Реферат Утилизация отходов производства каустической соды
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
ВВЕДЕНИЕ
Согласно современным требованиям природопользования, выполнение любой хозяйственной деятельности не должно приводить к необратимым нарушениям природной среды.
Производства каустической соды в связи с использованием ртутного метода долгое время являлось одним из наиболее агрессивным отраслям химической промышленности, оказывающих воздействие на окружающую среду. В наше время ртутный метод постепенно уходит из употребления и уступает место более прогрессивной мембранной технологии, основанной на применении мембран из перфторированных полимеров. Несмотря на это утилизация отходов производства каустической соды остается сложной проблемой для всех химических предприятий
В связи с этим целью курсового проекта является проектирование схемы утилизации отходов производства каустической соды, применение которой будет наиболее рациональным с точки зрения охраны окружающей среды.
Для достижения данной цели поставлены следующие задачи:
-изучение существующих способов утилизации отходов производства каустической соды;
- разработка технологической схемы утилизации отходов производства каустической соды;
- подбор основного оборудования для проектируемой установки с расчетом основных параметров.
1 ПРОИЗВОДСТВО КАУСТИЧЕСКОЙ СОДЫ
Каустическая сода применяется в химической, нефтехимической, целлюлозно-бумажной, медицинской, пищевой промышленности, цветной металлургии, текстильной промышленности, в производстве вискозного шелка и отбеливании тканей, в анилинокрасочной промышленности, в мыловарении, в производстве алюминия и металлического натрия, растворимого стекла, щелочных аккумуляторов, в процессах водоподготовки и других областях народного хозяйства.
В химической промышленности сода каустическая используется для производства органических красителей, синтетического фенола, глицерина, инсектицидов, различных химикатов и полупродуктов, лекарственных средств, пластмасс и др., для очистки нефти, нефтепродуктов и минеральных масел. В черной металлургии применяется для удаления серы из стали, в целлюлозно-бумажной - для обработки целлюлозы, бумажной массы.
Существуют три основных способа получения гидроксида натрия или каустической соды:
- химический (известковый ), основанный на реакции карбоната
натрия с известью:
Na2CO3 + Ca(OH)2 = NaOH + CaCO3↓
- химический (ферритный), в основе которого лежат реакции образования и гидролиза феррита натрия:
Na2CO3 + Fe2O3 = 2 NaFeO2 + CO2,
NaFeO2 + 2 H2O = Fe(OH)3 ↓ + NaOH
- электрохимический, основанный на электролизе растворов хлорида натрия и реализуемый в двух вариантах – электролиз с диафрагмой и электролиз с ртутным катодом. По первому варианту электролизу подвергают смесь NaOH и NaCl при соотношении 1 : 1, и в катодном пространстве получают щелочь и водород, а в анодном – кислоту и хлор. На одну тонну целевого продукта NaOH образуются и побочные - 0,89 т газообразного хлора и
2 NaCl + 2 Hg → электролиз → Cl2 + 2 NaHg.
Когда количество натрия, растворяющегося в ртути достигает определенного предела, на катоде начинается выделение водорода. Это служит сигналом к остановке процесса, жидкую амальгаму сливают и направляют на растворение, при котором происходят образование щелочи, водорода и регенерация ртути:
2 NaHg + 2 H2O = 2 NaOH + H2↑ + Hg↓
2 УТИЛИЗАЦИЯ ОТХОДОВ ПРОИЗВОДСТВА КАУСТИЧЕСКОЙ СОДЫ
2.1 Утилизация отходов производства каустической соды, не содержащие ртуть
Из анализа стадий производства соды следует, что наряду с целевым продуктом в нем образуются твердые и жидкие отходы. К твердым относятся осадки регенерации аммиака и очистки рассола, а также пережог и другие отходы обжига известняка. Жидкие отходы составляет так называемая дистиллерная жидкость (ДЖ) — остаточный раствор, точнее суспензия, стадии регенерации аммиака, содержащая СаС12 и NaCl в примерном соотношении 2:1.
Выход твердых отходов содового производства (ТОС) равен 200-
Химический состав ТОС, %: 1,8 SiO2; 1,9 Al2O3+Fe2O3; 45,5 СаО, в том числе 1,6 СаО; 4,2 MgO. Средняя влажность ТОС составляет 44%. В высушенном состоянии он представляет собой светлосерый порошок, 80% которого слагают частицы размером 0,1-
При в целом незначительной степени использования ТОС и ДЖ в мире, отметим основные направления их утилизации, реализованные на предприятии «Сода».
Наиболее перспективным для ТОС в настоящее время оказалось их применение для получения вяжущих и строительных материалов.
В начале 80-х гг. 20 в. был построен комплекс годовой мощностью 120 тыс. т по производству вяжущего известково-белитового типа. Его состав, %: 18,8 SiO2; 4,0 А12О3; 1,34 Fe2O3; 60,0 CaO; 4,6 MgO; 3,1 SO3; 8,5 CO2; 5,4 Cl..
Технология получения вяжущего основана на термообработке ТОС при 900-1100°С во вращающейся печи Е, сушке второго компонента (кварцевого песка), смешивании его и отхода в заданном соотношении в мешалке М, измельчении смеси до удельной поверхности 4000-5000 см/г с добавлением гипса в дробилке Д, интенсификатора помола и воды для частичной гидратации оксида кальция.
С использованием разработанного вяжущего на Стерлитамакском заводе строительных материалов организовано производство силикатного кирпича по автоклавной технологии. Силикатная смесь включает около 25% масс вяжущего, полученного из равных частей продукта обжига ТОС и молотого песка. Автоклавирванные изделия упрочняют по базовому заводскому режиму (давление пара 8 атм, длительность изотермической выдержки 8 ч). Марка кирпича составляет не менее 125, его морозостойкость не ниже 25 циклов.
На основе вяжущего налажен также выпуск 60 тыс м/год авто-клавированных стеновых блоков из ячеистого бетона. Построенные с их использованием для кладки наружных стен 1-4х-комнатные жилые дома, животноводческие и вспомогательные помещения спустя 15 лет находятся в удовлетворительном состоянии.
С применением ТОС освоено изготовление асфальто-минеральных и битумно-минеральных смесей. В них ТОС, с добавлением других минеральных компонентов (кварц, известь, зола ТЭЦ и т.п.), служит заполнителем. Выявлена долговечность этих асфальтобетонов: срок их службы увеличивается в среднем на 4 года.
ТОС утилизируют и при производстве тампонажных материалов. Последние и растворы на их основе включают преимущественно порт-ландцемент (70-90% масс) и обожженный отход (10-30% масс), а также около 0,1% масс пластификатора и 4-5% масс соды (электролита). Разработанные составы используют на ряде нефтяных и газовых месторождений России, на которых температурный интервал цементирования скважин охватывает диапазон от -2 до 150°С.
Из зарубежной практики известно применение ТОС для изготовления мелиорантов и нейтрализации свалок мусора.
Переходя к рассмотрению утилизации дистиллерной жидкости, отметим, что в этом плане известны два традиционных способа, предусматривающие получение хлоридов кальция и аммония. Однако потребность в этих солях сравнительно невелика и проблема реализации ДЖ таким образом не решается.
В конкретных условиях предприятия «Сода», расположенного вблизи нефтяных месторождений, ДЖ с
Другая область утилизации жидких отходов — производство асбоцементных изделий. Отход подают на асбоцементный слой при его вакуумировании на сукне листоформовочной машины. Применение ДЖ существенно ускоряет твердение изделия, особенно в первые 2-3 ч, при содержании хлорида кальция в нем на уровне 2,5-3,5% масс.
Дистиллерную жидкость утилизируют также в производстве «белой сажи». В этом случае карбонизированную ДЖ подогревают до 50°С, разбавляют водой в 3-4 раза, затем с добавлением жидкого стекла направляют на осаждение.
Образующийся осадок гидросиликата кальция поступает на соляно-кислотную обработку, ведущую к образованию белой сажи — SiO2. При получении 1 т этого продукта утилизируется 22-
Создана также технология производства из ДЖ порошковой композиции. Она предусматривает термообработку топочными газами с температурой 450-650°С дистиллерной жидкости, которую предварительно нагревают до 75-85°С в течение 1,5-3,0 ч при рН 6,5-7,0. Далее жидкость направляют в распылительную сушилку. Здесь испаряется избыточная влага, а образующийся твердый остаток имеет влажность 1,5-2,0% масс. Он содержит 45-65% масс СаС12 и 30-36% масс NaCl+KCl, около 97% его представлено частицами размером 40-100 мкм.
Изготовленная по данной технологии солевая композиция была применена в качестве реагента для первичного и вторичного вскрытия нефтяных пластов, регулирования сроков твердения тампонаж-ных растворов и приготовления жидкости глушения в нефтегазодобывающих и буровых организациях Башкирии и Западной Сибири (Шатов).
2.2 Утилизация отходов производства каустической соды, содержащие ртуть
Ртутный метод получения каустической соды предполагает образование 4 видов отходов:
1) ртутьсодержащие шламы;
2) сточные воды промывки емкостей и коммуникаций;
3) вентиляционные выбросы электролизных ванн;
4) карбонатные шламы очистки исходных растворов хлорида.
Технологические потери ртути по п. 1-3 составляют в среднем 150г/тн.Cl2, или, учитывая мировое производство хлора ( около 4 млн.т/год ), 600 т/год. В США принят индекс ПДКHg = 1 мкг/м3, что соответствует допустимому выбросу предприятия средней мощности не более 2 – 3 кгHg/сут.
В последние годы порядковый номер ртути в списке наиболее ядовитых веществ существенно уменьшился из-за обнаруженной способности подавлять активность ферментов. При этом заметно возросла и ее дефицитность. Это активизировало разработку методов ее обезвреживания и утилизации. Рассмотрим эти методы в применении к трем перечисленным выше видам ртутьсодержащих отходов.
2.2.1
Ртутьсодержащие отходы
В шламах электролиза могут содержаться металл и
малорастворимый хлорид одновалентной ртути. Выделить их в таком
состоянии практически очень трудно, поэтому вначале их окисляют
гипохлоритом в присутствии NaCl:
Hg + NaOCl + 2 NaCl + H2O = NaHgCl3 + 2 NaOH,
Hg2Cl2 + NaOCl + NaCl + H2O = 2 HgCl2 + 2 NaOH.
Затем шламы фильтруют, промывают на фильтре, фильтрат упаривают и осаждают из него либо металлическую ртуть, либо ее сульфид:
NaHgCl3 + C2H4 + 4 H2O = 6 Hg↓ + 6 NaCl+12 HCl +2 CO2,
6HgCl2 + C2H4 + 4 H2O = 6 Hg↓ + 12 HCl + 2 CO2,
NaHgCl3 + Na2S = HgS↓ + 3NaCl,
HgCl2 + Na2S = HgS↓ + 2 NaCl.
2.2.2 Очистка растворов от ртути
В сточных водах промывки ртуть может содержаться как в виде HgCl2, так и виде хлоридных комплексов. Самый надежный способ очистки таких растворов – сульфидный. Однако предварительно необходимо окислить небольшое количество металла, которое может в них присутствовать:
Hg + 2 NaCl + Cl2 = Na2HgCl4.
Технологическая схема включает следующие стадии:
Сточные воды, содержащие до 2% масс HgCl2 + Hg
↓
Окисление следов металла
↓
Осаждение сульфида
↓
Фильтрация через слой торфа
↓
Отжим и сушка торфа
↓
Сжигание торфа и отгонка ртути
Эффективность отгонки – 76%, однако золу можно передать в голову процесса, обеспечив таким образом, замкнутую систему обработки растворов. Содержание ртути в очищенном растворе не превышает 0,1 мкг/л.
2.2.3 Демеркуризация газообразных выбросов
Основное количество ртути (до 5 г/т Cl2) увлекается потоком водорода. Очистку ведут в 2 стадии. Первая, физическая, предусматривает охлаждение газа от 125 до 50 С. При этом концентрация ртути снижается до 15 мг/м3. Вторая, физико-химическая стадия включает:
1) абсорбцию в тарельчатых и насадочных колоннах следующими
абсорбентами:
-растворами NaCl (250 г/л) и Cl2 (1 г/л) при рН = 2 – 4;
- растворами NaCl и NaOCl при рН = 6 – 7;
- растворами KMnO4 и H2SO4 при рН = 1 – 2;
- растворами щелочи и диэтилдитиокарбамата, рН = 11.
2) адсорбцию на активированных углях и цеолитах, пропитанных минеральными кислотами, серой, йодом, сульфидами, тиоцианатами, тио семикарбазидами; остаточная концентрация ртути в газах не более 10 мкг/м3 .
Мировые производители каустической соды применяют в основном сльфидные методы осаждения ртути, учитывая низкую растворимость ее сульфида: канадская фирма Canadian Industry – осаждение HgS на песочных и доосаждение на угольных фильтрах, японская компания Коацу – осаждение сероводородом в присутствии извести, одна из американских фирм – осаждение на цеолитах, заряженных сульфидом и гидросульфидом натрия. Но самый перспективный метод – ионообменная анионитная очистка на смолах, заряженных группами SH- и SO3H-, на носителях “Имак – ТМП”, заряженных тиоловыми (- COSH) или тионовыми (-CSOH) группами, а также на хелатообразующих ионитах с адсорбционной емкостью до 700 мг/г. Использование перечисленных методов утилизации ртути из твердых, жидких и газообразных отходов производства щелочи путем электролиза с ртутным катодом привело к резкому (в ряде операций на несколько порядков) уменьшению концентрации ртути во всех видах продукции, выбросов и отходов.
Несмотря на столь впечатляющие успехи в снижении ртутного загрязнения, ртутный метод постепенно уходит из употребления и уступает место более прогрессивной мембранной технологии, основанной на применении мембран из перфторированных полимеров