солнечные пятна могут быть очень большими, до 50,000 км в диаметре. Солнечные пятна вызываются сложным, и до конца не понятным взаимодействием плазмы с магнитным полем Солнца.

Над фотосферой расположена небольшая область, известная как хромосфера.

Сильно разреженная область над хромосферой называется корона. Она простирается на миллионы километров в космическое пространство, но видна только во время затмения . Температура в короне более 1,000,000 K.

У Солнца очень сильное магнитное поле (по Земным стандартам) с очень сложным строением. Его магнитосфера (она же гелиосфера) простирается за орбиту Плутона.

Кроме тепла и света, Солнце также испускает поток заряженных частиц (в основном электронов и протонов) низкой плотности, известный как солнечный ветер, который распространяется по Солнечной Системе со скоростью около 450 км/сек. Солнечный ветер и другие высокоэнергетические частицы, выброшенные во время солнечных вспышек, являются причиной радиопомех и красивых Полярных сияний на Земле.

Последние данные с космического аппарата Улисс (Ulysses) показывают, что Солнечный ветер, истекающий из полярных областей, дует со скоростью примерно вдвое выше, 750 километров в секунду, чем на более низких широтах. Состав Солнечного ветра на разных широтах также различается. Однако во время максимума солнечной активности солнечный ветер движется с промежуточной скоростью.

Дальнейшее изучение Солнечного ветра будет осуществляться при помощи космических аппаратов Wind, ACE и SOHO недавно запушенных в динамически устойчивую точку (точка Лагранжа L1 системы Солнце-Земля) точно между Землей и Солнцем, на расстоянии около 1. 6 миллионов км от Земли.

Солнечный ветер сильно влияет на хвосты комет и даже слабо, но заметно изменяет траектории космических аппаратов.

На Солнечном лимбе часто бывают видны необычные петли и выступы.

Cолнечное энерговыделение не совсем постоянно. Солнечные пятна также не всегда активны. Был период очень низкой активности солнечных пятен во второй половине 17 века, названный Минимум Мондера (the Maunder Minimum) Он совпал с необычайно холодным периодом в северной Европе, также известном, как Малый Ледниковый период. С момента образования Солнечной Системы мощность излучения Солнца увеличилась почти на 40%.

Солнцу около 4. 5 миллиардов лет. Со времени своего рождения оно использовало около половины водорода, находящегося в его ядре. Оно будет продолжать «мирно» светить еще 5 миллиардов лет или около того, (хотя его светимость к тому времени приблизительно удвоится). Но, в конце концов, водородное топливо закончится. И тогда в Солнце произойдут радикальные изменения, которые, хотя и достаточно типичны по звездным стандартам, приведут к полному разрушению Земли (и, вероятно, к образованию планетарной туманности).

1. Солнечные пятна являются активным источником электромагнитного излучения, вызывающего так называемые «магнитные бури». Эти «магнитные бури» влияют на теле- и радиосвязь, вызывают мощные полярные сияния.

2. Солнце излучает следующие виды излучения: ультрафиолетовое, рентгеновское, инфракрасное и космические лучи (электроны, протоны, нейтроны и тяжёлые частицы адроны). Эти излучения почти целиком задерживаются атмосферой Земли. Вот почему следует сохранять атмосферу Земли в нормальном состоянии. Периодически появляющиеся озоновые дыры пропускают излучение Солнца, которое достигает земной поверхности и пагубно влияет на органическую жизнь на Земле.

3. Солнечная активность проявляется через каждые 11 лет, солнечная активность была в 1991,– 2002 годах, и ожидается в 2013 г. Максимум солнечной активности означает наибольшее количество пятен, излучения и протуберанцев. Давно установлено, что изменение солнечной активности Солнце влияет на следующие факторы:

1. эпидемиологическую обстановку на Земле;

2. количество разного рода стихийных бедствий (тайфуны, землетрясения, наводнения и т. д.);

3. на количество автомобильных и железнодорожных аварий.

Максимум всего этого приходится на годы активного Солнца. Как установил учёный Чижевский, активное Солнце влияет на самочувствие человека. С тех пор составляются периодические прогнозы самочувствия человека.




4. Атмосфера и магнитное поле Земли

Над поверхностью Земли. Земля окружена атмосферой. Нижний ее слой (тропосфера) простирается в среднем до высоты в 14 км; происходящие здесь процессы играют определяющую роль для формирования погоды на планете. Температура в тропосфере падает с увеличением высоты. Слой от 14 до 50-55 км называют стратосферой; здесь температура возрастает с увеличением высоты. Еще выше (примерно до 80-85 км) находится мезосфера, над которой наблюдаются (обычно на высоте около 85 км) серебристые облака. Для биологических процессов на Земле огромное значение имеет озоносфера — слой озона, находящийся на высоте от 12 до 50 км. Область выше 50-80 км называют ионосферой. Атомы и молекулы в этом слое интенсивно ионизируются под действием солнечной радиации, в частности, ультрафиолетового излучения. Если бы не озоновый слой, потоки излучения доходили бы до поверхности Земли, производя разрушения в имеющихся там живых организмах. Наконец, на расстояниях более 1000 км газ настолько разрежен, что столкновения между молекулами перестают играть существенную роль, а атомы ионизированы более чем наполовину. На высоте порядка 1,6 и 3,7 радиусов Земли находятся первый и второй радиационные пояса.

Гравитационное поле Земли с высокой точностью описывается законом всемирного тяготения Ньютона. Ускорение свободного падения над поверхностью Земли определяется как гравитационной, так и центробежной силой, обусловленной вращением Земли. Зависимость ускорения свободного падения от широты приближенно описывается формулой g = 9,78031 (1+0,005302 sin2) m/c2, где m —масса тела.

Земля обладает также магнитным и электрическим полями. С давних пор известно,что наша Земля – гигантский магнит.

Если радиация, приходящая из мирового пространства, представляет собой поток заряженных частиц, то магнитное поле будет их отклонять и у магнитных полюсов интенсивность излучения будет выше, чем в районе экватора.

В 1940 году американские физики под руководством М. Шайна подняли на шарах-зондах аппаратуру на высоту20 000м., чтобы выяснить какие частицы приходят на Землю из мирового пространства? По характеру поглощения космических частиц в свинце был сделан вывод, что первичное космическое излучение скорее всего состоит из протонов. Но для того, чтобы окончательно решить вопрос о природе частиц, нужно ещё и уточнить знак её электрического заряда, а значит, прследить её движение в земном магнитном поле.

Траектория заряженных частиц по мере приближения к Земле и попадания в сферу действия геомагнитного поля искривляются. У магнитных полюсов Земли, где концентрация силовых линий велика, в ловушку попадают практически все частицы. В районе экватора преодолеть своеобразный магнитный экран удаётся только наиболее энергичным частицам – так возникает широтный эффект.

На основе многочисленных экспериментов физики пришли к выводу, что из мирового пространства на Землю приходит поток положительно заряженных частиц, в основном протонов.

В настоящее время магнитные полюсы несколько смещены по отношению к географическим. Их положение, впрочем, меняется со временем, и хотя эти изменения достаточно медленны, за геологические промежутки времени, по палеомагнитным данным, обнаруживаются даже магнитные инверсии, то есть обращения полярности. Напряженности магнитного поля на северном и южном магнитных полюсах равны соответственно 0,58 и 0,68 Э, а на геомагнитном экваторе — около 0,4 Э. Электрическое поле над поверхностью Земли в среднем имеет напряженность около 100 В/м и направлено вертикально вниз — это так называемое «поле ясной погоды», но это поле испытывает значительные (как периодические, так и нерегулярные) вариации.

Магнитная буря. Особенно интенсивные магнитные возмущения, распространяющиеся на весь земной шар, называют магнитными бурями. Некоторые магнитные бури начинаются неожиданно и почти одновременно по всей Земле, а другие развиваются постепенно. Признаком внезапно начинающейся магнитной бури служит резкое изменение всех трех магнитных элементов на магнитограмме.

Горизонтальный компонент H внезапно увеличивает интенсивность, чему иногда предшествует небольшой отрицательный импульс. При внезапном начале бури амплитуда вариации максимальна в авроральных зонах и уменьшается по направлению к экватору; увеличение Sq и L наблюдается в пределах узкого пояса на магнитном экваторе в дневные часы.

Часто магнитные бури происходят через 1–2 дня после солнечной вспышки из-за прохождения Земли через поток частиц, выброшенных Солнцем. Исходя из времени запаздывания, скорость такого корпускулярного потока оценивают в несколько миллионов км/ч.

Теория магнитных бурь была развита С.Чапменом, В.Ферраро, Х.Альфвеном, С.Зингером, А.Десслером, Е.Паркером и другими. Когда на некотором расстоянии от Земли поток солнечных частиц – протонов и электронов – сталкивается с земным магнитным полем, это вызывает «магнитный удар», который в виде сильной гидромагнитной ударной волны проходит через окружающий Землю электропроводящий газ. Внезапное начало магнитной бури означает приход гидромагнитной ударной волны.

Солнечный газ, обволакивая Землю, сжимает ее магнитное поле и, следовательно, увеличивает его интенсивность. Рост магнитного поля в начальной фазе магнитной бури происходит как следствие этого эффекта. Некоторые из солнечных частиц захватываются земным магнитным полем на расстоянии более 40 000 км от Земли.

Магнитное поле ослабевает с увеличением расстояния от Земли.

Ток протонов, имеющий повсюду западное направление, генерирует собственное магнитное поле, направленное так, что оно ослабляет магнитное поле Земли. Этим можно объяснить особенности главной фазы магнитной бури.

Геофизика — физика Земли — относительно молода. Все происходящее в недрах нашей планеты изучено пока еще далеко не полно.

Природа полярных сияний. Полярные сияния возникают в следствие бомбардировки верхних слоёв атмосферы заряженными частицами, движущимися к Земле вдоль силовых линий геомагнитного поля из области околоземного космического пространства, называемой плазменным слоем. Проекция плазменного слоя вдоль геомагнитных силовых линий на земную атмосферу имеет форму колец, окружающих северный и южный магнитные полюса (авроральные овалы). Выявлением причин, приводящим к высыпаниям заряженных частиц из плазменного слоя, занимается космическая физика. Экспериментально установлено, что ключевую роль в стимулировании высыпаний играет ориентация межпланетного магнитного поля и величина давления плазмы солнечного ветра.


В очень ограниченном участке верхней атмосферы сияния могут быть вызваны низкоэнергичными заряженными частицами солнечного ветра, попадающими в полярную ионосферу через северный и южный полярные каспы. В северном полушарии каспенные сияния можно наблюдать над Шпицбергеном в околополуденные часы.

При столкновении энергичных частиц плазменного слоя с верхней атмосферой происходит возбуждение атомов и молекул газов, входящих в её состав. Излучение возбуждённых атомов в видимом диапазоне и наблюдается как полярное сияние. Спектры полярных сияний зависят от состава атмосфер планет: так, например, если для Земли наиболее яркими являются линии излучения возбуждённых кислорода и азота в видимом диапазоне, то для Юпитера — линии излучения водорода в ультрафиолете.

Полярные сияния Земли. Полярные сияния наблюдаются преимущественно в высоких широтах обоих полушарий в овальных зонах-поясах, окружающих магнитные полюса Земли — авроральных овалах. Диаметр авроральных овалов составляет ~ 3000 км во время спокойного Солнца, на дневной стороне граница зоны отстоит от магнитного полюса на 10—16°, на ночной — 20—23°. Поскольку магнитные полюса Земли отстоят от географических на ~12°, полярные сияния наблюдаются в широтах 67—70°, однако во времена солнечной активности авроральный овал расширяется и полярные сияния могут наблюдаться в более низких широтах — на 20—25° южнее или севернее границ их обычного проявления.


Полярные сияния весной и осенью возникают заметно чаще, чем зимой и летом. Пик частотности приходится на периоды, ближайшие к весеннему и осеннему равноденствиям. Во время полярного сияния за короткое время выделяется огромное количество энергии (во время одного их зарегистрированных в 2007 году возмущений — 5x1014 джоулей, примерно столько же, сколько во время землетрясения магнитудой 5,5.

При наблюдении с поверхности Земли Полярное сияние проявляется в виде общего быстро меняющегося свечения неба или движущихся лучей, полос, корон, «занавесей». Длительность полярных сияний составляет от десятков минут до нескольких суток.




5. Заключение. «Влияние Космоса» на Земную цивилизацию. Значение изучения влияния на Землю других небесных тел.

Жизненный цикл Солнца.

Будущее планеты тесно связано с будущим Солнца. В результате накопления в ядре Солнца гелиевого «шлака», светимость звезды начнёт медленно возрастать. Яркость солнца возрастёт на 10 % в течение следующих 1,1 млрд лет и ещё на 40 % в течение следующих 3,5 млрд лет. Согласно некоторым климатическим моделям, увеличение количества солнечного излучения, падающего на поверхность Земли, приведёт к чудовищным последствиям, включая возможность полного испарения всех океанов.

Повышение температуры поверхности Земли ускорит неорганическую циркуляцию CO2, уменьшив его концентрацию до смертельного для растений уровня (10 ppm для C4-фотосинтеза) за 900 млн лет. Но даже если бы солнце было вечно и неизменно, то продолжающееся внутреннее охлаждение Земли могло бы привести к потере большей части атмосферы и океанов (из-за понижения вулканической активности). Ещё через миллиард лет вода с поверхности планеты исчезнет полностью.

Через 5 млрд лет Солнце превратится в красного гиганта. Модель показывает, что Солнце увеличится в диаметре на величину, равную примерно 99 % нынешней дистанции до орбиты Земли (1 а. е.). Однако к тому времени орбита Земли может увеличиться до 1,7 а. е., поскольку ослабнет притяжение Солнца из-за уменьшения массы. И хотя Земля сможет избежать поглощения внешними оболочками Солнца, большая часть живых организмов (если не все) исчезнет в результате катастрофической близости к звезде.

После того, как Солнце пройдёт фазу красного гиганта, термические пульсации приведут к тому, что его внешняя оболочка будет сорвана и из неё образуется планетарная туманность. В центре этой туманности останется сформированная из очень горячего ядра Солнца звезда типа белый карлик, которая в течение многих миллиардов лет будет постепенно остывать и угасать.

Описанный выше сценарий эволюции Солнца типичен для звёзд малой и средней массы.




6. Сноски

Разделы астрономии

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии, в известном смысле, условно.

Главнейшими разделами астрономии являются:

1. Астрометрия - наука об измерении пространства и времени. Она состоит из:

а) сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;

б) фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звездных положений и определение числовых значений важнейших астрономических постоянных, т. е. величин, позволяющих учитывать закономерные изменения координат светил;

в) практической астрономии, в которой излагаются методы определения географических координат, азимутов направлений, точного времени и описываются применяемые при этом инструменты.

2. Теоретическая астрономия дает методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).

3. Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.

Эти три раздела в основном решают первую задачу астрономии, и их часто называют классической астрономией.

4. Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой на основании законов физики даются объяснения наблюдаемым физическим явлениям. Ряд разделов астрофизики выделяется по специфическим методам исследования.

5. Звездная астрономия изучает закономерности пространственного распределения и движения звезд, звездных систем и межзвездной материи с учетом их физических особенностей.

В этих двух разделах в основном решаются вопросы второй задачи астрономии.

6. Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.

7. Космология изучает общие закономерности строения и развития Вселенной.

На основании всех полученных знаний о небесных телах последние два раздела астрономии решают ее третью задачу.

Гиппа́рх Нике́йский (ок. 190 до н. э. — ок. 120 до н. э.) — древнегреческий астроном, географ и математик II века до н. э., часто называемый величайшим астрономом античности. Главной заслугой Гиппарха считается то, что он привнёс в греческие геометрические модели движения небесных тел предсказательную точность астрономии Древнего Вавилона.

Кла́вдий Птолеме́й (ок. 87165) — древнегреческий астроном, математик, музыкальный теоретик и географ. В период с 127 по 151 год жил в Александрии, где проводил астрономические наблюдения.

В своём основном труде Великое построение известном под арабизированным названием Альмагест , Птолемей изложил собрание астрономических знаний древней Греции и Вавилона. Птолемей сформулировал (если не передал сформулированную Гиппархом) сложную геоцентрическую модель мира с эпициклами, которая была принята в западном и арабском мире до создания гелиоцентрической системы Николая Коперника.

Альмагест также содержал каталог звёздного неба. Список из 48 созвездий не покрывал полностью небесной сферы: там были только те звёзды, которые Птолемей мог видеть, находясь в Александрии.

Спорным является вопрос о соотношении работ Птолемея с работами более ранних авторов. Существует предположение, что звёздный каталог Птолемея был уточнённой версией каталога, созданного ранее Гиппархом. В пользу этой версии говорит то, что, согласно исследованиям современных историков астрономии, все перечисленные в каталоге 1022 звезды могли наблюдаться Гиппархом на широте Родоса (36° с. ш.), но каталог не содержит ни одной звезды, которая могла быть видна в более южной Александрии (31° с. ш.), но не наблюдалась на Родосе.

Эпици́кл (от греческих слов — на, над, при и — круг, окружность) — понятие, используемое в геоцентрической модели Птолемея. Согласно этой модели, всякая планета равномерно движется вокруг Земли по кругу, называемому эпициклом, центр которого, в свою очередь, движется по другому кругу, который называется деферентом.

Синоди́ческий пери́од обраще́ния (от греч. synodos собрание, соединение) — промежуток времени, в течение которого тело Солнечной системы (планета или малая планета), двигаясь по своей орбите, возвращается при наблюдении с Земли в прежнее положение относительно Солнца. Так, синодический период обращения Луны равен времени, за которое Луна проходит через все фазы (например, от полнолуния до полнолуния).

АСТРОНОМИЧЕСКАЯ ЕДИНИЦА — длины (а. е., АЕ), равна ср. расстоянию от Земли до Солнца, 1 а. е. 1,49600•1011 м. (Физический энциклопедический словарь)

Корпускулярное излучение - это поток частиц: электронов, тяжелых заряженных частиц (например, протонов, альфа-частиц, отрицательных пи-мезонов) или нейтронов. Частицы имеют определенную массу и заряд (кроме нейтронов, которые заряда не имеют). Заряженные частицы могут ускоряться в электрическом поле. Электроны (бета-частицы) имеют небольшую массу и отрицательный заряд и могут разгоняться почти до скорости света. В тканях они быстро теряют скорость и проникают лишь на небольшую глубину, поэтому электронно-лучевую терапию часто используют для лечения некоторых заболеваний кожи. Протоны заряжены положительно; их масса составляет около 1 (в атомных единицах массы) и превышает массу электронов почти в 2000 раз. При столкновении с веществом протоны теряют энергию и быстро останавливаются. Максимум потерь энергии и ионизации приходится на небольшой участок в конце пробега протонов, называемый пиком Брэгга. Глубина расположения пика Брэгга зависит от энергии протонов. Альфа-частицы - это ядра гелия, состоящие из двух протонов и двух нейтронов. Из-за большой массы и заряда они могут проходить через вещество, только обладая огромной кинетической энергией; в большинстве случаев для защиты от альфа-частиц достаточно листа бумаги.

Конвективная зона. При определении физических условий в недрах звезд и Солнца очень важно знать, каким путем происходит перенос энергии от области ее генерации вблизи центра к наружным слоям (периферии), т.е. механизмы теплоотвода и теплопереноса. Если относительные перемещения масс отсутствуют, то в принципе возможны либо молекулярная теплопроводность, либо перенос энергии через процессы излучения и поглощения квантов.

Гелиосейсмология. Внутреннее строение Солнца. Исследование глубинных слоев Солнца в последнее время продвинулось вперед за счет гелиосейсмологии. Гелиосейсмология – наука, которая изучает колебания Солнца. В шестидесятых годах XX века астрономы обнаружили, что верхний слой солнечной атмосферы раз в пять минут поднимается и опускается. Благодаря этим «солнцетрясениям» астрофизики научились прослушивать Солнце, как врач слушает удары сердца человека.

Галилео Галилей (15 февраля 1564, Пиза8 января 1642, Арчетри, близ Флоренции) — итальянский философ, математик, физик, механик и астроном, оказавший значительное влияние на науку своего времени. Галилей первым использовал телескоп для наблюдения планет и других небесных тел, и сделал ряд выдающихся астрономических открытий.

Галилей — основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную метафизику Аристотеля и заложил фундамент классической динамики.

При жизни был известен как активный сторонник гелиоцентрической системы мира, что привело Галилея к серьёзному конфликту с католической церковью.

Гелиоцентрическая система мира — представление о том, что Солнце является центральным небесным телом, вокруг которого обращается Земля и другие планеты. Противоположность геоцентрической системе мира. Возникло в античности, но получило широкое распространение с конца Эпохи Возрождения.

В этой системе Земля предполагается обращающейся вокруг Солнца за один звёздный год и вокруг своей оси за одни звёздные сутки. Следствием второго движения является видимое вращение небесной сферы, первого — перемещение Солнца среди звёзд по эклиптике.

Экли́птика (от лат. (linea) ecliptica, от греч. — затмение), большой круг небесной сферы, по которому происходит видимое годичное движение Солнца, точнее — его центра. Так как это движение отражает действительное движение Земли вокруг Солнца, то эклиптику можно рассматривать как сечение небесной сферы плоскостью орбиты Земли. Плоскость эклиптики служит основной плоскостью в эклиптической системе небесных координат.

Магни́тная инду́кция — векторная величина, показывающая, с какой силой F\,магнитное поле \vec B\!действует на заряд q\!, движущийся со скоростью \vec v\!. Более точно, \vec B\!— это такой вектор, что сила Лоренца F\!, действующая на заряд q\!, движущийся со скоростью \vec v\!, равна

F=q[\vec v \times \vec B]=qvB\sin\alpha \,.

Является основной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства определить направление вектора. Такое исследование позволяет представить пространственную структуру магнитного поля.

Парнико́вый эффе́кт — повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, наблюдаемого из космоса.

Полярные каспы - воронкообразные области в лобовой части магнитопаузы на геомагнитных широтах ~ 75°, возникающие в результате взаимодействия солнечного ветра и магнитного поля Земли.

Полярное сияние — свечение (люминесценции) верхних слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра.

Магнитосфе́ра — область пространства вокруг небесного тела, в которой поведение окружающей тело плазмы определяется магнитным полем этого тела.

Магнитосферы планет




Деформация магнитосферы планеты звездным ветром

В случае набегающего потока плазмы, например, в случае взаимодействия собственного магнитного поля планеты с солнечным ветром, магнитосфера представляет полость достаточно сложной формы, обтекаемую солнечным ветром.

Проникновение плазмы в магнитосферу Земли происходит непосредственно через промежутки между замкнутыми и «разомкнутыми» магнитными силовыми линиями в магнитопаузе, именуемые дневными полярными каспами, или вследствие гидромагнитных эффектов и неустойчивостей. Проникновение плазмы солнечного ветра может сопровождаться дневными полярными сияниями в высокоширотной ионосфере. К развитию таких неустойчивостей приводят, в частности, резкие изменения параметров межпланетной среды. Это проявляется в зависимости частоты и интенсивности полярных сияний от уровня солнечной активности.

Часть плазмы, проникшей в магнитосферу, образует радиационный пояс планеты (пояс Ван Аллена) и плазменный слой.

В Солнечной Системе, помимо Земли, магнитосфера имеется у всех планет.

Магнитное поле Землимагнитное поле Земли, генерируемое внутриземными источниками. Называют также геомагнитным полем. Предмет изучения геомагнетизма.

Инверсия магнитного поля — изменения направления магнитного поля Земли в геологической истории планеты. При инверсии северный магнитный полюс и южный магнитный полюс меняются местами, и стрелка компаса начинает показывать противоположное направление. Инверсия — относительно редкое явление, которое ни разу не происходило за историю человечества. Предположительно, последний раз оно произошло 780 тысяч лет назад.

Инверсии магнитного поля происходят через интервалы времени от десятков тысяч лет, до огромных промежутков спокойного магнитного поля в десятки миллионов лет, когда инверсии не происходили. В отношении периодичности инверсии чётко установлена только одна закономерность: отсутствие периодичности. За длительными периодами спокойного магнитного поля могут следовать периоды многократных инверсий с различной длительностью и наоборот.

Некоторые исследователи полагают, что во время инверсий магнитосфера Земли ослабевала настолько, что космическое излучение могло достигать поверхности Земли, поэтому это явление могло наносить вред живым организмам на планете.

Атмосфера (от греч. — «пар» и — «сфера») — газовая оболочка небесного тела, удерживаемая около него гравитацией. Поскольку не существует резкой границы между атмосферой и межпланетным пространством, то обычно атмосферой принято считать область вокруг небесного тела, в которой газовая среда вращается вместе с ним как единое целое. Глубина атмосферы некоторых планет, состоящих в основном из газов (газовые планеты), может быть очень большой.

На высоте около 19—20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15—19 км.

Плотные слои воздуха — тропосфера и стратосфера — защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация — первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли, постепенно ослабляются, а затем и полностью исчезают, такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60—90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100—130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл, там проходит условная Линия_Кармана за которой начинается сфера чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

Для описания внешней области звезды, начинающейся от фотосферы, используется термин звёздная атмосфера. Атмосфера Земли содержит кислород, используемый большинством живых организмов для дыхания, и диоксид углерода потребляемый растениями, водорослями и цианобактериями в процессе фотосинтеза. Атмосфера также является защитным слоем планеты, защищая её обитателей от солнечного ультрафиолетового излучения.

Фотосфе́ра — излучающий слой звёздной атмосферы, в котором формируется непрерывный спектр излучения. Фотосфера даёт основную часть излучения звезды.

Хромосфера (от др.-греч. — цвет, — шар, сфера) — внешняя оболочка Солнца толщиной около 10000 км, окружающая фотосферу. Происхождение названия этой части солнечной атмосферы связано с её красноватым цветом, вызванным тем, что в её видимом спектре доминирует красная H-альфа линия излучения водорода

Со́лнечные пя́тна — тёмные области на Солнце, температура которых понижена примерно на 1500 К по сравнению с окружающими участками фотосферы. Наблюдаются на диске Солнца (с помощью оптических приборов, а в случае крупных пятен — и невооружённым глазом) в виде тёмных пятен. Солнечные пятна являются областями выхода в фотосферу сильных (до нескольких тысяч гауссов) магнитных полей. Потемнение фотосферы в пятнах обусловлено подавлением магнитным полем конвективных движений вещества и, как следствие, снижением потока переноса тепловой энергии в этих областях.



Группа пятен на Солнце, сфотографированная в видимом свете. Снимок сделан космическим аппаратом Hinode 13 декабря 2006 года.

Количество пятен на Солнце (и связанное с ним число Вольфа) — один из главных показателей солнечной магнитной активности.

На более холодных звёздах (класса K и холоднее) наблюдаются пятна намного большей площади, чем на Солнце

Солнечная вспышка — это уникальный по мощности процесс выделения энергии (световой, тепловой и кинетической) в атмосфере Солнца. Вспышки так или иначе охватывают все слои солнечной атмосферы: фотосферу, хромосферу и корону Солнца.

Продолжительность импульсной фазы солнечных вспышек обычно не превышает нескольких минут, а количество энергии, высвобождаемой за это время, может достигать миллиарды мегатонн в тротиловом эквиваленте. Солнечные вспышки, как правило, происходят в местах взаимодействия солнечных пятен противоположной магнитной полярности или, более точно, вблизи нейтральной линии магнитного поля, разделяющей области северной и южной полярности. Частота и мощность солнечных вспышек зависят от фазы солнечного цикла.

Солнечный ветер — поток ионизированных частиц (в основном гелиевоводородной плазмы), истекающий из солнечной короны со скоростью 300–1200 км/с в окружающее космическое пространство.

Множество природных явлений связано с солнечным ветром, в том числе магнитные бури, полярные сияния и различная форма кометных хвостов, всегда направленных от Солнца.

В отношении других звёзд употребляется термин звёздный ветер

Гравита́ция (всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas - «тяжесть») — дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том смысле, что, в отличие от любых других сил, всем без исключения телам независимо от их массы придаёт одинаковое ускорение. Главным образом гравитация играет определяющую роль в космических масштабах. Термин гравитация используется также как название раздела физики, изучающего гравитационное взаимодействие. Наиболее успешной современной физической теорией в классической физике, описывающей гравитацию, является общая теория относительности, квантовая теория гравитационного взаимодействия пока не построена.

Гравитационное взаимодействие


Гравитационное взаимодействие — одно из четырёх фундаментальных взаимодействий в нашем мире. В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть

F = G \cdot {m_1 \cdot m_2\over R^2}.

Здесь Gгравитационная постоянная, равная -6{,}673(10)\cdot 10^{-11}м³/(кг с²). Знак минус означает, что сила, действующая на тело, всегда равна по направлению радиус-вектору, направленному на тело, то есть гравитационное взаимодействие приводит всегда к притяжению любых тел.

Закон всемирного тяготения — одно из приложений закона обратных квадратов, встречающегося так же и при изучении излучений (см. например, Давление света), и являющимся прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в поле тяжести часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это тем не менее очень важная сила во Вселенной. Для сравнения: полный электрический заряд этих тел ноль, так как вещество в целом электрически нейтрально.

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. В античные времена Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

Межплане́тное простра́нство — область космического пространства, ограниченная орбитой наиболее удалённой от звезды планеты. Межпланетное пространство не является абсолютным вакуумом; оно заполнено пылевой и газовой средой, и пронизано электромагнитным излучением небесных тел (и, в первую очередь, — Солнца). За условной границей межпланетного пространства находится межзвёздное пространство.

Температуру межпланетного пространства в конкретной точке определяют, как температуру небольшого шарика из абсолютно чёрного вещества, помещённого на соответствующем расстоянии от звезды (на орбите Земли такой шарик нагреется до 277 К).

К настоящему времени обнаружено множество звёзд, обладающих собственными планетными системами. (См. Список экзопланетных систем.)

Ке́львин (обозначение: K) — единица измерения температуры в СИ, предложена в 1848 году.

Один кельвин равен 1/273,16 термодинамической температуры тройной точки воды. Начало шкалы (0 К) совпадает с абсолютным нулём. Кельвин по размеру совпадает с градусом Цельсия.

Международный комитет мер и весов собирается в 2011 году изменить определение кельвина, чтобы избавиться от трудновоспроизводимых условий тройной точки воды. В новом определении кельвин будет выражен через секунду и значение постоянной Больцмана.

Единица названа в честь английского физика Уильяма Томсона, которому было пожаловано звание барона Кельвина Ларгского из Айршира. В свою очередь это звание пошло от реки Кельвин (en:River Kelvin), протекающей через территорию университета в Глазго.

До 1968 года кельвин официально именовался градусом Кельвина.

Фотосинтез — процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных реакциях, в том числе превращения углекислого газа в органические вещества.




Список литературы и источников

[1] Невзоров Иван, Катков Дмитрий - Учебник по астрономии. - http://spacelife.narod.ru/index.htm

[2] А.С. Ассовская, «Командируется в стратосферу» Ленинград «Гидрометеоиздат» 1983. Стр. 80, 84, 86, 112, 116.

[3] Астрономия: век XXI, ред.-сост. В.Г.Сурдин. Фрязино 2007, стр. 96, 114.

[4] Тихон Брагин Астрономия СШЭ М.- Мир книги, 2008, стр. 133, 166.



1. Реферат Молодежные субкультуры 9
2. Лекция на тему Анализ выбора в условиях неопредел нности риска
3. Реферат Африка 9
4. Реферат Обзор Подготовка IT-специалистов в России
5. Реферат Теория демократии и демократия в Украине
6. Реферат на тему Are Schools Failing Latinas Based On Ap
7. Бизнес-план Технико-экономические показатели проектируемого показателя
8. Книга Числовые ряды
9. Контрольная_работа на тему Математичне моделювання економічних систем
10. Реферат Вирусы и бактерии 2