Реферат Парадокс близнецов 2
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Содержание
Введение………………………………………………………………………..4
Описание эксперимента……………………………………………………...4
Инерциальная система отсчёта (ИСО)……………………………………10
Физическая сущность парадокса близнецов……………………………..13
Первопричины парадокса близнецов……………………………………..14
Результаты непосредственных наблюдений……………………………..17
Заключение…………………………………………………………………...20
Список литературы………………………………………………………….21
Введение
Рассмотрим, пожалуй, самый известный из парадоксов относительности, который называется "парадокс близнецов".
Никакого парадокса на самом деле нет, а проистекает он от неправильного понимания происходящего. И если всё правильно понять, а это, уверяю, совсем не сложно, то никакого парадокса не будет.
Начнём мы с логической части, где посмотрим, как парадокс получается и какие логические ошибки к нему приводят. А потом перейдем к предметной части, в которой посмотрим механику того, что происходит при парадоксе.
Сперва напомню наше базовое рассуждение о замедлении времени.
Итак, постулат относительности гласит, что скорость света одинакова с точки зрения всех наблюдателей (во всех системах отсчёта, выражаясь наукообразно). Так вот, даже если наблюдатель полетит вдогонку свету со скоростью 2/3 скорости света, он всё равно увидит, что свет убегает от него с прежней скоростью.
Давайте посмотрим на эту ситуацию со стороны. Свет летит вперед со скоростью 300000 км/с, а вдогонку ему летит наблюдатель, со скоростью 200000 км/с. Мы-то видим, что расстояние между наблюдателем и светом уменьшается со скоростью 100000 км/с, но сам наблюдатель этого не видит, а видит те же самые 300000 км/с. Как это может быть так? Единственной (почти! ;-) причиной такому явлению может быть то, что наблюдатель замедлен. Он медленно двигается, медленно дышит и медленно измеряет скорость по медленным часам. В результате удаление со скоростью 100000 км/с он воспринимает, как удаление со скоростью 300000 км/с.
Описание эксперимента
Чтобы драматизировать данный вывод, неведомый автор из прошлого, возможно, сам Эйнштейн, придумал следующий мысленный эксперимент. На земле живут два брата-близнеца - Костя и Яша.
| |
Костя | Яша |
Если бы братья жили вместе на земле, то они синхронно прошли бы следующие стадии взросления и старения (прошу прощения за некоторую условность):
10 | 20 | 30 | 40 | 50 | 60 | 70 |
| | | | | | |
подросток | трудный возраст | молодой повеса | молодой работник | заслуженный работник | пенсионер | дряхлый старик |
Но всё происходит не так.
Еще подростком Костя, назовём его космическим братом, садится в ракету и отправляется к звезде, расположенной в нескольких десятках световых лет от Земли.
Полёт совершается с околосветовой скоростью и поэтому путь туда и обратно занимает шестьдесят лет.
Костя, которого назовём земным братом, никуда не летит, а терпеливо ждет своего родственника дома.
Предсказание относительности
Когда космический брат возвращается, то земной оказывается постаревшим на шестьдесят лет.
Однако, поскольку космический брат находился всё время в движении, его время шло медленнее, поэтому, по возвращении, он окажется постаревшим всего на 30 лет. Один близнец окажется старше другого!
| |
Костя | Яша |
Многим кажется, что данное предсказание ошибочно и эти люди называют парадоксом близнецов само это предсказание. Но это не так. Предсказание совершенно истинно и мир устроен именно так!
Давайте еще раз посмотрим логику предсказания. Допустим, земной брат неотрывно наблюдает за космическим.
Кстати, я уже неоднократно говорил о том, что многие допускают здесь ошибку, неправильно интерпретируя понятие "наблюдает". Они думают, что наблюдение обязательно должно происходить при помощи света, например, в телескоп. Тогда, думают они, поскольку свет распространяется с конечной скоростью, всё, что наблюдается, будет видеться таким, каким оно было раньше, в момент испускания света. Из-за этого, думают эти люди, и возникает замедление времени, которое, таким образом, является кажущимся явлением.
Другим вариантом этого же заблуждения является списание всех явлений на эффект Доплера: поскольку космический брат удаляется от земного, то каждый новый "кадр изображения" приходит на Землю всё позже, а сами кадры, таким образом, следуют реже, чем надо, и влекут за собой замедление времени.
Оба объяснения неверны. Теория относительности не настолько глупа, чтобы не учитывать эти эффекты. Посмотрите сами на наше утверждение относительно скорости света. Мы там написали "всё равно увидит, что", но мы не имели в виду именно "увидит глазами". Мы имели в виду "получит в результате, с учётом всех известных явлений". Обратите внимание, что вся логика рассуждений нигде не основывается на том, что наблюдение происходит при помощи света. И если Вы всё время представляли себе именно это, то перечитайте всё заново, представляя, как надо!
Для неотрывного наблюдения надо, чтобы космический брат, допустим, каждый месяц отсылал на Землю факсы (по радио, со скоростью света) со своим изображением, а земной брат развешивал бы их на календаре с учётом задержки передачи. Получалось бы, что сначала земно брат вешает свою фотографию, а фотографию брата того же времени вешает позже, когда она до него долетает.
По теории он будет всё время видеть, что время у космического брата течёт медленнее. Оно будет течь медленнее в начале пути, в первой четверти пути, в последней четверти пути, в конце пути. И из-за этого будет постоянно накапливаться отставание. Только во время разворота космического брата, в тот миг, когда он остановится, чтобы полететь назад, его время будет идти с той же скоростью, что и на Земле. Но это не изменит итогового результата, так как суммарное отставание всё равно будет. Следовательно, в момент возвращения космического брата отставание сохранится и значит, оно уже останется навсегда.
Космический брат | |||
10 | 20 | 30 | 40 |
| | | |
Земной брат | |||
10 | 30 | 50 | 70 |
| | | |
Как видите, логических ошибок тут нет. Однако, вывод выглядит очень удивительным. Но тут ничего не поделаешь: мы живем в удивительном мире. Данный вывод многократно подтверждался, как для элементарных частиц, которые проживали больше времени, если находились в движении, так и для самых обыкновенных, только очень точных (атомных) часов, которые отправлялись в космический полёт и потом обнаруживалось, что они отстают от лабораторных на доли секунды.
Подтвердился не только сам факт отставания, но и его численное значение, которое можно рассчитать по формулам из одного из предыдущих выпусков.
Кажущееся противоречие
Итак, отставание будет. Космический брат будет моложе земного, можете не сомневаться.
Но возникает другой вопрос. Ведь движение относительно! Следовательно, можно считать, что космический брат никуда не летал, а оставался всё время неподвижным. Зато вместо него в путешествие летал земной брат, вместе с самой планетой Земля и всем остальным. А раз так, то значит больше постареть должен космический брат, а земной - остаться более молодым.
Получается противоречие: оба рассмотрения, которые должны быть равнозначными по теории относительности, приводят к противоположным выводам.
Вот это противоречие и называется парадоксом близнецов.
Инерциальные и неинерциальные системы отсчёта
Как же нам разрешить это противоречие? Как известно, противоречий быть не может .
Поэтому мы должны придумать, что же мы такого не учли, из-за чего возникло противоречие?
Сам вывод того, что время должно замедляться - безупречен, ибо он слишком прост. Следовательно, ошибка в рассуждениях должна присутствовать позже, там, где мы предположили, что братья равноправны. Значит, на самом деле братья неравноправны!
Я уже говорил в самом первом выпуске, что не всякая относительность, которая кажется, существует на самом деле. Например, может показаться, что если космический брат разгоняется прочь от Земли, то это равносильно тому, что он остаётся на месте, а разгоняется сама Земля, прочь от него. Но это не так. Природа не соглашается с этим. По каким-то причинам природа создаёт для того, кто разгоняется перегрузки: его прижимает к креслу. А для того, кто не разгоняется - перегрузок не создаёт.
Почему природа так поступает - в данный момент не важно. В данный момент важно научиться представлять себе природу как можно правильней.
Итак, братья могут быть неравноправны при условии, что один из них разгоняется или тормозит. Но у нас ведь именно такая ситуация: улететь с Земли и вернуться на неё можно только разогнавшись, развернувшись и затормозив. Во всех этих случаях космический брат испытывал перегрузки.
Каков вывод? Логический вывод прост: мы не имеем права заявлять, что братья равноправны. Следовательно, рассуждения о замедлении времени верны лишь с точки зрения одного из них. Какого? Разумеется, земного. Почему? Потому, что мы не задумывались о перегрузках и представляли все так, словно их не было. Мы, например, не можем утверждать, что в условиях перегрузок скорость света остаётся постоянной. Следовательно, мы не можем утверждать, что в условиях перегрузок происходит замедление времени. Всё, что мы утверждали - мы утверждали для случая отсутствия перегрузок.
Когда учёные дошли до этого момента, они поняли, что им требуется специальное название для описания "нормального" мира, мира без перегрузок. Такое описание было названо описанием с точки зрения инерциальной системы отсчёта (сокращенно - ИСО). Новое же описание, которое еще не было создано, было названо, естественно, описанием с точки зрения неинерциальной системы отсчёта.
Инерциальная система отсчёта (ИСО)
Ясно, что первое, что мы можем сказать об ИСО - это такое описание мира, которое нам кажется "нормальным". То есть, это то описание, с которого мы начали.
В инерциальных системах отсчёта действует так называемый закон инерции - каждое тело, будучи предоставлено самому себе, либо остаётся в покое, либо движется равномерно и прямолинейно. Из-за этого системы и были так называны.
Если сесть в космический корабль, автомобиль или поезд, которые движутся абсолютно равномерно и прямолинейно с точки зрения ИСО, то внутри такого транспортного средства мы не сможем заметить движения. А это значит, что такая система наблюдения - тоже будет ИСО.
Следовательно, второе, что мы можем сказать об ИСО, что всякая система, движущаяся равномерно и прямолинейно относительно ИСО - также будет ИСО.
Что же мы можем сказать об не-ИСО? О них мы можем сказать пока лишь то, что система, движущаяся относительно ИСО с ускорением - будет не-ИСО.
Часть последняя: история Кости
Теперь попробуем выяснить, как же будет выглядеть мир с точки зрения космического брата? Пусть он также получает факсы от земного брата и развешивает их на календаре с учётом времени полета факса с Земли до корабля. Что он получит?
Чтобы до этого догадаться, нужно обратить внимание на следующий момент: во время путешествия космического брата есть участки, на которых он движется равномерно и прямолинейно. Допустим, при старте брат ускоряется с огромной силой так, что достигает крейсерской скорости за 1 день. После этого он летит много лет равномерно. Затем, в середине пути, он также стремительно за один день разворачивается и летит обратно опять равномерно. В конце пути он очень резко, за один день, тормозит.
Разумеется, если посчитать, какие нам нужны скорости и с каким ускорением надо разгоняться и разворачиваться, мы получим, что космического брата должно попросту размазать по стенкам. Да и сами стенки космического корабля, если они сделаны из современных материалов - не смогут выдержать таких перегрузок. Но нам сейчас важно не это. Допустим, у Кости имеются противоперегрузочные кресла, а корабль сделан из инопланетянской стали.
Что же получится?
В самый первый миг полета, как нам известно, возрасты братьев равны. В течение первой половины полёта он происходит инерциально, а значит, к нему применимо правило замедления времени. То есть, космический брат будет видеть, что земной стареет в два раза медленнее. Следовательно, через 10 лет полета Костя постареет на 10 лет, а Яша - только на 5.
К сожалению, я не нарисовал 15-летнего близнеца, поэтому я буду использовать 10-летнюю картинку с припиской "+5".
Аналогичный результат получается из анализа конца пути. В самый последний миг возрасты братьев равны 40 (Яша) и 70 (Костя), мы это знаем точно. Кроме того, мы знаем, что вторая половина полёта также протекала инерциально, а значит, облик мира с точки зрения Кости соответствует нашим выводам о замедлении времени. Следовательно, за 10 лет до окончания полёта, когда космическому брату будет 30 лет, он заключит, что земному уже 65, ибо до окончания полёта, когда соотношение будет 40/70, он будет стареть в два раза медленнее.
Опять-таки, у меня нет 65-летнего рисунка и я буду использовать 70-летний с пометкой "-5".
Сводку наблюдений космического брата я поместил ниже.
Космический брат | |||||
10 | 20 | 25 - 1 д. | 25 + 1 д. | 30 | 40 |
| | ТАЙНА | | | |
Земной брат | |||||
10 | 15 | | | 65 | 70 |
| +5 | ТАЙНА | -5 | |
Как видим, у космического брата получается нестыковка. Всю первую половину пути он наблюдает, что земной брат стареет медленно и еле отрывается от начального возраста в 10 лет. Всю вторую половину полёта он наблюдает, как земной брат еле-еле подтягивается к возрасту 70 лет.
Где-то между этими участками, в самой середине полёта, должно происходить что-то, что "сшивает" процесс старения земного брата воедино.
Мы собственно, не будем дальше темнить и гадать, что же там такое происходит. Мы просто прямо и честно сделаем вывод, который следует с неизбежностью. Если за миг до разворота земному брату было 17,5 лет, а после разворота стало 52,5, то это означает ни что иное, как тот факт, что за время разворота космического брата у земного прошло 35 лет!
Физическая сущность парадокса близнецов
Хотя мнимому парадоксу близнецов (парадигме часов) и посвящено множество как научных, так и научно-популярных работ, ни в одной из них до конца так и не вскрыта истинная его физическая сущность. Обычно этот парадокс объясняют тем, что один из близнецов все время движется с постоянной скоростью, а другой, кроме того, в определенные моменты времени совершает еще и ускоренные движения. Такое объяснение указывает лишь на неравнозначность условий движения близнецов. Однако оно все же не разъясняет, почему возраст близнеца-путешественника будет всегда меньше возраста близнеца-домоседа, независимо от длительности их относительного движения с постоянной скоростью а, следовательно, и независимо от величины разницы возрастов, накопившейся в процессе этого равномерного движения в их инерциальных системах отсчета пространственных координат и времени (ИСО). Ведь во всех мысленных экспериментах с идентичными мировыми линиями (МЛ) участков ускоренного движения близнеца-путешественника из-за этого ускоренного движения должна возникать одна и та же конечная разница в возрасте близнецов. Первая же разница, в отличие от этой конечной разницы возрастов, в ИСО каждого из близнецов может достигнуть сколь угодно большего значения. И поэтому, эти разницы все же будут приводить к взаимно противоречивым сведениям о возрасте близнецов. Вскрытие физической сущности мнимого парадокса близнецов и является целью этой статьи.
Первопричины парадокса близнецов
Специальная теория относительности (СТО), на самом деле, допускает возможность существования особой (выделенной) системы отсчета пространственных координат и времени (СО), а именно, – фундаментальной СО не увлекаемого движением физического вакуума (ФВ), в которой частота реликтового излучения является изотропной. В этой СОФВ, мировое пространство и космологическое время которой, согласно Ньютону [2], являются абсолютными, и будем рассматривать движение объектов. На рисунке показаны МЛ равномерного движения двух объектов вдоль одной и той же прямой линии в мировом (абсолютном) пространстве. Первый из них, на котором находится близнец-домосед, движется в СОФВ с абсолютной скоростью V0, а второй, на котором находится близнец-путешественник, сначала с относительной скоростью v1 = (V1 – V0) / (1 – V1V0) удаляется от первого, а затем с относительной скоростью v2 = (V2 – V0) / (1 – V2V0) сближается с ним. Здесь: V1 и V2 – скорости абсолютного движения второго объекта соответственно в прямом и в обратном направлениях. При этом для упрощения математических выкладок принято, что расстояния и пространственные координаты измеряются в световых единицах длины и, поэтому, собственное значение скорости света c = 1.
Рис. 1. МЛ равномерного движения двух объектов вдоль одной и той же прямой линии в мировом (абсолютном) пространстве: 1 – МЛ первого объекта; 2 – МЛ второго объекта во время его удаления от первого объекта; 3 – МЛ второго объекта во время его сближения с первым объектом; 4 – МЛ света
Пусть в СОФВ одновременно с приходом второго объекта в точку F первый объект приходит в точку B0, а собственное время движения второго объекта из точки A в точку F равно Δt1. Тогда промежуток космологического (абсолютного) времени, соответствующий этому собственному времени и отсчитываемый в СОФВ от момента прихода первого объекта в точку B0, а второго – в точку F, будет равен: TA = –Γ1Δt1, где Γ1 = (1 – V12)–1/2. В зависимости от величины в точке F абсолютной скорости Vi второго объекта промежутки космологического времени между событиями в точке Bi на первом и в точке F на втором объектах, являющимися одновременными (Δt = 0) в ИСО второго объекта, будут равны: δTi = ΓiVi ∙ xBi, где: xBi – наблюдаемая в ИСО второго объекта координата положения первого объекта. Таким образом, при разных значениях в точке F абсолютной скорости второго объекта одновременными событию в точке F его СО будут события, соответствующие не одному и тому же положению XBi = Γi ∙ xBi в мировом пространстве первого объекта.
Пусть модули относительных скоростей движения объектов в процессе их удаления и сближения равны друг другу (v2 = –v1). Тогда в момент изменения направления движения вторым объектом изменение положения первого объекта близнецом-путешественником наблюдаться не будет (xB2 = xB1). Однако, при этом произойдет переход от одновременности в СО близнеца-путешественника с моментом изменения его движения одних событий к одновременности других событий на первом объекте, соответствующих уже другому положению в мировом пространстве последнего: XB2 = XB1(1 –v1V0) / (1 + v1V0). То есть, при переходе второго объекта от движения со скоростью V1 к движению со скоростью V2 происходит замена положений первого объекта, считающихся одновременными с положением второго объекта в точке F. Тем самым, как бы возникает наблюдаемый в СО близнеца-путешественника перепад координатного времени, соответствующего событиям на первом объекте. И, следовательно, имеет место исключение из рассмотрения части путиподобного (стандартного [3]) собственного времени первого объекта, определяющего возраст близнеца-домоседа. Поэтому то и возникает у близнеца-путешественника ложное умозаключение об уменьшении суммарного времени, истекшего на первом объекте с момента разлуки до момента его встречи с находящимся на этом объекте близнецом-домоседом. Это и является физической сущностью мнимого парадокса близнецов.
Результаты непосредственных наблюдений
С учетом перепада координатного времени полное стандартное (путиподобное собственное) время первого объекта, наблюдаемое близнецом-путешественником, будет таким же как и в СО первого объекта. Наличие перепада собственного времени первого объекта («наблюдаемого» близнецом-путешественником опосредствованно через две его ИСО) отнюдь не означает, что информация о событиях, произошедших на первом объекте между точками B1 и B2, не поступает на второй объект. В момент изменения направления движения второго объекта к нему поступает информация о событии, произошедшем на первом объекте в тот момент времени, когда он находился в точке E.
Сразу же после изменения направления движения второго объекта изменится и наблюдаемое близнецом-путешественником смещение спектра излучения первого объекта. Это может привести к ложному заключению этим близнецом, что первый объект удалялся от него лишь в течение меньшего времени, чем на самом деле, и уже приближается к нему в течение некоторого времени. И, следовательно, промежутки собственного времени первого объекта, соответствующие взаимному сближению и удалению объектов, будут рассматриваться близнецом-путешественником как имеющие иные значения, нежели наблюдаемые в СО первого объекта близнецом-домоседом. Однако это несоответствие вполне объяснимо неверностью определения (сделанного из ложной предпосылки об изменении направления движения не вторым, а первым объектом) близнецом-путешественником момента прекращения удаления и начала сближения объектов по часам первого объекта. Несмотря на это суммарное значение собственного времени первого объекта, наблюдаемое близнецом-путешественником, будет таким же каким оно наблюдается и в СО первого объекта близнецом-домоседом. А это значит, что на второй объект поступает информация обо всех событиях, произошедших на первом объекте. Из-за движения второго объекта в прямом и в обратном направлениях с разными абсолютными скоростями сокращение расстояний между объектами до и после изменения его движения будут наблюдаться близнецом-путешественником неодинаковыми. При этом изменение расстояния до точки E вследствие неодинакового релятивистского сокращения размеров может привести к взаимному псевдоналожению мнимых промежутков времени взаимного сближения и удаления объектов по часам близнеца-путешественника, отсчитывающим стандартное (путиподобное) время. Это взаимное псевдоналожение промежутков времени обусловлено удалением первого объекта из положения с координатой xE1 в положение с координатой xE2 со скоростью большей скорости света в точке наблюдения. И как бы плавно не происходил переход от V1 к V2, при таком «наблюдении» (опосредствовано через две ИСО) будет иметь место как бы «течение времени вспять», связанное с переходом второго объекта и находящегося на нем близнеца-путешественника из одной ИСО в другую. Непосредственное же наблюдение, как было показано ранее, этого не обнаруживает. Данный псевдоэффект связан с расчетом значений промежутков времени взаимного сближения и удаления объектов, исходя из предположения об одинаковости несобственных (координатных [3]) значений скорости света (vc = 1) во всем собственном пространстве второго объекта, движущегося не инерциально в процессе перехода от равномерного движения со скоростью V1 к равномерному движению со скоростью V2. На самом же деле, это предположение ложно. Несобственные значения скорости света в точках нахождения первого объекта в процессе его перемещения с расстояния xE1 на расстояние xE2 не могут быть меньше скоростей перемещения первого объекта в СО второго объекта. А ведь эти скорости значительно превышают скорость света в точке наблюдения смещения спектра излучения, что имеет место из-за чрезвычайно быстрого изменения в СО второго объекта релятивистского сокращения расстояния до первого объекта.
При учете изменения несобственного значения скорости света в собственном пространстве второго объекта в процессе его неинерциального движения рассмотренное здесь наложение времен в СО второго объекта наблюдаться не будет. Стандартное время, определенное в этой СО по количеству цугов волн, пришедших от источника стандартного излучения первого объекта, будет совпадать с его значением, определяемым по покоящимся на первом объекте часам.
Заключение
Итак мы увидели, что существует так называемый парадокс близнецов, который заключается в кажущемся противоречии в том, у кого именно из двух близнецов замедляется время. Сам факт замедления времени - парадоксом не является.
Мы увидели, что существуют инерциальные и неинерциальные системы отсчёта, причём законы природы, полученные нами ранее, относились лишь к инерциальным системам. Именно в инерциальных системах наблюдается замедление времени на движущихся космических кораблях.
Мы получили, что в неинерциальных системах отсчёта, например, с точки зрения разворачивающихся космических кораблей, время ведёт себя еще более странно - оно проматывается вперёд.
Физическая сущность мнимого парадокса близнецов (парадигмы часов) заключается в игнорировании необходимости перерасчета временных координат событий при переходе из одной ИСО в другую. Во избежание подобных парадигм необходимо также учитывать, что несобственные (координатные) значения скорости света [3] в СО ускоренно движущихся объектов могут сколь угодно превышать собственное значение скорости света, являющееся калибровочно неизменной величиной [1].
Список литературы
1. Даныльченко П.И. Калибровочное обоснование специальной теории относительности, в сб.: Калибровочно-эволюционная теория Мироздания, Винница, 1994, вып. 1, с. 10; Калибровочные основы СТО, в сб.: Калибровочно-эволюционная интерпретация специальной и общей теорий относительности, Вінниця, О. Власюк, 2004, с.17; Калибровочная интерпретация СТО. Киев, НиТ, 2005.
2. Ньютон И. Математические начала натуральной философии. М.: Наука, 1989.
3. Меллер К. Теория относительности. М.: Атомиздат, 1975.