Реферат

Реферат Сущность и развитие современной компьютерной графики

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 13.1.2025





Оглавление

Введение. 2

1.     Функции CAD, САМ и САЕ. 3

1.1.       Aвтоматизированное проектирование (computer – aided design – CAD) 3

1.2.       Автоматизированное производство (computer – aided manufacturing – САМ) 3

1.3.       Автоматическое конструирование (computer – aided engineering – САЕ) 3

2.     Назначение и область применения автоматизированной системы AutoCAD.. 3

Библиографический список. 3


Введение


Увеличение производительности труда разработчиков новых изделий, сокращение сроков проектирования, повышение качества разработки проектов - важнейшие проблемы, решение которых определяет уровень ускорения науно- технического прогресса общества. Развитие систем автоматизированого проектирования (САПР) опирается на прочную научно-техническую базу. Это - современные средства вычислительньной техники, новые способы представления и обработки информа-ции, создание новых численных методов решения инженерных задач и оптимиза-ции. Системы автоматизированного проектирования дают возможность на основе новейших достижений фундаментальных наук отрабатывать и совершенствовать методологию проектирования, стимулировать развитие математической теории проектирования сложных систем и объектов. В настоящее время созданы и при-меняются в основном средства и методы, обеспечивающие автоматизацию рутин-ных процедур и операций, таких, как подготовка текстовой документации, преоб-разование технических чертежей, построение графических изображений и т.д..

1.    Функции CAD, САМ и САЕ

1.1.                    Aвтоматизированное проектирование (computer – aided design – CAD)


Представляет собой технологию, состоящую в использовании компьютерных систем для облегчения создания, изменения, анализа и оптимизации проектов. Таким образом, любая программа, работающая с компьютерной графикой, так же как и любое приложение, используемое в инженерных расчетах, относится к системам автоматизированного проектирования. Другими словами, множество средств CAD простирается от геометрических прогpaмм для работы с формами до специализированных приложений для анализа и оптимизации. Между этими крайностями умещаются программы для анализа допусков, расчета масс инерционных свойств, моделирования методом конечных элементов и визуализации результатов анализа. Самая основная функция CAD – определение геометрии конструкции (детали механизма, архитектурные элементы, электронные схемы, планы зданий и т.п.), поскольку геометрия определяет все последующие этапы жизненного цикла продукта. Для этой цели обычно используются системы разработки рабочих чертежей и геометрического моделирования. Вот почему эти системы обычно и считаются системами автоматизированного проектирования. Более того, геометрия, определенная в этих системах, может использоваться в качестве основы для дальнейших операций в системах САЕ и САМ. Это одно из наиболее значительных преимуществ CAD, позволяющее экономить время и сокращать количество ошибок, связанных с необходимостью определять геометрию конструкции с нуля каждый раз, когда она требуется в расчетах. Можно, следовательно, утверждать, что системы автоматизированной разработки рабочих чертежей и системы геометрического моделирования являются наиболее важными компонентами автоматизированного проектирования.

1.2.                    Автоматизированное производство (computer – aided manufacturing – САМ)


Это технология, состоящая в использовании компьютерных систем для планирования, управления и контроля операций производства через прямой или косвенный интерфейс с производственными ресурсами предприятия. Одним из наиболее зрелых подходов к автоматизации производства является числовое программное управление (ЧПУ, numerical control – NC). ЧПУ заключается в использовании запрограммированных команд для управления станком, который может шлифовать, резать, фрезеровать, штамповать, изгибать и иными способами превращать заготовки в готовые детали. В наше время компьютеры способны

генерировать большие программы для станков с ЧПУ на основании геометрических параметров изделий из базы данных САD и дополнительных сведений, предоставляемых оператором. Исследования в этой области концентрируются на сокращении необходимости вмешательства оператора.

Еще одна важная функция систем автоматизированного производства – программирование роботов, которые могут работать на гибких автоматизированных участках, выбирая и устанавливая инструменты и обрабатываемые детали на станках с ЧПУ. Роботы могут также выполнять свои собственные задачи, например, заниматься сваркой, сборкой и переносом оборудования и деталей по цеху.

Планирование процессов также постепенно автоматизируется. План процессов может определять последовательность операций по изготовлению устройства от начала и до конца на всем необходимом оборудовании. Хотя полностью автоматизированное планирование процессов, как уже отмечалось, практически невозможно, план обработки конкретной детали вполне может быть сформирован автоматически, если уже имеются планы обработки аналогичных деталей. Для этого была разработана технология группировки, позволяющая объединять поxoжие детали в семейства. Детали считаются подобными, если они имеют общие производственные особенности (гнезда, пазы, фаски, отверстия и т.д.). Для автоматического обнаружения схожести деталей необходимо, чтобы база данных CAD содержала сведения о таких особенностях. Эта задача осуществляется при помощи объектно-ориентированного моделирования или распознавания элементов.

Вдобавок, компьютер может использоваться для тoгo, чтобы выявлять необходимость заказа исходных материалов и покупных деталей, а также определять их количество исходя из графика производства. Называется такая деятельность планированием технических требований к материалу (material requirements planning – MRP). Компьютер может также использоваться для контроля состояния станков в цехе и отправки им соответствующих заданий.

1.3.                    Автоматическое конструирование (computer – aided engineering – САЕ)


Это технология, состоящая в использовании компьютерных систем для анализа геометрии CAD, моделирования и изучения поведения продукта для усовершенствования и оптимизации eгo конструкции. Средства САЕ могут осуществлять множество различных вариантов анализа. Программы для кинематических pacчетов, например, способны определять траектории движения и скорости звеньев в механизмах. Программы динамического анализа с большими смещениями могут использоваться для определения нагрузок и смещений в сложных составных устройствах типа автомобилей. Прогpаммы верификации и анализа логики и синхронизации имитируют работу сложных электронных цепей.

По всей видимости, из всех методов компьютерного анализа наиболее широко в конструировании используется метод конечных элементов (finite element method – FЕМ). С eгo помощью рассчитываются напряжения, деформации, теплообмен, распределение магнитного поля, потоки жидкостей и другие задачи с непрерывными средами, решать которые каким-либо иным методом оказывается просто непрактично. В методе конечных элементов аналитическая модель структуры представляет собой соединение элементов, благодаря чему она разбивается на отдельные части, которые уже могут обрабатываться компьютером.

Как отмечалось ранее, для использования метода конечных элементов нужна абстрактная модель подходящего уровня, а не сама конструкция. Абстрактная модель отличается от конструкции тем, что она формируется путем исключения несущественных деталей и редуцирования размерностей. Например, трёхмерный объект небольшой толщины может быть представлен в виде двумерной оболочки. Модель создается либо в интерактивном режиме, либо автоматически. Готовая абстрактная модель разбивается на конечные элементы, образующие аналитическую модель. Программные средства, позволяющие конструировать абстрактную модель и разбивать ее на конечные элементы, называются пpeпpoцессорами (preprocessors). Проанализировав каждый элемент, компьютер собирает результаты воедино и представляет их в визуальном формате. Например, области с высоким напряжением могут быть выделены красным цветом. Программные средства, обеспечивающие визуализацию, называются пocтпpoцeccoрами (postprocessors). Существует множество программных средств для оптимизации конструкций.

Хотя средства оптимизации могут быть отнесены к классу САЕ, обычно их pacсматривают отдельно. Ведутся исследования возможности автоматического определения формы конструкции путем объединения оптимизации и анализа.

В этих подходах исходная форма конструкции предполагается простой, как, например, у прямоугольного двумерного объекта, состоящего из небольших элементов различной плотности. Затем выполняется процедура оптимизации, позволяющая определить конкретные значения плотности, позволяющие достичь определенной цели с учетом ограничений на напряжения. Целью часто является минимизация веса. После определения оптимальных значений плотности рассчитывается оптимальная форма объекта. Она получается отбрасыванием элементов с низкими значениями плотности.

Замечательное достоинство методов анализа и оптимизации конструкций заключается в том, что они позволяют конструктору увидеть поведение конечного продукта и выявить возможные ошибки до создания и тестирования реальных прототипов, избежав определенных затрат. Поскольку стоимость конструирования на последних стадиях разработки и производства продукта экспоненциально возрастает, ранняя оптимизация и усовершенствование (возможные только благодаря аналитическим средствам САЕ) окупаются значительным снижением сроков и стоимости разработки.

Таким образом, технологии CAD, САМ и САЕ заключаются в автоматизации и повышении эффективности конкретных стадий жизненного цикла продукта. Развиваясь независимо, эти системы еще не до конца реализовали потенциал интеграции проектирования и производства. Для решения этой проблемы была предложена новая технология, получившая название компьютеризированного интегрированного производства (computer – integrated manufacturing – СIМ). CIM пытается соединить «островки автоматизации» вместе и превратить их в бесперебойно и эффективно работающую систему. CIM подразумевает использование компьютерной базы данных для более эффективного управления всем предприятием, в частности бухгалтерией, планированием, доставкой и другими задачами, а не только проектированием и производством, которые охватывались системами CAD, САМ и САЕ. CIM часто называют философией бизнеса, а не компьютерной системой.


2.    Назначение и область применения автоматизированной системы AutoCAD


Одна из самых популярных графических систем автоматизированного проектирования — AutoCAD. В зависимости от квалификации пользователя, AutoCAD может эффективно использоваться для решения широкого круга задач: черчения, конструирования, дизайнерских работ, создания мульт- и слайд-фильмов и т.д.

Несмотря на большое количество команд (их в последней версии более 300), AutoCAD обладает удобным для пользователя интерфейсом и эффективной системой ведения диалога с пользователем.

AutoCAD представляет собой систему, позволяющую автоматизировать чертежно-графические работы. В графическом пакете AutoCAD есть все, что необходимо конструктору для создания чертежа. Инструментам ручного черчения в автоматизированной среде соответствуют графические примитивы (точка, отрезок, окружность и др.), команды их редактирования (стирание, перенос, копирование и т. п.), команды установки свойств примитива (задание толщины, типа и цвета графических объектов). Для выбора листа нужного формата и масштаба чертежа в системе есть соответствующие команды настройки чертежа. Для нанесения размера конструктору необходимо лишь задать место его расположения на чертеже. Размерная и выносная линии, а также стрелки и надписи выполняются автоматически, а в последних версиях AutoCAD есть режим полной автоматизации простановки размеров.

В автоматизированной среде конструктору нет необходимости напрягать зрение при выполнении отдельных мелких частей чертежа, так как ему предоставляются средства управления изображением на экране. Соответствующие команды AutoCAD позволяют увеличивать изображение чертежа на экране или уменьшать его при необходимости (аналогично просмотру изображения через линзу), а также перемещать границы видимой на экране части чертежа без изменения масштаба изображения.

Система предоставляет конструктору возможность объединять графические объекты в единый блок, который хранится под определенным именем и при необходимости вставляется в любой чертеж, что избавляет конструктора от вычерчивания одних и тех же часто повторяющихся элементов чертежа. Проектировщик также может создавать изображения отдельных элементов чертежа или отдельных деталей сборки на различных слоях. Это позволяет контролировать совместимость деталей при компоновке. Включая или выключая слои, можно вводить или выводить детали из общей компоновки, создавая тем самым удобство в подборе различных вариантов конструкции изделия. Слои полезно использовать даже в простых чертежах, размещая на каждом отдельном слое заготовку чертежа, обводку, размеры, надписи, осевые линии для последующей возможности быстрого выбора группы объектов и их редактирования.

Разработчики системы, ориентируясь на самый широкий круг пользователей, заложили в пакет богатые возможности настройки AutoCAD на любую предметную область. Опытные пользователи могут настраивать панели инструментов и создавать новые, разрабатывать слайд фильмы с помощью пакетных файлов, вводить новые типы линий и образцы штриховки, образовывать новые меню. Встроенный в систему AutoCAD язык программирования AutoLISP позволяет описывать часто встречающиеся объекты в параметрической форме. Вызывая такой объект, конструктор может изменять его размеры, а значит, и геометрическую форму, обеспечивая тем самым многовариантность графического изображения. Помимо создания двухмерных чертежей, система AutoCAD позволяет моделировать трехмерные объекты и придавать трехмерным чертежам фотографическую реальность.

AutoCAD — не замкнутая система. Из нее можно экспортировать файлы чертежей в иные форматы для использования другими пакетами (например, КОМПАС-ГРАФИК, CorelDraw). В свою очередь, файлы других форматов также можно импортировать в AutoCAD. Допустимо импортировать растровое изображение, не меняя при этом форматы файлов. Начиная с версии 14, в AutoCAD включено множество средств, позволяющих сделать чертеж достоянием Интернета.

Разработанная фирмой AutoDesk и появившаяся на рынке в конце 1982 г. система AutoCAD получила необычайно широкое распространение. AutoCAD представляет собой среду проектирования, которая постоянно развивается. Разработчики системы стараются сохранить преемственность как в командах, так и в общей структуре. От версии к версии сохраняются уже ставшие привычными для пользователя возможность запуска команд из диалоговой строки, использование командного и выпадающих меню.

Ранние версии системы — AutoCAD 10 и AutoCAD 11 — предназначены для работы в DOS, а версии 12, 13, 14 и 2000 — в Windows. Хотя большинство команд AutoCAD, связанные с построением и редактированием чертежей, в версиях для DOS и для Windows совпадают, экранный интерфейс Windows-версий для знакомых команд совсем другой. Более того, отличаются друг от друга экранные интерфейсы AutoCAD 13 для Windows 3.1 и AutoCAD 14 для Windows 95, Разработка 14-й версии системы явилась большим достижением фирмы AutoDesk. Существенным новшеством данной версии по сравнению с предыдущей явилось значительное увеличение скорости работы и уменьшение объемов используемой памяти. Для сравнения в табл. 2.1 представлены требуемые вычислительные ресурсы, необходимые для нормальной работы в различных версиях AutoCAD.

Таблица 2.1. Минимальные требования к ресурсам компьютера версий AutoCAD

Версия AutoCAD

Процессор

Среда

Оперативная память

Память на жестком диске

10

PC-XT

DOS 2

640 Кбайт

30 Мбайт

13

Intel 386

MS-DOS 5.0, Windows 3.1X

64 Мбайт

77 Мбайт

14

Intel 486

Windows 9X, Windows NT

32 Мбайт

11 2 Мбайт

2000

Pentium

Windows 9X, Windows NT

32 Мбайт

120 Мбайт

Значительным достижением явилось развитие средств управления изображением. Для работы с различными частями чертежа его можно просто «перетаскивать» до появления нужного фрагмента.

Основы
AutoCAD


Чертить в системе AutoCAD — значит, формировать на экране дисплея изображение из отдельных графических элементов (примитивов), которые вводятся при помощи соответствующих команд графического интерфейса.

Команды формируются в процессе обращения к меню и панелям инструментов и представляют собой некоторую последовательность «подкоманд», которые выбираются в каждом очередном раскрывающемся подменю. Например, фраза «Выберите View > Zoom > All (Вид > Показать > Все)» означает, что нужно сначала щелкнуть на строке View (Вид) в главном меню AutoCAD, потом в открывшемся меню выбрать пункт Zoom (Показать) и, наконец, в последнем открывшемся меню выбрать пункт Аll (Все).

Вызов команд и ввод графических элементов осуществляется при помощи мыши или клавиатуры.

Термины, применяемые при описании использования мыши в AutoCAD:

·        курсор — указатель мыши на экране (вид курсора в зависимости от рода деятельности может меняться, принимая форму или перекрестия, или маленького
квадрата (прицела), или стрелки, или кисти руки);


·        прицел — маленький квадрат, используемый при выборе объектов в графической зоне;

·        указать — подвести курсор к графическому объекту и щелкнуть левой кнопкой мыши;

·        выбрать — подвести курсор, имеющий форму стрелки, и щелкнуть на пункте меню, пиктограмме панели инструментов или элементе управления диалогового окна;

·        щелкнуть — нажать и быстро отпустить кнопку мыши (если не оговорено особо, то левую кнопку);

·        дважды щелкнуть — быстро выполнить два щелчка (интервал между щелчками должен быть как можно короче);

·        протянуть — переместить курсор, за которым будет следовать графический объект;

·        щелкнуть и протянуть — нажать левую кнопку мыши и, не отпуская ее, переместить курсор, за которым будет тянуться по экрану выбранный объект.

Для ввода данных и выполнения команд можно использовать и клавиатуру.

Запуск AutoCAD в операционной среде Windows осуществляется командой Start > Programs > AutoCAD > AutoCAD (Пуск > Программы > AutoCAD > AutoCAD). Кнопка Start (Пуск) расположена на панели задач в нижней части экрана.

Рабочий экран AutoCAD в том виде, каким он предстает перед пользователем, в строке заголовка (в самом верху экрана) представляет имя файла, автоматически присвоенное будущему чертежу, — Drawing 1.

На экране можно выделить четыре функциональные зоны:

1. Рабочая графическая зона — это большая область в середине экрана, именно в ней и будет, выполняться чертеж. В левом нижнем углу зоны находится пиктограмма пользовательской системы координат. Направления стрелок совпадают с положительным направлением осей.

2. Системное меню и панели инструментов. В самом верху находится строка заголовка, а сразу под ней строка — системного меню AutoCAD. Ниже размещаются две строки, занятые панелями инструментов. Слева от рабочей зоны расположены «плавающие» панели инструментов Draw (Рисование) и Modify (Редактирование). Их можно перемещать в любое место экрана. В AutoCAD существует еще множество других панелей инструментов, которые вызываются по мере необходимости.

3. Командная строка. Под рабочей графической зоной находится командная строка. Любую команду AutoCAD можно запустить, набрав ее имя в командной
строке. Но даже если команда запущена посредством пиктограммы панели инструментов или пункта меню, то в командной строке отображается реакция
системы на соответствующую команду. Кроме того, все, что вводится с клавиатуры, немедленно появляется в командной строке.


Всегда следите за командной строкой. Любая команда инициируется лишь после завершения предыдущей. В командной строке при этом должно быть приглашение на ввод команды «Command:» («Команда:»). Если вы случайно вызвали не ту команду или запутались в опциях текущей команды, покинуть ее, не завершая, можно нажатием на клавиатуре клавиши Esc.

4. Строка состояния. В строке состояния отображаются координаты перекрестия. Они изменяются по мере перемещения перекрестия с помощью мыши.

Нажатие клавиши Enter в последней строке команды обеспечивает выполнение и завершение команды. Любую команду можно завершить щелчком правой кнопкой мыши на любом месте графической рабочей зоны. При этом на экране появится контекстное меню. Выбор строки Enter (Ввод) (щелчок по ней левой кнопкой мыши) обеспечит выполнение команды.

Сохранение файла чертежа в системе AutoCAD будет таким же, как и в системе Windows. Для того чтобы избежать потери информации и облегчить поиск созданных чертежей (файлов), их желательно хранить в отдельной папке.

AutoCAD позволяет отменить любую выполненную команду или группу команд. Для того чтобы восстановить изображение после нежелательного его удаления, достаточно в верхней строке панели инструментов щелкнуть мышью на пиктограмме левой стрелки Undo (Отмена).

Для выхода из системы можно использовать одно из следующих действий:

·        щелкнуть мышью на кнопку Close (Закрыть) — крестик в правом верхнем углу экрана;

·        набрать в командной строке слово Quit и нажать Enter;

·        выбрать в меню File > Exit (Файл > Выход).

Если информация в чертеже не была сохранена, то AutoCAD предложит ее сохранить. Можно принять это предложение, ответив Yes (Да), можно выйти из системы без сохранения последних изменений, ответив No (Нет), и отказаться от выхода и вернуться к чертежу, нажав Cancel (Отмена).

2.2 Меню и панели инструментов

Вызов команд AutoCAD осуществляется из меню или при помощи пиктограмм панелей инструментов. Строка системного меню в версии AutoCAD состоит из следующих выпадающих меню:

·        File (Файл) — меню предназначено для открытия, сохранения, печати, экспорта в другие форматы файлов (чертежей), а также выхода из системы.

·        Edit (Правка) — меню редактирования частей чертежа в рабочей зоне.

·        View (Вид) — меню управления экраном, переключения режимов пространства
листа и модели, установки точки зрения для трехмерных моделей, тонирования, управления параметрами дисплея.


·        Insert (Вставить) — меню команд вставки блоков и объектов из других приложений.

·        Format (Формат) — меню установки границ чертежа и единиц измерений, управления стилем текста, размерами, работы со слоями, цветом, типом и толщиной линий.

·        Tools (Инструменты) — меню средств управления системой, установки пара метров черчения, привязок и пользовательской системы координат.

·        Draw (Черчение) — меню графических примитивов.

·        Dimension (Размер) — меню команд нанесения размеров.

·        Modify (Изменить) — меню редактирования графических объектов.

·        Window (Окно) — стандартное Windows-меню управления и сортировки открытых чертежей (файлов).

·        Help (Справка) — меню справки.

На тот или иной пункт вызванного меню система реагирует следующим образом:

·        Выводит на экран подменю, если справа находится черный треугольник.

·        Открывает диалоговое окно, если пункт заканчивается многоточием.

·        Выполняет команду в остальных случаях.

Контекстные меню обеспечивают быстрый доступ к списку опций (лат. Optio — выбор) для текущей команды. Контекстные меню открываются после нажатия правой кнопки мыши. В AutoCAD 2000 существует пять основных видов контекстных меню:

·        Контекстное меню по умолчанию. Открывается после нажатия правой кнопкой мыши в области чертежа.

·        Контекстное меню режима редактирования. Открывается после выбора какого-либо объекта и нажатия правой кнопки мыши.

·        Контекстное меню диалогового режима. Открывается при щелчке правой кнопкой мыши в поле диалогового окна.

·        Контекстное меню командного режима. Открывается при нажатии правой кнопки мыши в командной строке. В меню отображаются опции этой команды.

·        Служебное контекстное меню. Открывается при нажатии правой кнопки мыши в командной строке (показывает список из последних семи команд). На рис. 2.11 изображено контекстное меню, содержащее команды, использованные при выполнении упражнения

Панели инструментов позволяют выполнять команды AutoCAD простым щелчком мыши на выбранной пиктограмме. Если командная кнопка (пиктограмма) панели инструментов содержит черный треугольник, это означает, что кнопка соответствует нескольким командам. Панели инструментов могут быть плавающими и с фиксированным месторасположением. Плавающую панель можно сделать закрепленной, переместив ее за пределы графического поля, и наоборот, закрепленная панель может стать плавающей, если ее поместить в пределы графического поля. В AutoCAD 2000 существует более 20 панелей инструментов. К панелям инструментов, существующим в версии AutoCAD 14, добавлены панели, предназначенные для:

·        редактирования блоков и файлов внешних ссылок на месте — Refedit (Правка ссылки);

·        работы с трехмерными объектами — Solid Editing (Правка объектов), Shade (Закраска), 3D Orbit (3D-операции) и UCS II (ПСК II);

·        совершенствования вывода файлов чертежей на печать — Layouts (Листы) и Viewports (Сечения);

·        доступа к файлам через Интернет — Web (Интернет),
2.3 Настройки
AutoCAD
для индивидуального пользователя


Прежде чем приступить непосредственно к работе над новым чертежом, необходимо настроить рабочую среду, то есть задать размеры рабочего поля чертежа, единицы измерения, установить систему координат и

т. п. Для этого в AutoCAD в появившемся диалоговом окне устанавливают одну из пяти систем линейных единиц: Decimal (Десятичные), Engineering (Технические), Architectural (Архитектурные), Fractional (Дробные), Scientific (Научные). Для выполнения

машиностроительного чертежа нужно установить десятичные единицы измерения, указав мышью на соответствующий переключатель.

Детальная настройка содержит пять этапов. Она позволяет устанавливать:

• тип единиц измерения линейных величин и их точность;

• форматы представления угловых величин и их точность;

Задать пределы чертежа можно и без использования мастера установки посредством вызова команды Limits (Границы чертежа).

AutoCAD позволяет выполнять построения и за границами установленного формата чертежа. Но при этом вспомогательная сетка будет только на поле, ограниченном принятыми ранее пределами чертежа.

В системе AutoCAD создание любого графического примитива основано на задании последовательности точек. Координаты точек могут вводиться в виде абсолютных и относительных координат.

Ввод абсолютных координат осуществляется в двух форматах:

·        прямоугольных (декартовых) координат (X
,
У);

·        полярных координат r<А, где r — радиус, а Л — угол, заданный в градусах против часовой стрелки.

Относительные координаты задают смещение по осям X
и У от последней введенной точки. Ввод относительных координат осуществляется аналогично вводу абсолютных координат, но перед ними ставится знак @: (@dx
,
dy

для прямоугольной системы, @r
— для полярной).

Текущие координаты отображаются в строке состояния (левый нижний угол экрана). Они изменяются при перемещении курсора мыши в пределах рабочей зоны. Формат отображения координат, соответствующий абсолютным или относительным координатам точки, можно менять нажатием командной клавиши F6 на клавиатуре.

В AutoCAD имеется возможность устанавливать режимы проведения линий. Это полярный режим, при котором линии проводятся под различными углами, и ортогональный, при котором линии проводятся только вдоль осей координат. Переключение режимов осуществляется нажатием на клавиатуре клавиши F8 или щелчком мыши на командной кнопке ORTHO (ОРТО) в строке состояния.

Полярный и ортогональный режимы не могут устанавливаться одновременно, то есть во время работы может быть включен либо один, либо другой.

Для точного ввода координат точек при помощи мыши в AutoCAD имеются специальные команды:

·        шаговая привязка SNAP (ПРИВ) — режим привязки координат точек к узлам воображаемой сетки (сетку можно сделать видимой при помощи команды GRID (СЕТКА), при этом режиме курсор мыши будет перемещаться только по узлам сетки).

·        объектная привязка OSNAP (ОПРИВ) — режим привязки координат к различным точкам уже созданных объектов.

Включать и отключать эти режимы можно при помощи соответствующих командных кнопок строки состояния.

Регулировать характеристики привязок можно в диалоговом окне Drafting Settings (Параметры привязки), установив соответствующую закладку:

        Snap and Grid (Привязка и сетка) — для установки параметров привязки и сетки;

Object Snap (Объектная привязка) — для установки параметров объектной привязки.

Для вызова диалогового окна следует выбрать Tools > Drafting Settings ((Инструменты > Параметры чертежа).

Для удобства работы с элементами чертежа в AutoCAD предусмотрены различные команды управления изображением на экране. Все они находятся в меню View (Вид).

Команда Zoom (Масштаб) управляет масштабом изображения на экране. При увеличении масштаба все элементы на экране увеличиваются, как бы приближаясь к оператору. При последовательном уменьшении масштаба в поле изображения попадает все большая часть чертежа, и можно сориентироваться во взаимном положении его элементов. Вызвать опции команды Zoom (Масштаб) можно при помощи пиктограмм на стандартной панели инструментов.

Команда же Zoom (Масштаб) не меняет ничего в чертеже, подобно линзе, при помощи которой рассматривают мелкие предметы.

Команда Pan (Перемещать) служит для перемещения (панорамирования) границ участка чертежа на экране. Перемещать изображение вправо и влево можно как с помощью соответствующих опций команды, так и при использовании полос прокрутки экрана Начиная с 14-й версии в AutoCAD появилась возможность панорамирования в реальном времени. Для включения этого режима нужно щелкнуть на пиктограмме Pan Realtime (Перемещение в реальном времени) на основной панели инструментов (изображение руки) или выбрать View > Pan > Realtime (Вид > Перемещать > В реальном времени).

Команда Redraw (Перерисовать все) позволяет перерисовывать на экране изображение, которое по мере работы с чертежом «засоряется» временными маркерами, и таким образом очистить его. Вызвать команду можно щелчком мыши на пиктограмме с изображением карандаша на основной панели инструментов или выбрав View > Redraw (Вид > Перерисовать).

Кроме реализации перечисленных выше возможностей управления изображением на экране, система AutoCAD позволяет формировать видовые экраны в графической зоне и размещать в них отдельные виды чертежа для удобства работы с ним. Например, в одном видовом экране можно установить полный чертеж, а в других — его фрагменты, в увеличенном масштабе далеко отстоящие друг от друга. Тогда количество манипуляций при переходе от одной области чертежа к другой значительно сокращается. При этом любая операция над объектами в одном из видовых экранов повторяется и во всех остальных. Корректируя увеличенные фрагменты чертежа, можно в то же время следить и за всей картиной в целом. Команды компоновки видовых экранов находятся в подменю Viewports (Сечения) системного меню View (Вид).

 Графические примитивы и работа с ними

В системе AutoCAD любое изображение создается с помощью базового набора примитивов. Команды их отрисовки находятся в подменю Draw (Черчение) основного меню. Однако проще всего вызвать команду создания графического примитива при помощи пиктограммы панели инструментов Draw (Черчение), которая появляется сразу же после загрузки системы. Если по какой-либо причине эта панель отсутствует, вызвать ее можно, щелкнув правой кнопкой мыши по любой пиктограмме системной панели инструментов. При этом на экране появится контекстное меню из которого следует выбрать строку Draw (Черчение), щелкнув на ней левой кнопкой мыши.

Каждый графический примитив может быть отрисован линиями определенного типа, толщины, цвета и расположен на определенном слое чертежа. Инструменты для задания этих свойств находятся в панели Object Properties (Свойства объектов). По сравнению с версией 14, в AutoCAD 2000 к свойствам примитивов добавилась толщина линии. Включать или отключать отображение толщины линии на экране можно кнопкой LWT (ТОЛЩ) в строке состояния.

После загрузки системы для всех примитивов автоматически устанавливается нулевой слой, на котором примитивы будут иметь черный цвет, основной тип линий Continuous (Сплошная) и определенную толщину Default (По умолчанию). На пиктограммах цвета, типа и толщины линий панели инструментов Object Properties (Свойства объектов) устанавливается строка ByLayer (По слою), что означает соответствие их установкам текущего слоя (нулевого).

Изменять цвет и толщину линий примитивов можно, просто используя соответствующие списки этих инструментов. Списки раскрываются при щелчке левой кнопки мыши по стрелке пиктограммы инструмента, например инструмента Lineweight Control (Выбор толщины линии). В раскрытом списке нужно лишь сделать соответствующий выбор команды в процессе построения сегментов линии или введением заглавной буквы с клавиатуры.

Любой чертеж состоит из участков прямых и кривых линий. Для вычерчивания прямоугольных участков чертежа служат инструменты:

·        Команда Line (Линия).

·        Команда Constraction Line (Конструкционная линия) – служит для проведения вспомогательных линий..

·        Команда Multiline (Мультилиния) строит совокупность параллельных (не более 16) ломаных линий, которые называются элементами.

·        Команда Polyline (Ломаная) – позволяет строить последовательность прямолинейных дуговых сегментов.

·        Команда Polygon (Многоугольник)

·        Команда Rectangle (Прямоугольник)

Для вычерчивания криволинейных участков служат инструменты:

·        Команда Arc (Дуга) - позволяет вычертить часть окружности.

·        Команда Circle (Окружность) позволяет вычертить окружность одним из шести способов.

·        Команда Spline (Сплайн) позволяет провести на чертеже волнистую линию.

·        Команда Ellipse (Эллипс) позволяет вычертить как полный эллипс, так и его часть.

Для удаления объекта достаточно щелкнуть по пиктограмме Erase (Удалить) панели инструментов Modify (Изменение) и выбрать удаляемое. Можно вначале выбрать объект, а затем щелкнуть по пиктограмме Erase (Удалить) или просто нажать клавишу Delete на клавиатуре.

Для выбора одного объекта достаточно щелкнуть по нему кнопкой выбора (левой кнопкой). Для выбора нескольких объектов можно указывать на них последовательно мышью. Объекты также можно выбирать и при помощи рамки (прямоугольника). Для этого нужно щелкнуть мышью по экрану (введение одной точки диагонали рамки), затем протянуть мышь в направлении выбора группы объектов и щелкнуть мышью еще раз (введение другой точки диагонали рамки). При этом выберутся только те объекты, которые полностью вошли в рамку.

Для того чтобы выбор объектов и их удаление происходили описанным выше способом, необходимо в диалоговом окне Options (Опции) меню Tools (Инструменты) открыть страницу Selection (Выбор) и установить флажок в окне Noun/verb selection (Предварительный выбор), а в окне Use Shift to add to selection (Использовать Shift для добавления к выделению) убрать флажок.

Для отмены одной последней команды нужно щелкнуть по пиктограмме Undo (Отмена) на стандартной Панели инструментов. После каждого щелчка по пиктограмме будет отменяться последняя команда в списке выполненных. Когда список будет исчерпан, в командной строке появится сообщение Everything has been undone (Все команды отменены)

Для того чтобы отменить сразу несколько команд, нужно ввести команду Undo с клавиатуры. После запуска команды в командной строке появится список из семи опций:

Command: Undo Enter

Enter the number of operations to undo or [Auto/Control/BEgin/End/Mark/Back] <1>:

(Команда: Отмена Enter Введите число команд для отмены или [Авто/Управление/Начало/Конец/Метка/Обратно] <1>:)

По умолчанию предлагается ввести число команд, которое нужно отменить. Если ввести, например, число 5, AutoCAD отменит пять последних команд.

Команда Redo (Верни), вызванная при помощи стандартной панели инструментов или набранная с клавиатуры, восстанавливает все отмены команды Undo (Отмена), если последняя была введена с клавиатуры.

Если же команда Undo (Отмена) вызывалась при помощи стрелки стандартной панели инструментов несколько раз, то команда Redo (Верни) восстановит лишь, последнюю отмененную команду.

Для восстановления изображения на экране существует еще одна команда — команда OOPS (Ой). Она действует только по отношению к самой последней команде стирания графического объекта. Причем между командой стирания и командой OOPS (Ой) может быть сколько угодно промежуточных команд. Эта команда вернет самый последний стертый графический объект независимо от его сложности.

Точный ввод координат точек геометрических примитивов не всегда удобно осуществлять с клавиатуры или при помощи привязки точек к узлам сетки. Так, например, если нужно построить окружность с некоторым радиусом, центр которой должен совпадать с центром дуги удобнее использовать объектную привязку — в данном случае привязку к центру дуги. Объектную привязку можно использовать в любом случае, когда AutoCAD запрашивает точку (начальную, конечную, центр окружности и т.д.). К экранному перекрестью в этом случае добавляется специальный символ — мишень. Включать или отключать объектную привязку можно при помощи кнопки OSNAP (ОПРИВ) строки состояния, а устанавливать ту или иную объектную привязку можно при помощи панели инструментов Object Snap (Объектная привязка) непосредственно в процессе построения или в диалоговом окне Drafting Settings (Параметры привязки) закладки Object Snap (Объектная привязка). В последнем случае можно включать сразу несколько привязок, которые используются наиболее часто. Всего в AutoCAD 2000 существует 13 объектных привязок:

Endpoint (Конец) — привязка к ближайшей конечной точке линии или дуги.

Midpoint (Середина) — средняя точка линии или дуги.

Center (Центр) — центр окружности, дуги или эллипса.

Node (Узел) — привязка к точечному элементу.

Quadrant (Квадрант) — привязка к ближайшей точке квадранта на дуге, окружности или эллипсе (0, 90, 180, 270°).

Intersection (Пересечение) — пересечение двух объектов. Реализует два режима: поиск явной точки пересечения или пересечения их продолжений. В последнем случае с помощью маркера выбирается один объект, а затем второй, после чего происходит привязка к точке пересечения продолжения объектов. Extension (Продолжение) — привязка к продолжению линии или дуги.

Insertion (Вставка) — привязка к точке вставки текста, блока.

Perpendicular (Перпендикуляр) — привязка к точке на линии, окружности, эллипсе, сплайне или дуге, которая образует совместно с последней точкой нормаль к этому объекту.

Tangent (Касательная) — привязка к точке на окружности или дуге, которая образует касательную при соединении с последней точкой.

Nearest (Ближайшее) — привязка к точке на окружности или дуге, которая является ближайшей к перекрестию.

Apparent insertion (Мнимое пересечение) — привязка к точке предполагаемого пересечения (ищет точку «пересечения» двух объектов, которые не имеют явной точки пересечения в пространстве — скрещивающиеся прямых, — а имеют лишь видимую на экране точку пересечения).

Parallel (Параллель) — позволяет проводить линию параллельно ранее начерченной.

Кроме двух новых объектных привязок, Extension (Продолжение) и Parallel (Параллель), в новой версии системы добавилась функция отслеживания Auto Track (Автоматическое отслеживание), которая включает две опции: полярное отслеживание и отслеживание при объектной привязке. Эта функция предназначена для черчения объектов под определенными углами или так, чтобы они были по-особому расположены относительно других объектов. Когда включен режим автоматического отслеживания Auto Track (кнопка OTRACK (ОСЛЕЖ) в строке состояния), система генерирует временные вспомогательные линии, что обеспечивает создание объектов в точных положениях и под точными углами и значительно экономит время создания чертежа.

Каждому примитиву присущи такие свойства, как цвет, тип линии, толщина линии и слой, на котором примитив расположен. В ходе построения можно устанавливать эти свойства перед созданием примитивов или чертить, не заботясь о свойствах, а после выполнения чертежа изменять их в соответствии с необходимостью.

При вычерчивании сложной (корпусной) детали с большим количеством осевых линий, размеров, штриховки и т.п. удобно выполнять отдельные элементы чертежа на различных слоях. Изначально при загрузке системы устанавливается один только нулевой слой (системный), на котором чертить не рекомендуется.

Создать новые слои можно в диалоговом окне Layer Properties Manager (Настройка свойств слоя), которое вызывается из меню Format > Layer... (Формат > Слои...) или двойным щелчком на кнопке Layer (Слои) панели инструментов Object Properties (Свойства объектов).

Для создания нового слоя нужно щелкнуть по клавише New (Создать). При этом в диалоговом окне появится выделенная строка, в которой отражаются установленные по умолчанию параметры нового слоя:

·        Name (Имя) — имя слоя — по умолчанию слою присваивается имя Слой1 (имя слоя можно менять, оно может содержать до 256 символов).

·        On (Вкл) — видимость слоя — на экране и на бумаге вычерчиваются только те примитивы, которые находятся на видимых слоях, причем слой устанавливается по умолчанию видимым (светлая лампочка). Чтобы сделать слой невидимым, нужно щелкнуть по изображению лампочки мышью (лампочка темнеет).

При повторном щелчке лампочка опять «загорится», то есть объекты на слое станут опять видимыми.

·        Freeze (Заморозить для всех сечений) — замораживание слоя — аналогично параметру видимости, но отличается тем, что помимо отключения видимости примитивов при замораживании слоя отключается их генерация (перерисовка), что повышает скорость выполнения команд Zoom (Масштаб) и Pan (Перемещение).

·        Lock (Зафиксировать) — блокировка — слой может быть заблокирован, то есть изображенные на нем примитивы остаются видимыми, но их нельзя редактировать (стирать, перемещать и т.д.). Щелчком мыши по значку с изображением замка можно заблокировать слой (появляется изображение закрытого замка) и разблокировать. По умолчанию слой устанавливается разблокированным.

·        Color (Цвет) - цвет — определяет цвет примитивов в данном слое.

·        Linetype (Тип линии) — тип линии. По умолчанию устанавливается Continuous (Сплошная). Тип линии для данного слоя можно заменить, выбрав его из списка диалогового окна Select Linetype (Выбор типа линии), которое появляется при щелчке мышью по строчке Continuous (Сплошная). Если в диалоговом окне отсутствует необходимый тип линии, его можно загрузить, щелкнув по клавише Load (Загрузка...). В появившемся окне Load or Reload Linetypes (Загрузить или обновить типы линий) выбрать нужную строчку и щелкнуть на кнопке ОК..

·        Lineweight (Толщина линии) — толщина линии — устанавливается Default (По умолчанию). Требуемая толщина линии выбирается из списка, который появляется при щелчке мышью по строчке Default (По умолчанию).

·        Plot Style (Стиль чертежа) — стиль чертежа — параметр связан с выбором стиля печати чертежа в зависимости от цвета примитива (в данной книге рассматриваться не будет).

·        Plot (Графика) — графика — включает или отключает изображение на данном слое при печати чертежа.

По умолчанию текущим является нулевой слой. Для установки другого слоя в качестве текущего нужно вначале щелкнуть мышью на имени этого слоя, а затем на кнопке Current (Текущий) диалогового окна.

Для удаления слоя нужно выбрать его имя и щелкнуть на кнопке Delete (Удалить).


Библиографический список


1.     Красильниква Г.А. Автоматизация инженерно – графических работ. – СПб: Питер, 2005 г.

2.     Фирсов С.В. AutoCAD 2005. Шаблоны для черчения. – М.: АКВАРИУМ БУК, 2005 г.

3.  Норенков И.П. Основы автоматизированного проектирования: Учеб. Для вузов М.: Изд-во МГТУ им. Н.Э. Баумана, 2000.-360 с.

4.                                    Романычева Э.Т., Соколова Т.Ю. Компьютерные технологии инженерной графики в среде AutoCAD. Auto LISP. Учебное пособие.-М.: ДМК, 2000.

1. Курсовая на тему Автоматизация сушильно-промывной линии ЛПС-120
2. Реферат Дулюс
3. Доклад Понятие и значение трудового права
4. Реферат на тему Северные монастыри России Кирилло Белозерский Успенский монастырь
5. Кодекс и Законы Законы денежного обращения и методы государственного регулирования денежного оборота
6. Реферат Поняття громадянського суспільства всеукраїнський референдум гарантії місцевого самоврядування
7. Реферат Маркетинг освітніх послуг
8. Реферат Формування недержавного сектору економіки на прикл приватизації
9. Биография на тему Телеман Георг Филипп
10. Реферат на тему 12 Angry Men Boy Is Innocent Essay