Реферат

Реферат Загрязнение атмосферы ксенокомпонентами

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.9.2024





Содержание

Введение. 3

1. Загрязнение атмосферы ксенокомпонентами. 5

1.1 Состав атмосферы.. 5

1.2 Основные ксенокомпоненты  - химические соединения. 7

1.3.  Транспорт – источник ксенокомпонентов. 9

1.3.1 Автотранспорт. 10

1.3.2 Самолеты.. 11

1.3.3 Ракетоносители. 12

1.4. Аэрозольное загрязнение атмосферы.. 14

1.5 Фотохимический туман (смог) 16

2. Проблема контролирования выброса в атмосферу загрязняющих веществ промышленными предприятиями (ПДК) 18

3. Влияние ксенокомпонентов в атмосфере на человека, растительный и животный мир  19

3.1  Оксид углерода. 20

3.2  Диоксид серы и серный ангидрид. 21

3.3   Оксиды азота и некоторые другие вещества. 21

Заключение. 24

Литература. 25



Введение


Развитие промышленности неразрывно связано с расширением круга используемых химических веществ. Увеличение объемов применяемых пестицидов, удобрений и других химикатов - характерная черта современного сельского хозяйства и лесоводства. В этом объективная причина неуклонного усиления химической опасности для окружающей среды, таящейся в самой природе человеческой деятельности.

Еще несколько десятков лет назад химические отходы производства просто сбрасывали в окружающую среду, а пестициды и удобрения практически бесконтрольно, исходя из утилитарных соображений, распыляли над огромными территориями. При этом, полагали, что газообразные вещества должны быстро рассеиваться в атмосфере, жидкости частично растворяться в воде и уноситься из мест выброса. И хотя твердые продукты в значительной степени накапливались в регионах, потенциальная опасность промышленных выбросов рассматривалась как низкая. Использование же пестицидов и удобрений давало экономический эффект, во много раз превосходящий ущерб, наносимый токсикантами природе. Однако уже в 1962 году появляется книга Рашель Карсон "Молчаливая весна", в которой автор описывает случаи массовой гибели птиц и рыб от бесконтрольного использования пестицидов. Карсон сделала вывод, что выявляемые эффекты поллютантов на дикую природу предвещают надвигающуюся беду и для человека. Эта книга привлекла всеобщее внимание. Появились общества защиты окружающей среды, правительственные законодательные акты, регламентирующие выбросы ксенобиотиков. С этой книги, по сути, началось развитие новой ветви науки - экотоксикологии.

В самостоятельную науку экотоксикологию (ecotoxicology) выделил Рене Траут, который впервые, в 1969 году, связал воедино два совершенно разных предмета: экологию (по Кребсу - науку о взаимоотношениях, которые определяют распространение и обитание живых существ) и токсикологию. На самом деле, эта область знаний включает в себя, помимо указанных, элементы и других естественных наук, таких как химия, биохимия, физиология, популяционная генетика и др.

Сформировалась тенденция использовать термин экотоксикология только для обозначения суммы знаний, касающихся эффектов химикатов на экосистемы, исключая человека. Так, по Уолкеру и др. (1996) экотоксикология - учение о вредных эффектах химикатов на экосистемы. Устраняя из круга рассматриваемых экотоксикологией объектов человека, это определение детерминирует различие между экотоксикологией и токсикологией окружающей среды, определяет предмет изучения последней. Термин токсикология окружающей среды предлагается использовать только для исследований прямого действия загрязнителей окружающей среды на человека.

В процессе изучения эффектов химических веществ, присутствующих в окружающей среде, на человека и человеческие сообщества, токсикология окружающей среды оперирует уже устоявшимися категориями и понятиями классической токсикологии и применяет, как правило, ее традиционную экспериментальную, клиническую, эпидемиологическую методологию. Объектом исследований при этом являются механизмы, динамика развития, проявления неблагоприятных эффектов действия токсикантов и продуктов их превращения в окружающей среде на человека.

Разделяя в целом такой подход, и положительно оценивая его практическую значимость, следует однако заметить, что методологические различия между экотоксикологией и токсикологией окружающей среды полностью стираются, когда перед исследователем ставятся задачи оценить опосредованное действия загрязнителей на человеческие популяции (например, обусловленное токсической модификацией биоты), или, напротив, выяснить механизмы действия химикатов, находящихся в среде, на представителей того или иного отдельного вида живых существ.

1. Загрязнение атмосферы ксенокомпонентами

1.1 Состав атмосферы


Атмосфера - это газообразная оболочка Земли, которая характеризуется наибольшей подвижностью составляющих ее компонентов. Поэтому любые резкие изменения состава атмосферы, связанные с поступлением или уходом главных газовых составляющих (или микрокомпонентов), распространяются вокруг земного шара со значительными скоростями. И это касается как естественных изменений состава атмосферы (вулканические извержения и т.п.), так и антропогенных ее загрязнений.

Кроме того, атмосфера находится в непрерывном обмене с биосферой и является непосредственным или опосредованным − через гидросферу − поставщиком солнечной энергии для всего живого (кроме анаэробных микроорганизмов). Вот почему атмосферу следует рассматривать как наиболее важную для жизни и для человечества составную часть окружающей среды.

Глобальная роль атмосферы определяет особую ответственность государств Земли. Сама атмосфера имеет зональное строение. Нижняя ее часть (до высоты примерно до 80 км) называется гомосферой. Плотность этой части уменьшается с высотой, сохраняя однородность химического состава. В пределах гомосферы выделяют три слоя, различающихся по характеру температурного режима. Нижний слой – тропосфера − имеет основное значение для жизни на Земле. Верхняя граница тропосферы – тропопауза, отделяется от ее среднего слоя – стратосферы. Тропопауза у полюсов располагается на высоте 8–10 км, а у экватора – порядка 16–18 км. До тропопаузы, по мере увеличения высоты, температура достигает почти 0°С. Верхний слой гомосферы выше стратопаузы – мезосфера (до высоты 80–90 км). В ее пределах температура снова снижается с увеличением высоты. Выше гомосферы залегает мощная, но с низкой плотностью, гетеросфера, в которой, по мере увеличения высоты, слой молекулярного азота сменяется слоем атомарного кислорода, а затем гелиевым слоем и, наконец, водородным слоем, который на высоте порядка 10000 км постепенно переходит в космос.

Наиболее важная для биосферы зона атмосферы – гомосфера − и, особенно, прилегающий к земной поверхности ее слой – тропосфера.

Переходя к вопросу о химическом составе гомосферы, различают главные компоненты (N – 75,5 весовых %; О – 23,1 %), второстепенные (Ar – 1,28 %; CO2 – 0,04 %); микрокомпоненты (Ne, He, Kr, Xe, H2 – 10-5%) и ксенокомпоненты (CH4, N2O, 03 и другие). Главные и второстепенные компоненты составляют более 99,99 % массы гомосферы.

К ксенокомпонентам ("ксенос" - чужой) относятся вещества чужеродные для окружающей среды, несвойственные для нее, находящиеся в переменных количествах и являющиеся временными примесями, поступление которых связано с вулканическими извержениями, жизнедеятельностью биосферы, с производственной и бытовой деятельностью человека. Большая часть ксенокомпонентов в повышенных концентрациях оказывает отрицательное воздействие на биосферу, поэтому они рассматриваются как загрязнители окружающей среды.

К числу ксенокомпонентов относят и пылевые частицы, которые, по источнику образования, подразделяются на 5 категорий:

1. Пыль, выдуваемая с континентов;

2. Пыль растворимых солей, выдуваемая с поверхности океанов и морей;

3. Пыль вулканических извержений;

4. Космическая пыль;

5. Антропогенная (техногенная) пыль.

По оценке разных авторов, антропогенная пыль (результат сжигания твердого и жидкого топлива, пыль металлургических, химических, цементных предприятий и др.) составляет 5-45 % общего количества пыли, приносимого в атмосферу из всех источников.[1]

1.2 Основные ксенокомпоненты  - химические соединения


В основном существуют три основных источника  загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в зависимости от места. Сейчас общепризнанно, что  наиболее сильно загрязняет воздух промышленное  производство.

Источники загрязнений - теплоэлектростанции, которые вместе с  дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, которые выбрасывают  в  воздух оксиды  азота,  сероводород,  хлор,  фтор,  аммиак, соединения фосфора, частицы и соединения ртути  и мышьяка;  химические и цементные заводы. Вредные газы попадают в  воздух в результате сжигания топлива для нужд промышленности, отопления жилищ,  работы транспорта, сжигания и переработки бытовых и промышленных отходов. Атмосферные загрязнители разделяют на первичные,  поступающие непосредственно  в  атмосферу, и  вторичные,  являющиеся  результатом превращения  последних. Так, поступающий в атмосферу сернистый газ окисляется до  серного ангидрида,  который взаимодействует с парами  воды и образует капельки серной кислоты.  При  взаимодействии  серного ангидрида  с  аммиаком  образуются кристаллы сульфата  аммония. Подобным образом, в результате химических,  фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы,  образуются  другие  вторичные  признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 70%  ежегодно добываемого твердого и жидкого топлива. Основными вредными примесями  пирогенного  происхождения  являются  следующие:

а) Оксид углерода - СО. Получается при неполном сгорании углеродистых веществ.  В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных  предприятий. Ежегодно этого газа поступает в атмосферу не менее  1250 млн.т.   Оксид углерода является соединением,  активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.

б) Сернистый ангидрид SO2. Выделяется в процессе сгорания серусодержащего топлива или  переработки  сернистых  руд  (до   170 млн.т. в год).  Часть  соединений  серы выделяется при горении  органических остатков в горнорудных отвалах. Только в США общее количество  выброшенного в атмосферу сернистого ангидрида составило  65 процентов  от общемирового выброса.

в) Серный  ангидрид SO3. Образуется  при окислении сернистого  ангидрида. Конечным продуктом реакции является  аэрозоль  или  раствор серной  кислоты  в дождевой воде,  который подкисляет  почву, обостряет заболевания дыхательных путей человека.  Выпадение аэрозоля серной кислоты из дымовых факелов химических  предприятий отмечается при низкой облачности и высокой  влажности воздуха. Листовые пластинки растений, произрастающих на  расстоянии менее  11 км.  от таких предприятий,  обычно  бывают  густо усеяны мелкими некротическими пятнами, образовавшихся в  местах оседания капель серной  кислоты.  Пирометаллургические  предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу  десятки миллионов тонн  серного ангидрида.

г) Сероводород и сероуглерод.  Поступают в атмосферу  раздельно или  вместе в другими соединениями серы.  Основными источниками выброса являются предприятия  по  изготовлению  искусственного волокна,  сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы.  В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.

д) Оксиды  азота. .Основными  источниками выброса являются  предприятия, производящие азотные удобрения,  азотную кислоту  и нитраты,  анилиновые красители,  нитросоединения, вискозный  шелк, целлулоид.  Количество оксидов азота, поступающих в атмосферу, составляет  20 млн.т.  в год.

е) Соединения фтора.  Источниками  загрязнения  являются  предприятия по производству алюминия,  эмалей, стекла, керамики, стали, фосфорных удобрений. Фторосодержащие вещества поступают в  атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим  эффектом.  Производные  фтора  являются сильными инсектицидами.

ж) Соединения  хлора.  Поступают в атмосферу от химических  предприятий, производящих  соляную  кислоту,  хлоросодержащие  пестициды, органические красители, гидролизный спирт, хлорную  известь, соду.  В атмосфере встречаются как примесь  молекулы  хлора и паров соляной кислоты. Токсичность хлора определяется  видом соединений и их концентрацией.  В металлургической промышленности при  выплавке  чугуна  и  при  переработке его на  сталь происходит выброс в атмосферу различных тяжелых  металлов и ядовитых газов. Так, в расчете на  11 т.  передельного чугуна выделяется кроме  12,7 кг.  сернистого газа и  14,5 кг.  пылевых частиц,  определяющих количество соединений мышьяка, фосфора, сурьмы,  свинца, паров ртути и редких металлов, смоляных  веществ и цианистого водорода.[2]

1.3.  Транспорт – источник ксенокомпонентов


В  последние  десятилетия  в  связи  с  быстрым развитием автотранспорта и авиации существенно увеличилась доля выбросов, поступающих   в  атмосферу   от  подвижных   источников:  грузовых и легковых  автомобилей,   тракторов,  тепловозов   и  самолетов. Согласно оценкам, в городах на долю автотранспорта  приходится (в зависимости т развития в данном  городе промышленности и числа автомобилей) от 30 до 70 % общей массы выбросов. В США в целом по стране по крайней мере 40 % общей массы пяти основных загрязняющих веществ составляют выбросы подвижных источников.

1.3.1 Автотранспорт


Основной вклад в загрязнение атмосферы вносят автомобили, работающие на бензине (в США на их долю приходится около 75 %), затем самолеты (примерно  5 % ), автомобили  с дизельными двигателями (около  4 %), тракторы и  другие сельскохозяйственные машины (около 4 % ), железнодорожный и водный транспорт (примерно 2 %). К основным загрязняющим атмосферу веществам, которые выбрасывают  подвижные источники (общее число таких веществ превышает 40), относятся оксид углерода (в США его доля в общей массе составляет около 70 %), углеводороды (примерно 19 % ) и оксиды азота (около 9 % ). Оксид углерода (CO) и оксиды азота (NОx) поступают в атмосферу только с выхлопными газами, тогда как не полностью сгоревшие углеводороды (HnСm ) поступают как вместе с выхлопными газами (что составляет примерно 60 %  от общей массы выбрасываемых углеводородов), так и из картера (около 20 %), топливного бака (около 10 %) и карбюратора (примерно 10 %); твердые примеси поступают в основном с выхлопными газами (90 %) и из картера (10 %).

Наибольшее количество загрязняющих веществ выбрасывается при разгоне автомобиля, собенно при быстром, а также при движении с малой скоростью (из диапазона наиболее экономичных). Относительная доля (от общей массы выбросов) углеводородов и оксида углерода наиболее высока при торможении и на холостом ходу, доля оксидов азота - при разгоне. Из этих данных следует, что автомобили особенно сильно загрязняют воздушную среду при частых остановках и при движении с малой скоростью.

Создаваемые в городах системы движения в режиме "зеленой волны", существенно  сокращающие число  остановок транспорта на перекрестках, призваны сократить загрязнение атмосферного воздуха в городах. Большое влияние на качество и количество  выбросов примесей оказывает режим  работы двигателя, в частности соотношение между массами топлива и воздуха, момент зажигания, качество топлива, отношение поверхности камеры сгорания к ее объему и др. При увеличении отношения массы воздуха и топлива, поступающих в камеру  сгорания, сокращаются выбросы оксида углерода и углеводородов, но  возрастает выброс оксидов азота

Несмотря на то что  дизельные двигатели  более экономичны, таких веществ,  как  СО, HnCm, NОx, выбрасывают  не более, чем бензиновые,  они  существенно  больше  выбрасывают дыма (преимущественно несгоревшего углерода), который к тому же обладает неприятным запахом создаваемым некоторыми  несгоревшими углеводородами). В сочетании же с создаваемым шумом дизельные двигатели не только сильнее загрязняют  среду, но и воздействуют на здоровье человека гораздо в большей степени, чем бензиновые.

1.3.2 Самолеты


Хотя  суммарный  выброс  загрязняющих  веществ двигателями самолетов сравнительно невелик (для  города, страны), в районе аэропорта эти выбросы вносят определяющий вклад  в загрязнение  среды. К тому же турбореактивные двигатели (так же как дизельные) при посадке и взлете выбрасывают  хорошо заметный на глаз шлейф дыма. Значительное  количество примесей  в аэропорту выбрасывают  и  наземные передвижные  средства, подъезжающие и отъезжающие  автомобили.

Согласно полученным оценкам, в  среднем около  42 % общего расхода топлива тратится на выруливание самолета  к взлетно-посадочной полосе  (ВПП) перед  взлетом и  на заруливание с ВПП после посадки (по времени в среднем около 22 мин). При этом доля  несгоревшего и  выброшенного в  атмосферу топлива при рулении намного  больше, чем  в полете.  Помимо улучшения работы двигателей (распыление топлива,  обогащение смеси  в зоне горения, использование присадок к топливу, впрыск воды и др.), существенного  уменьшения  выбросов  можно  добиться путем сокращения  времени работы  двигателей на  земле и  числа работающих двигателей при рулении (только за счет последнего достигается снижение выбросов в 3 - 8 раз).

1.3.3 Ракетоносители


Загрязнение воздушной среды транспортом с ракетными двигательными установками происходит главным образом при их работе перед стартом, при взлете и посадке, при наземных испытаниях в процессе их производства и после ремонта, при хранении и транспортировке топлива, а так же при заправке топливом летательных аппаратов. Работа жидкостного ракетного двигателя сопровождается выбросом продуктов полного и неполного сгорания топлива, состоящих из O, NOx, OH и др.

При сгорании твердого топлива из камеры сгорания выбрасываются H2O, CO2, HCl, CO, NO, Cl, а также твердые частицы Al2O3 со средним размером 0,1 мкм (иногда до 10 мкм).

В двигателях космического корабля «Шатл» сжигается как жидкое так и твердое топливо. Продукты сгорания топлива по мере удаления корабля от Земли проникают в различные слои атмосферы (таблица 1), но большей частью в тропосферу.

Таблица 1. Продукты сгорания топлива

Атмосферный слой

Высота, км

Продукты сгорания, кг

HCl

Cl

NO

CO

CO2

H2O (пар)

Al2O3

Приземный слой

0 – 0,5

24666

2741

1697

131

55075

46674

39284

Тропосфера

0,5 – 13

78517

9657

4618

839

172570

152677

26385

Стратосфера

13 – 50

59732

11727

239

2189

147684

146393

110304

Нижняя мезосфера

50 – 67

0

0

0

0

0

15542

0

Мезосфера - термосфера

67

0

0

0

0

0

119045

0

В условиях запуска у пусковой системы образуется облако продуктов сгорания, водяного пара от системы шумоглушения, песка и пыли. Объем продуктов сгорания можно определить по времени (обычно 20 с) работы установки на стартовой площадке и в приземном слое. После запуска высоко температурное облако поднимается на высоту до 3 км и перемещается под действием ветра на расстояние 30 – 60 км, оно может рассеятся, но может стать и причиной кислотных дождей.

При старте и возвращении на Землю ракетные двигатели неблагоприятно воздействуют не только на приземный слой атмосферы, но и на космическое пространство, разрушая озоновый слой Земли. Масштабы разрушения озонового слоя определяются числом запусков ракетных систем и интенсивностью полетов сверхзвуковых самолетов. За 40 лет существования космонавтики в СССР и позднее России произведено свыше 1800 запусков ракет-носителей. По прогнозам фирмы Aerospace в XXI в. для транспортировки грузов на орбиту будет осуществляться до 10 запусков ракет в сутки, при этом выброс продуктов сгорания каждой ракеты будет превышать 1,5 т/с.

В связи с развитием авиации и ракетной техники, а также интенсивным использованием  авиационных и ракетных двигателей в других отраслях народного хозяйства существенно возрос их общий выброс вредных примесей в атмосферу. Однако на долю этих двигателей приходится пока не более 5% токсичных веществ, поступающих в атмосферу от транспортных средств всех типов.[3]

1.4. Аэрозольное загрязнение атмосферы


Аэрозоли - это твердые или жидкие частицы,  находящиеся во  взвешенном состоянии в воздухе.  Твердые компоненты аэрозолей  в ряде случаев особенно опасны для организмов, а у людей вызывают специфические  заболевания.  В  атмосфере  аэрозольные  загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная  часть  аэрозолей образуется в атмосфере при  взаимодействии твердых и жидких частиц между собой или с  водяным паром. Средний размер аэрозольных частиц составляет  11-51мкм. В атмосферу Земли ежегодно поступает около  11 куб.км.  пылевидных частиц искусственного  происхождения.  Большое  количество пылевых частиц образуется также в ходе  производственной деятельности людей.  Сведения о некоторых источниках техногенной пыли приведены ниже:

ПРОИЗВОДСТВЕННЫЙ ПРОЦЕСС  ВЫБРОС  ПЫЛИ,МЛН.Т./ГОД

1. Сжигание каменного угля                                 93,60

2. Выплавка чугуна                                                20,21

3. Выплавка меди (без очистки)                             6,23

4. Выплавка цинка                                                   0,18

5. Выплавка олова (без очистки)                          0,004

6. Выплавка свинца                                                 0,13

7. Производство цемента                                      53,37
Основными источниками  искусственных аэрозольных загрязнений воздуха являются ТЭС,  которые потребляют  уголь  высокой  зольности, обогатительные фабрики,  металлургические, цементные, магнезитовые и сажевые заводы.  Аэрозольные  частицы  от  этих источников  отличаются большим разнообразием химического  состава. Чаще  всего  в  их составе обнаруживаются соединения кремния, кальция и углерода,  реже - оксиды металлов: железа,  магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена,  мышьяка,  бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Еще большее разнообразие свойственно  органической пыли,  включающей алифатические и  ароматические  углеводороды, соли кислот.  Она образуется при сжигании остаточных нефтепродуктов,  в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предриятиях. Постоянными источниками аэрозольного загрязнения  являются  промышленные отвалы  -  искусственные  насыпи из переотложенного  материала, преимущественно вскрышных  пород,  образуемых  придобыче полезных  ископаемых или же из отходов предприятий перерабатывающей промышленности,  ТЭС. Источником пыли и ядовитых газов служат массовые взрывные работы.  Так, в результате  одного среднего по массе взрыва ( 1250-3000 тонн  взрывчатых  веществ) в атмосферу выбрасывается около  12 тыс.куб.м.  условного  оксида углерода и более  1150 т. пыли.  Производство  цемента  и  других строительных материалов также является источником загрязнения атмосферы пылью.  Основные технологические  процессы  этих производств  -  измельчение и химическая обработка шихт,  полуфабрикатов и получаемых продуктов в потоках горячих газов  всегда сопровождается выбросами пыли и других вредных веществ  в атмосферу.  К атмосферным загрязнителям относятся углеводороды - насыщенные и ненасыщенные,  включающие от  11 до 13  атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации,  взаимодействуя  с  другими  атмосферными  загрязнителями после возбуждения солнечной радиацией.  В  результате этих реакций образуются перекисные соединения,  свободные радикалы,  соединения углеводородов с оксидами азота и  серы часто в виде аэрозольных частиц.  При некоторых погодных  условиях могут образовываться особо большие скопления вредных  газообразных и аэрозольных примесей в приземном слое воздуха.

Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над  источниками газопылевой эмиссии существует  инверсия - расположения слоя более холодного воздуха под теплым, что  препятствует  воздушных  масс и задерживает перенос  примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии,  содержание их у земли резко возрастает, что становится одной из причин образования  ранее  неизвестного в природе фотохимического тумана.[4]

1.5 Фотохимический туман (смог)


Фотохимический туман представляет собой  многокомпонентную  смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят  озон,  оксиды азота  и серы,  многочисленные органические соединения  перекисной природы,  называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических  реакций при определенных условиях:  наличии в атмосфере высокой концентрации  оксидов азота,  углеводородов и других загрязнителей, интенсивной солнечной радиации  и  безветрия  или  очень слабого  обмена воздуха в приземном слое при мощной и в  течение не менее суток повышенной инверсии.  Устойчивая  безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации  реагирующих  веществ.  Такие условия  создаются  чаще  в июне-сентябре и реже зимой.  При продолжительной ясной погоде солнечная радиация  вызывает  расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода.  Атомарный кислород с молекулярным  кислородом дают озон.  Казалось бы,  последний, окисляя оксид  азота, должен снова превращаться в  молекулярный  кислород,  а  оксид азота - в диоксид.  Но этого не происходит. Оксид азота  вступает в реакции с олефинами выхлопных газов,  которые  при  этом расщепляются по двойной связи и образуют осколки молекул  и избыток озона. В результате продолжающейся диссоциации новые  массы диоксида  азота расщепляются и дают дополнительные количества озона.  Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в  ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами.  В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для  фотохимического тумана  оксиданты.  Последние являются источником так  называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги - нередкое явление над Лондоном,  Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы  и Америки. По своему физиологическому воздействию на организм  человека они крайне опасны для дыхательной и кровеносной системы и часто бывают причиной преждевременной смерти городских  жителей с ослабленным здоровьем.[5]

2. Проблема контролирования выброса в атмосферу загрязняющих веществ промышленными предприятиями (ПДК)


Приоритет в области разработки предельно допустимых концентраций в воздухе принадлежит СССР. ПДК - такие концентрации, которые на человека и его потомство прямого или косвенного воздействия, не ухудшают их работоспособности, самочувствия, а также санитарно-бытовых условий жизни людей.

Чтобы по результатам наблюдений определить значения воздуха, измеренные значения концентраций  сравнивают  с  максимальной разовой  предельно допустимой концентрацией и определяют число случаев,  когда были превышены ПДК , а также во сколько раз наибольшее значение было выше ПДК. Среднее значение концентрации за месяц или за год сравнивается с  ПДК   длительного действия - среднеустойчивой  ПДК. Состояние загрязнение воздуха несколькими веществами, наблюдаемые в атмосфере  города, оценивается  с  помощью комплексного показателя - индекса загрязнения атмосферы (ИЗА). Для этого нормированные на соответствующее значения ПДК и средние концентрации различных веществ с помощью  несложных расчетов  приводят  к  величине концентраций сернистого ангидрида, а затем суммируют. Максимальные разовые концентрации  основных загрязняющих  веществ были наибольшими в Норильске (оксиды азота и серы), Фрунзе (пыль), Омске (угарный газ). Степень загрязнения воздуха основными загрязняющими веществами находится в прямой зависимости от промышленного развития города.

Загрязнение воздуха специфическими веществами  зависит  от вида промышленности, развитой в городе. Если в крупном городе размещены предприятия нескольких отраслей промышленности, то создается очень высокий уровень загрязнения воздуха,  однако проблема снижения  выбросов  многих специфических веществ до сих пор остается нерешенной.[6]

3. Влияние ксенокомпонентов в атмосфере на человека, растительный и животный мир


Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека. Эти вещества попадают в организм человека преимущественно через систему дыхания. Органы дыхания страдают от загрязнения непосредственно, поскольку около 50% частиц примеси радиусом 0,01-0.1 мкм, проникающих в легкие, осаждаются в них.

Проникающие в организм частицы вызывают токсический эффект, поскольку они: а токсичны (ядовиты) по своей химической или физической природе; б) служат помехой для одного или нескольких механизмов, с помощью которых нормально очищается респираторный (дыхательный) тракт; в) служат носителем поглощенного организмом ядовитого вещества.

В некоторых случаях воздействие одних из загрязняющих веществ в комбинации с другими приводят к более серьезным расстройствам здоровья, чем воздействие каждого из них в отдельности. Большую роль играет продолжительность воздействия.

Статистический анализ позволил достаточно надежно установить зависимость между уровнем загрязнения воздуха и такими заболеваниями, как поражение верхних дыхательных путей, сердечная недостаточность, бронхиты, астма, пневмония, эмфизема легких, а также болезни глаз. Резкое повышение концентрации примесей, сохраняющееся в течение нескольких дней, увеличивает смертность людей пожилого возраста от респираторных и сердечно-сосудистых заболеваний. В декабре 1930 г. в долине реки Маас (Бельгия) отмечалось сильное загрязнение воздуха в течение 3 дней; в результате сотни людей заболели, а 60 человек скончались - это более чем в 10 раз выше средней смертности. В январе 1931 г. в районе Манчестера (Великобритания) в течение 9 дней наблюдалось сильное задымление воздуха, которое явилось причиной смерти 592 человек. Широкую известность получили случаи сильного загрязнения атмосферы Лондона, сопровождавшиеся многочисленными смертельными исходами. В 1873 г. в Лондоне было отмечено 268 непредвиденных смертей. Сильное задымление в сочетании с туманом в период с 5 по 8 декабря 1852 г. привело к гибели более 4000 жителей Большого Лондона. В январе 1956 г.  около 1000 лондонцев погибли в результате продолжительного задымления. Большая часть тех, кто умер неожиданно, страдали от бронхита, эмфиземы легких или сердечно-сосудистыми заболеваниями.

3.1  Оксид углерода


Концентрация СО, превышающая предельно допустимую, приводит к физиологическим изменениям в организме человека. Объясняется это тем, что СО - исключительно агрессивный газ,, легко соединяющийся с гемоглобином ( красными кровяными тельцами). При соединении образуется карбоксигемоглобин, повышение (сверх нормы, равной 0.4%) содержание которого в крови сопровождается:

а) ухудшением остроты зрения и способности оценивать длительность интервалов времени,

б) нарушением некоторых психомоторных функций головного мозга ( при содержании 2-5%),

в) изменениями деятельности сердца и легких ( при содержании более 5%),

г) головными болями, сонливостью, спазмами, нарушениями дыхания и смертностью ( при содержании 10-80%).

Степень воздействия оксида углерода на организм зависят не только от его концентрации, но и от времени пребывания (экспозиции) человека в загазованном СО воздухе. Так, при концентрации СО равной 10-50 млн (нередко наблюдаемой в атмосфере площадей и улиц больших городов), при экспозиции 50-60 мин отмечаютcя нарушения, приведенные в п. "а", 8-12 ч - 6 недель - наблюдаются изменения, указанные в п.. "в". Нарушение дыхания, спазмы. Потеря сознания наблюдаются при концентрации СО, равной 200 млн, и экспозиции 1-2 ч при тяжелой работе и 3-6 ч - в покое. К счастью, образование карбоксигемоглобина в крови - процесс обратимый: после прекращения вдыхания СО начинается его постепенный вывод из крови; у здорового человека содержание СО в крови каждые 3-4 ч и уменьшается в два раза. Оксид углерода - очень стабильное вещество, время его жизни в атмосфере составляет 2-4 мес. При ежегодном поступлении 350 млн. т концентрация СО в атмосфере должна была бы увеличиваться примерно на 0,03 млн-1/год. Однако этого, к счастью, не наблюдается, чем мы обязаны в основном почвенным грибам, очень активно разлагающим СО (некоторую роль играет также переход СО в СО2).

3.2  Диоксид серы и серный ангидрид


Диоксид серы (SO2) и серный ангидрид (SO3) в комбинации со взвешенными частицами и влагой оказывают наиболее вредной воздействие на человека, живые организмы и материальные ценности SO2 - бесцветный и негорючий газ, запах которого начинает ощущаться при его концентрации в воздухе 0,3-1,0 млн, а при концентрации свыше 3 млн SO2  имеет острый раздражающий запах. Диоксид серы в смеси с твердыми частицами и серной кислотой (раздражитель более сильный, чем SO2)  уже при среднегодовом содержании 9,04-0,09 млн. и концентрации дыма 150-200 мкг/м3 приводит к увеличению симптомов затрудненного дыхания и болезней лугких, а при среднесуточном содержании SO2 0,2-0,5 млн и концентрации дыма 500-750 мкг/м3 наблюдается резкое увеличение числа больных и смертельных исходов. При концентрации  SO2  0,3-0,5 млн в течение нескольких дней  наступает хроническое поражение листьев растений (особенно шпината, салата, хлопка и люцерны), а также иголок сосны.

3.3   Оксиды азота и некоторые другие вещества


Оксиды азота (прежде всего, ядовиты диоксид азота NO2), соединяющиеся при участии ультрафиолетовой солнечной радиации с углеводородами (среди наибольшей реакционной способностью обладают олеофины), образуют пероксилацетилнитрат (ПАН) и другие фотохимические окислители, в том числе пероксибензоилнитрат (ПБН), озон (О3), перекись водорода (Н2О2), диоксид азота. Эти окислители- основные составляющие фотохимического смога, повторяемость которого велика в сильно загрязненных городах, расположенных в низких широтах северного и южного полушария (Лос-Анджелес, в котором около 200 дней в году отмечается смог, Чикаго, Нью-Йорк и другие города США; ряд городов Японии, Турции, Франции,  Испании , Италии, Африки и Южной Америки).

Оценка скорости фотохимических реакций, приводящих к образованию ПАН, ПБН и озона, показывает, что в ряде южных городов бывшего Советского  Союза летом в околополуденные часы (когда велик приток ультрафиолетовой радиации) эти скорости превосходят значения, начиная с которых отмечается образование смога. Так, в Алма-Ате, Ереване, Тбилиси, Ашхабаде, Баку, Одессе и других городах при наблюдаемых уровнях загрязнения воздуха максимальная скорость образования О3 достигла 0,70-0,86 мг/(м3 ×ч), в то время как смог возникает уже при скорости 0,35 мг/(м3 × ч).

Наличие в составе ПАН диоксида азота и иодистого калия придает смогу коричневый оттенок. При концентрации ПАН выпадает на землю в виде клейкой жидкости губительно действующей на растительный покров.

Все окислители, в первую очередь ПАН и ПБН, сильно раздражают и взывают воспаление глаз, а в комбинации с озоном раздражают носоглотку, приводят к спазмам грудной клетки, а при высокой концентрации (свыше 3-4 мг/м3) вызывают сильный кашель и ослабляют возможность на чем либо сосредоточиться.

Назовем некоторые другие загрязняющие воздух вещества, вредно действующие на человека. Установлено, что у людей,  профессионально  имеющих дело с асбестом повышена вероятность раковых заболеваний бронхов и диафрагм, разделяющих грудную клетку и брюшную полость. Берилий оказывает вредное воздействие(вплоть до возникновения онкологических заболеваний) на дыхательные пути, а также на кожу и глаза. Пары ртути вызывают нарушение работы центральной верхней системы и почек. Поскольку ртуть может накапливаться в организме человека, то в конечном итоге ее воздействие приводит к расстройству умственных способностей.

В городах вследствие постоянно увеличивающегося загрязнения воздуха неуклонно растет число больных, страдающих такими заболеваниями, как хронический бронхит, эмфизема легких, различные аллергические заболевания и рак легких. В Великобритании 10% случаев смертельных исходов приходится на хронический бронхит, при этом 21; населения в возрасте 40-59 лет страдает этим заболеванием. В Японии в ряде городов до 60% жителей болеют хроническим бронхитом, симптомами которого является сухой кашель с частыми отхаркиваниями, последующее прогрессирующее затруднение дыхания и сердечная недостаточность (в связи с этим следует отметить, что так называемое японское экономическое чудо 50-х - 60-х годов сопровождалось сильным загрязнением природной среды одного из наиболее красивых районов земного шара и серьезным ущербом, причиненным здоровью населения этой страны). В последние десятилетия с вызывающей сильную озабоченность быстротой растет число заболевших раком бронхов и легких, возникновению которых способствуют канцерогенные углеводороды.[7]

Заключение


На всех стадиях своего развития человек был тесно связан с окружающим миром. Но с тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширился объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества. Расход невозобновимых видов сырья повышается, все больше пахотных земель выбывает из экономики,  так как на них строятся города и заводы. Человеку приходится все больше вмешиваться в хозяйство биосферы - той части нашей планеты, в которой существует жизнь. Биосфера Земли в настоящее время  подвергается  нарастающему антропогенному воздействию. При этом можно выделить несколько наиболее существенных процессов, любой  из которых не улучшает экологическую ситуацию на планете.

Наиболее масштабным и значительным является химическое загрязнение среды несвойственными ей веществами химической природы - ксенокомпонентами. Среди  них - газообразные и аэрозольные загрязнители   промышленно-бытового происхождения. Прогрессирует и накопление углекислого газа в атмосфере.

В данной работе мы рассмотрели основные вещества, которые относятся к ксенокомпонентам: оксид углерода, соединения серы, оксиды  азота, соединения фтора, соединения  хлора и некоторые другие химические элементы и соединения, а также аэрозоли (пыль).

Основными источниками чужеродных веществ в атмосфере являются продукты жизнедеятельности человека: промышленность, котельные, транспорт. Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека, на растительный и животный мир нашей планеты.

Поэтому, очевидно, что в интересах самого человека поддерживать как можно более чистую среду своего обитания, одной из главных составляющей которой является чистый воздух.

Литература


1.                Акимова Т.А., Хаскин В.В. Экология. – М., 1998.

2.                 Болбас М.М. Основы промышленной экологии.Москва :  Высшая школа , 1993.

3.                 Балацкий О.Ф., Мельник Л.Г., Яковлев А.Ф.  “Экономика и качество окружающей природной среды” Гидрометеоиздат,1984г

4.                 Владимиров А.М. и др. Охрана окружающей среды. Санкт-Петербург :  Гидрометеоиздат  1991.

5.                 Грушко Я.М. “Вредные органические соединения в промышленных выбросах в атмосферу”, “химия” Ленинград 1991г

6.                 “Защита атмосферы от промышленных загрязнений” справочник под ред. С.Калверта и Г.Инглунда Металлургия”,Москва 1991

7.                 Мониторинг качества атмосферного воздуха для оценки воздействия на здоровье человека. Региональные публикации ВОЗ, Европейская серия, № 85, 2001

8.                Охрана окружающей среды (ред. Белова С.В.). – М., 1991.

9.                Протасов В.Ф., Молчанов А.В. Экология, здоровье и охрана окружающей среды. – М., 2000.

10.           Экология и безопасность жизнедеятельности (ред. Муравья Л.А.). – М., 2000.




[1] Акимова Т.А., Хаскин В.В. Экология. – М., 1998.

[2] Я.М.Грушко “Вредные органические соединения в промышленных выбросах в атмосферу”, “химия” Ленинград 1991г



[3] О.Ф.Балацкий, Л.Г.Мельник, А.Ф.Яковлев  “Экономика и качество окружающей природной среды” Гидрометеоиздат,1984г



[4] Экология и безопасность жизнедеятельности (ред. Муравья Л.А.). – М., 2000.

[5] Болбас М.М. Основы промышленной экологии.Москва :  Высшая школа , 1993.



[6] Протасов В.Ф., Молчанов А.В. Экология, здоровье и охрана окружающей среды. – М., 2000.



[7] Мониторинг качества атмосферного воздуха для оценки воздействия на здоровье человека. Региональные публикации ВОЗ, Европейская серия, № 85, 2001



1. Реферат на тему Incalzirea Globala Si Efectul De Sera Essay
2. Доклад Физика и экология
3. Реферат Культура Московского царства
4. Реферат на тему Гормоны щитовидной железы
5. Диплом Розробка комплексу маркетинга фірми Схід
6. Курсовая на тему Договор дарения 3
7. Реферат Предмет, объект, метод и задачи валеологии. Основные понятия валеологии
8. Реферат на тему My Interest In Ink Essay Research Paper
9. Реферат Вклади культури і мистецтва XX століття у світову цивілізацію
10. Реферат Классификация приемов тепловой обработки