Реферат Приведение поверхности второго порядка к каноническому виду путем преобразования систем координа
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
ФГОУ ВПО «Чувашский государственный университет имени И.Н.Ульянова»
Кафедра высшей математики
КУРСОВАЯ РАБОТА
По дисциплине: «Алгебра и геометрия»
На тему: «Приведение поверхностей второго порядка к каноническому виду путём преобразования системы координат»
Выполнил: ст. гр. РТЭ-51-09
Казарин Д.В.
Проверил: доцент Поляков Н.Д.
Чебоксары 2009
Содержание
ВВЕДЕНИЕ…………………………………………………………………….3
§1. Прямоугольно-декартовая система координат ………………………….4
1.1 Основные векторы ……………………………………………………..4
1.2 Координаты пространственной точки………………………….……..4
1.3 Координаты вектора…………………………………………...….……6
1.4 Выражение вектора через его проекции ………………………….…..7
1.5 Углы между осями координат и вектором …………………….……...7
§2. Преобразование систем координат …………………………………….....9
2.1 Перенос начала координат …………………………………….……….9
2.2 Поворот осей координат ……………………………………………….10
2.3 Общее преобразование …………………………………………………12
§3. Приведение уравнения поверхностей второго порядка
в пространстве к каноническому виду ……………………………………14
3.1 Уравнения поверхности второго порядка в пространстве ……….….14
3.2 Канонический вид уравнения поверхности второго
порядка в пространстве ………………………………………………. 15
3.3 Приведение к каноническому виду ……………………………….…..15
3.4 Заключение ……………………………………………………………..18
§4. Классификация центральных поверхностей второго порядка….……….19
4.1 Классификация нецентральных поверхностей второго порядка ...….22
§5. Типы поверхностей второго порядка ……………………………………26
5.1 Эллипсоид …………………………………………………………........26
5.2 Однополостный гиперболоид ……………………………….....……....27
5.3 Двуполостный гиперболоид ………………………………….…...…...26
5.4 Конус ………………………………………………………….…………27
5.5 Эллиптическим параболоидом ……………………………….………..31
5.6 Гиперболический параболоид …………………………………………33
5.7 Остальные поверхности второго порядка …………………………….34
Приложение №1.………………………………………………………….…….36
Приложение №2………………………………………………………………...45
ЛИТЕРАТУРА ……………………………………………………………….…52
Введение
Предмет аналитической геометрии заключается в исследовании геометрических форм с помощью алгебраического анализа. В различных разделах элементарной математики , алгебра прилагается к решению многих геометрических вопросов.
Числа, определяющие положение геометрической формы, называются её координатами. Способ же, с помощью которого определяется положение геометрической формы, носит название способа или метода координат.
Геометрические формы весьма разнообразны, и при построении в аналитической геометрии, мы должны принять одну из множества форм за первичную, с помощью которой мы будем образовывать все остальные. Проще всего за такую начальную форму принять геометрическую точку. Приняв за начальный элемент точку, мы должны показать, каким образом определяется положение точки в пространстве с помощью чисел , так же важно установить, каким образом геометрические свойства линии отражаются на координатах точек, принадлежащих этой линии.
Геометрическое место точек называется поверхностью. Так же поверхность можно определить как множество точек , координаты которых удовлетворяют определённому виду уравнений.
§1.
Прямоугольно-декартовая система координат
1.1
Основные векторы
.
Три взаимно перпендикулярные оси Оx
, О
y
, О
z (рис. 1.1), проходящие через некоторую точку О, образуют прямоугольную систему координат. Точка О называется началом координат, прямые Оx
, О
y
, О
z
– осями координат (Оx
– ось абсцисс, Оy
– ось ординат, Оz – аппликат), а плоскости xOy
,
yOz
,
zOx – координатными плоскостями. Какой – либо отрезок UV
принимается за единицу масштаба для всех трех осей.
Отложив на осях Оx
, О
y
, О
z
в положительном направлении отрезки OA
,
OB
,
OC
, равные единице масштаба, получаем три вектора , , , которые называются основными векторами и обозначаются соответственно i
,
j
,
k
.
Положительные направления на осях принято выбирать так, чтобы поворот на 90 , совмещающий положительный луч Оx
с лучом Оy
(рис. 1.1), казался происходящим против часовой стрелки, если наблюдать его со стороны луча Оz
. Такая система координат называется правой. Иногда пользуются и левой системой координат. В ней упомянутый поворот совершается по часовой стрелке.
1.2.
Координаты пространственной точки
Положение любой точки М в пространстве можно определить тремя координатами следующим образом. Через точку М проводим плоскости МР, MQ
,
MR (рис. 1.2) соответственно параллельные плоскостям yOz
,
zOx
,
xOy
. В пересечении данных плоскостей с осями координат получаем точки P
,
G
,
R
.
Числа x (абсцисса), y (ордината), z (аппликата), измеряющие отрезки ОР, OQ, OR в избранном масштабе, называются координатами точки M в прямоугольной системе координат. Они берутся положительными или отрицательными, смотря по тому, имеют ли векторы , , соответственно те же направления, что и основные векторы i
,
j
,
k, или противоположные.
В общем виде положение некоторой точки М в прямоугольной системе координат определяется записью:
М(х,у,
z
) , (1.1)
где х, у, z – соответственно абсцисса, ордината и аппликата точки М.
Вектор , идущий от начала координат О к некоторой точке М, называется радиус – вектором точки М и обозначается , а векторы , , - соответственно проекциями радиус – вектора на соответствующие оси прямоугольной системы координат. Длина радиуса – вектора через координаты некоторой точки М определяется по формуле:
. (1.2)
1.3
Координаты вектора
Прямоугольными координатами некоторого вектора m
называют его алгебраические проекции на оси координат. Координаты вектора обозначаются большими буквами X
,
Y
,
Z
. Вектор m через его проекции на оси координат записывается по форме:
m{X, Y,Z} или m={X, Y, Z}. (1.3)
Вместо того чтобы проектировать вектор m на оси Ox
,
Oy
,
Oz можно проектировать на оси M
1
A
,
M
1
B
,
M
1
C (рис. 1.3), проведенные через начало M
1 вектора m и равнонаправленные с осями координат.
Пример 1. Найти координаты вектора m (рис. 1.3) относительно систем координат Oxyz
.
Через точку M
1 проводим оси M
1
A
,
M
1
B
,
M
1
C
, соответственно равнонаправленные с осями Ox
,
Oy
,
Oz
, а через точку М2 - плоскости M
2
P
,
M
2
Q
,
M
2
R
, параллельные координатным плоскостям. Плоскости M
2
P
,
M
2
Q
,
M
2
R
пересекут оси M
1
A
,
M
1
B
,
M
1
C
соответственно в точках P
,
Q
,
R
. Абсцисса X вектора m есть длина вектора M
1
P, взятая со знаком минус, ордината Y
- длина вектора M
1
Q, взятая со знаком минус, аппликата Z - длина вектора M
1
R, взятая со знаком плюс. При выбранном масштабе X=-3, Y=-5, Z=3, то есть m{-3,-5,3}.
1.4
Выражение вектора через его проекции
Из рис. 1.3 видно, что вектор m равен геометрической сумме векторов:
m = = + + . (1.4)
Выразим вектора , , через основные вектора i
,
j
,
k
. Тогда формула 1.4 примет следующий вид:.
m = = Xi + Yj +Zk. (1.5)
В примере 1 вектор m
через его проекции на оси координат:
m = -3i
+ 5j
-3k
.
Длина вектора m вычисляется по формуле:
m = | m | = . (1.6)
Если известны координаты начальной и конечной точек М1(х1,у1,z1) и М2(х2,у2,z2), то вектор представляется формулой:
m = = (х2-х1)i
+ (y2-y1)j
+(z2-z1)k. (1.7)
1.5
Углы между осями координат и вектором
Углы , , (рис. 1.4), образуемыми положительными направлениями осей Ox
,
Oy
,
Oz с вектором m{X, Y,Z} показаны на рис. 1.3
Из прямоугольного треугольника ORM имеем:
==. (1.8)
Аналогично получаются формулы:
==. (1.9)
==. (1.10)
Если вектор r = имеет длину, равную единице масштаба, то есть | r |=1, то =X, =Y, =Z.
При условии | r |=1 из формул (1.8), (1.9), (1.10) следует:
= 1. (1.11)
Пример 2. Найти углы, образуемые осями координат с вектором {2, -2, -1}.
Решение.
== =2/3. =-2/3. = -1/3.
Откуда, 48°11', 131°50', 109°28',
§2.
Преобразование систем координат
2.1.
Перенос начала координат
Пусть задана декартова система координат с осями Ox
,
Oy
,
Oz. Рассмотрим новую систему координат с началом в точке О', оси которой O
'
x
',
O
'
y
',
O
'
z
' соответственно параллельно осям Ox
,
Oy
,
Oz
и имеют те же направления (рис. 1.5). Масштаб для новой и старой систем координат оставляем одинаковым.
Пусть известны координаты точки О'{a,b,c}. Тогда точка М в старой системе имеет следующие координаты М{a+x', b+y', c+z'). Отсюда:
x=x'+a, y=y'+a, z=z'+a , (2.1)
где x,y,z и x',y',z' координаты точки М соответственно в старой и новой системах координат. Доказательство этих формул очевидно, так как система осей перемещается параллельно на величину а в направлении Оx, на величину b
в направлении OY и на величину c в направлении Oz, то абсциссы всех точек уменьшаются на а, ординаты – на b и аппликаты на с.
2.2
Поворот осей координат
Рассмотрим преобразование декартовых прямоугольных координат при таком изменении координатной системы, когда изменяются направление взаимно перпендикулярных осей координат, а начало координат и масштаб остаются неизменными.
Пусть Ox
,
Oy
,
Oz – старые, Ox
',
Oy
',
Oz
' – новые координатные оси. Будем считать, что нам известны углы, которые образуют каждая ось новой системы с каждой осью старой. Обозначим на данные углы согласно таблице:
| Ox | Oy | Oz |
Ox ' | | | |
Oy ' | | | |
Oz ' | | | |
Обозначим через i
,
j
,
r и i
',
j
',
k
' базисные векторы старых и новых осей. Напишем разложение каждого вектора i
',
j
',
k
' по старому базису:
(2.2)
Так как каждый из векторов i
',
j
',
k
' является единичным, то для каждого из них коэффициентами разложения будут служить направляющие косинусы. Таким образом, вся таблица коэффициентов формул (2.2) определяется следующим равенством:
(2.3)
которое нужно понимать так: , и т.д.
Пусть точка М имеет координаты M
{
x
,
y
,
z
} в старой системе координат и M
(
x
',
y
',
z
') в новой системе. Тогда имеет векторное равенство:
xi
+
yj
+
zk = x
'i
' +
y
'j
' +
z
'k
'. (2.4)
Поскольку его правая и левая части представляет собой разложение одного и того же вектора OM
в старой и новой системах координат, заменяем векторы по формулам (2.2).
или
(2.5)
Из формул (2.5) следует:
(2.5)
Заменяем коэффициенты согласно (2.3) и получаем формулы зависимости старых координат от новых:
(2.6)
Обратную зависимость новых координат от старых получаем, когда поменяем их ролями и одновременно транспортируя таблицы обозначения и формул (2.3), то есть.
(2.7)
2.3
Общее преобразование
Прежде всего рассмотрим общие свойства коэффициентов, приведенных в формулах (2.7).
1. Из условия, что векторы являются единичными, следует:
(2.8)
2. Из условия, что векторы i
',
j
',
k
' попарно перпендикулярны друг к другу, следует, что их попарно взятые скалярные произведения должны быть равны нулю:
(2.9)
3. Из условия, что тройки векторов i
,
j
,
r и i
',
j
',
k
' обе правые (или левые), следует, что смешанное произведение i
'
j
'
k
' положительно и равно объему единичного куба, то есть i
'
j
'
k
'=1. Отсюда:
(2.10)
4. Из условия, что тройки векторов i
,
j
,
r и i
',
j
',
k
' ориентированы по разному (одна правая, другая левая) следует, что:
(2.11)
Из условий 3 и 4 следует, что существует два вида преобразований декартовых прямоугольных координат: сохраняющее ориентацию координатного базиса (2.10) и нарушающее ее (2.11).
Из условий 1 и 2 следует, что соотношения (2.8) и (2.9) являются не только необходимыми, но и достаточными условиями того, что формулы (2.5) выражают преобразование прямоугольных координат с неизменным масштабом.
Если начало координат переносится в точку O
'{
a
,
b
,
c
} одновременно меняется направление осей, то координаты преобразуются по формулам:
(2.12)
где коэффициенты l1, l2, … , n3 определяется согласно (2.3).
§3.
Приведение к каноническому виду уравнения поверхностей второго порядка в пространстве
3.1.
Уравнение поверхности второго порядка в пространстве
Поверхность второго порядка - геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида:
a11x2+a22y2+a33z2+2a12xy+2a13xz+2a23yz+2a14x+2a24y+2a34x+a44=0 (3.1)
в котором по крайней мере один из коэффициентов a11 , а22 , a33 , a12 , a23 , a13 отличен от нуля. Уравнение (3.1) мы будем называть общим уравнением поверхности второго порядка.
Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной декартовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравнение (3.1) и уравнение, полученное после преобразования координат, алгебраически эквивалентны.
Справедливо следующее утверждение:
являются инвариантами уравнения (3.1) поверхности второго-порядка относительно преобразований декартовой системы координат.
Коэффициентами уравнения (3.1) являются числа a
11,
a
22, …,
a
12, …,
a
44. Причина постановки множителя 2 при некоторых коэффициентах описана тождеством:
a
11
x
2
+
a
22
y
2
+
a
33
z
2
+2
a
12
xy
+2
a
13
xz
+2
a
23
yz
+2
a
14
x
+2
a
24
y
+2
a
34
z
+
a
44
=
(3.2)
Отсюда видно, что члены левой части с 4 по 10 естественным образом состоят из двух одинаковых экземпляров каждый.
Пусть задана поверхность второго порядка неполным уравнением второго порядка следующего вида:
a11x2+a22y2+a33z2+2a12xy+2a13xz+2a23yz=H (3.3)
Уравнение является неполным, так как в левой части отсутствуют члены первой степени. Ввиду этого левая часть не меняется при замене x
,
y
,
z на –x
, -
y
, -
z. Это означает, что каждая точка поверхности M
{
x
,
y
,
z) имеет свою симметричную точку M
{-
x
,-
y
,-
z
}. Таким образом, поверхность, описанная формулой (3.3), обладает центром симметрии, совпадающим центром системы координат.
3.2.
Канонический вид уравнения поверхности второго порядка в пространстве
Левая часть тождества (3.3) представляет собой однородный многочлен второй степени, который называется квадратичной формой от трех переменных x
,
y
,
z
. Сущность задачи приведения квадратичной формы к каноническому виду состоит в следующем: необходимо повернут систему координатных осей таким образом, чтобы после приведения формы (3.3) к новым прямоугольным координатам исчезли все члены с произведениями новых текущих координат при соблюдении условий (2.8), (2.9), (2.10), то есть должно выполняться тождество:
(3.4)
Левая часть тождества называется каноническим видом уравнения поверхности второго порядка в пространстве.
Надо доказать, что каждое уравнение можно привести к каноническому виду. Это означает, нам необходимо найти коэффициенты формулы (2.5).
3.3. Приведение к каноническому виду
Предположим, что коэффициенты формул (2.5) уже найдены и тождество (3.4) достигнуто. Перепишем форму (3.4):
(3.5)
Каждую из скобок в левой части преобразуем по формулам (2.5):
(3.6)
(3.7)
(3.8)
Произведения текущих координат правой части формулы (3.5) используя формул (2.7) перепишем:
(3.9)
Подставим формулы с (3.6) по (3.9) в тождество (3.5). В левой и правой частях тождества получаем по девять различных членов. Тождество будет обеспечено, если коэффициенты подобных членов слева и справа окажутся равными:
(3.10)
(3.11)
(3.12)
Решение задачи сводится к решению системы тождеств:
(3.13)
Задача будет завершена, если найдутся три решения , , системы (3.13) при выполнении условий (2.8), (2.9), (2.10).
Преобразуем систему (3.13) к следующему виду:
(3.14)
Отсюда получаем
(3.15)
Уравнение (3.15) называется характеристическим уравнением квадратичной формы (3.3). Уравнение (3.15) есть уравнение третьей степени. Доказано, что оно имеет вещественные корни: , , , которые называются характеристическими числами. Подставляя вещественные корни в систему (3.14) будем иметь ненулевое решение l
,
m
,
n., Направление вектора называется главным направлением данной квадратичной формы, соответствующим характеристическому числу. .На практике вектор главного направления приводят к нормированному виду: l
1=, m
1
=,
n
1
=, где:
При этом условии =1.
3.5
Заключение
Каждую квадратичную форму можно привести к каноническому виду при помощи преобразования прямоугольных координат. Чтобы привести данную квадратичную форму к каноническому виду необходимо решить уравнение третьей степени (3.15) и найти характеристические числа , , , которые и будут коэффициентами в канонической виде формы. Координатные оси следует направлять по главным направлениям формы. Если оси абсцисс, ординат и аппликат направления по первому, второму и третьему главным направлениям, то характеристические числа , , будут коэффициентами соответственно при квадрате абсциссы, при квадрате ординаты и при квадрате аппликаты.
§4. Классификация центральных поверхностей второго порядка
Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стандартное упрощение уравнения этой поверхности. В результате указанных операций уравнение поверхности примет вид
a11х2 + а22у2 + a33z2 + а44 = 0 (4.2)
Так как инвариант I3 для центральной поверхности отличен от ноля и его значение, вычисленное для уравнения (4.2) , равно a11 • а22 • a33 , то коэффициенты a11 ,а22 , a33 удовлетворяют условию :
Возможны следующие случаи :
Ä1°). Коэффициенты a11 ,а22 , a33 одного знака, а коэффициент а44 отличен от нуля. В этом случае поверхность S называется эллипсоидом.
Если коэффициенты a11 ,а22 , a33 , а44 одного знака, то левая часть (4.2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют координаты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.
Если знак коэффициентов a11 ,а22 , a33 противоположен знаку коэффициента а44 , то поверхность S называется вещественным эллипсоидом. В дальнейшем термином «эллипсоид» мы будем называть лишь вещественный эллипсоид.
Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа
положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение эллипсоида (4.2) можно записать в следующей форме:
Уравнение (4.3) называется каноническим уравнением эллипсоида.
Если эллипсоид задан своим каноническим уравнением (4.3), то оси Ох, Оу и Оz. называются его главными осями.
Ä2°). Из четырех коэффициентов a11 ,а22 , a33 , а44 два одного знака, а два других—противоположного. В этом случае поверхность S называется однополостным гиперболоидом.
Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11 > 0, а22 > 0, a33 < 0, а44 < 0. Тогда числа
положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение (4.2) однополостного гиперболоида можно записать в следующей форме:
Уравнение (4.4) называется каноническим уравнением однополостного гиперболоида.
Если однополостный гиперболоид задан своим каноническим уравнением (4.4), то оси Ох, Оу и Oz называются его главными осями.
Ä3°). Знак одного из первых трех коэффициентов a11 ,а22 , a33 , а44 противоположен знаку остальных коэффициентов. В этом случае поверхность S называется двуполостным гиперболоидом.
Запишем уравнение двуполостного гиперболоида в канонической форме. Пусть, ради определенности, a11 < 0, а22 < 0, a33 > 0, а44 < 0. Тогда :
Обозначим эти числа соответственно через a2, b2, с2. Поcли несложных преобразований уравнение (4.2) двуполостного гиперболоида можно записать в следующей форме:
(4.5)
Уравнение (4.5) называется каноническим уравнением двуполостного гиперболоида.
Если двуполостный гиперболоид задан своим каноническим уравнением, то оси Ох, Оу и Оz называются его главными осями.
Ä4°). Коэффициент а44 равен нулю. В этом случае поверхность S называется конусом второго порядка.
Если коэффициенты a11 , а22 , a33 одного знака, то левая часть (4.2) обращается в нуль (а44 = 0) лишь для х=у=z=0, т. е. уравнению поверхности S удовлетворяют координаты только едной точки. В этом случае поверхность S называется мнимым конусом второго порядка. Если коэффициенты a11 , а22 , a33 имеют разные знаки, то поверхность S является вещественным конусом второго порядка.
Обычно уравнение вещественного конуса второго порядка записывают в канонической форме. Пусть, ради определенности,
a11 > o, а22 > 0, a33 < 0. Обозначим
соответственно через а2, b2, с2. Тогда уравнение (4.2) можно записать в виде
Уравнение (4.6) называется каноническим уравнением вещественного конуса второго порядка.
4.1
Классификация нецентральных поверхностей второго порядка
Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариант I3 равен нулю. Произведем стандартное упрощение уравнения этой поверхности. В результате уравнение поверхности примет вид
aґ11хґ2 + аґ22уґ2 + a33zґ2 + 2аґ14 xґ + 2аґ24уґ+2аґ34zґ +аґ44 = 0 (4.7)
для системы координат Oxґyґzґ
Так как инвариант I3 = 0 и его значение, вычисленное для уравнения (4.7) , равно
aґ11 • аґ22 • aґ33 , то один или два из коэффициентов aґ11 , аґ22 , aґ33 равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.
Ä1°). Один из коэффициентов aґ11 , аґ22 , aґ33 равен нулю. Ради определенности будем считать, что aґ33 = 0 (если равен нулю какой-либо другой из указанных коэффициентов, то можно перейти к рассматриваемому
(4.8)
случаю путем переименования осей координат). Перейдем от координат х', у', z' к новым координатам х, у, z по формулам
Подставляя х', у' и z', найденные из (4.8), в левую часть (4.7) и заменяя затем
aґ11 на a11 , аґ22 на а22 , аґ34 на p и аґ44 на q , получим следующее уравнение поверхности S в новой системе координат Oxyz :
a11х2 + а22у2 + 2pz + q = 0 (4.9)
1) Пусть р = 0, q = 0. Поверхность S распадается на пару плоскостей
При этом, очевидно, эти плоскости будут мнимыми, если знаки a11 и а22 одинаковы, и вещественными, если знаки a11 и а22 различны.
2) Пусть р = 0, q ≠ 0. Уравнение (4.9) принимает вид
a11х2 + а22у2 + q = 0 (4.10)
Известно, что уравнение (4.10) является уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11 , а22 , q имеют одинаковый знак, то левая часть (4.10) отлична от нуля для любых х и y, т. е. цилиндр будет мнимым. Если же среди коэффициентов a11 , а22 , q имеются коэффициенты разных знаков, то цилиндр будет вещественным. Отметим, что в случае, когда a11 и а22 имеют одинаковые знаки, a q — противоположный, то величины положительны.
Обозначая их соответственно через а2 и b2, мы приведем уравнение (4.10) к виду
Таким образом, в отмеченном случае мы имеем эллиптический цилиндр. В случае, a11 и а22 имеют различные знаки, мы получим гиперболический цилиндр. Легко убедиться, что уравнение гиперболического цилиндра может быть приведено к виду
3) Пусть р≠0. Произведем параллельный перенос системы координат, выбирая новое начало в точке с координатами
(0, 0, ).
При этом оставим старые обозначения координат х, у, z. Очевидно, для того чтобы получить уравнение поверхности S в новой системе координат, достаточно заменить в уравнении (4.9)
Получим следующее уравнение:
a11х2 + а22у2 + 2pz = 0 (4.13)
Уравнение (4.13) определяет так называемые параболоиды. Причем если a11 и а22 имеют одинаковый знак, то параболоид называется эллиптическим. Обычно уравнение эллиптического параболоида записывают в канонической форме:
Уравнение (4.14) легко получается из (4.13). Если a11 и а22 имеют разные знаки, то параболоид называется гиперболическим. Каноническое уравнение гиперболического параболоида имеет вид
Это уравнение также легко может быть получено из (4.13).
Ä 2°). Два из коэффициентов aґ11 , аґ22 , aґ33 равны нулю. Ради определенности будем считать, что aґ11 = 0 и аґ22 = 0 Перейдем от х,', у', z' к. новым координатам х, у, z по формулам :
Подставляя х', у' и z' , найденные из (4.16) в левую часть (4.7) и заменяя затем aґ33 на a33 , aґ14 на р , aґ24 на q и aґ44 на r , получим следующее уравнение поверхности S в новой системе координат Охуz :
a33 z2 + 2px + 2qy + r = 0 (4.17)
1) Пусть р=0, q=0. Поверхность S распадается на пару параллельных плоскостей
При этом, очевидно, эти плоскости будут мнимыми, если знаки a33 и r одинаковы, и вещественными, если знаки a33 и r различны, причем при r = 0 эти плоскости сливаются в одну.
2) Хотя бы один из коэффициентов р или q отличен от нуля. В этом случае повернем систему координат вокруг оси Oz так, чтобы новая ось абсцисс стала параллельной плоскости 2рх+2qy+r=0. Легко убедиться, что при таком выборе системы координат, при условии сохранения обозначения х, у и z для новых координат точек, уравнение (4.17) примет вид
a33 z2 + 2qґy = 0 (4.19)
которое является уравнением параболического цилиндра с образующими, параллельными новой оси Ох.
§5. Типы поверхностей второго порядка
В теории поверхностей второго порядка классифицируют и изучают различные виды поверхностей. Методом их изучения является так называемый метод сечения: исследуются сечения поверхности плоскостями, параллельными координатным или самими координатными плоскостями, и по виду сечений делается вывод о форме поверхности.
Существует семнадцать видов поверхностей второго порядка. Идея классификации поверхностей основана на приведении их уравнений к каноническому виду в результате преобразования системы координат в каноническую.
Рассмотрим подробнее шесть основных видов поверхностей второго порядка: эллипсоид, однополостный гиперболоид, двуполостный гиперболоид, конус, эллиптический параболоид и гиперболический параболоид.
5.1
Эллипсоид
рис.5.1
Эллипсоидом (рис.5.1) называется поверхность второго порядка, которая в канонической системе координат определяется уравнением :
В частности, если a = b = c, то получаем сферу x2 + y2 + z2 = a2 с центром в начале координат и радиусом a. Числа a, b, c называются полуосями эллипсоида. Если все они различны, то эллипсоид называется трехосным. Точки пересечения эллипсоида с осями координат: A1(−a; 0; 0), A2(a; 0; 0), B1(0; −b; 0), B2(0; b; 0), C1(0; 0; −c), C2(0; 0; c) называются его вершинами. Оси канонической системы координат являются осями симметрии эллипсоида, начало координат – его центром симметрии, а координатные плоскости – плоскостями симметрии.
Рассмотрим сечение эллипсоида плоскостью xOy: z = 0. Оно задается системой уравнений
и представляет собой эллипс с каноническим уравнением
Рассматривая аналогично сечения эллипсоида координатными плоскостями xOz: y = 0 и yOz: x = 0, а также плоскостями, им параллельными (x = h1, y = h2, z = h3), получаем кривые второго порядка эллиптического типа. Это – либо эллипс (при h1 < a, h2 < b, h3 < c), либо пара мнимых пересекающихся прямых, т.е. точка (при |h1| = a, | h2| = b, | h3| = c), либо мнимый эллипс (при h1 > a, h2 > b, h3 > c).
5.2 Однополостный гиперболоид
Однополостным гиперболоидом (рис.5.2) называется поверхность второго порядка, которая в канонической системе координат определяется уравнением:
Оси канонической системы координат являются осями симметрии однополостного гиперболоида, начало координат – его центром симметрии, а координатные плоскости – плоскостями симметрии. Оси абсцисс и ординат пересекают однополостный гиперболоид в точках A1(−a; 0; 0), A2(a; 0; 0), B1(0; −b; 0), B2(0; b; 0), которые называются его вершинами. Ось аппликат Oz, не имеющая с гиперболоидом общих действительных точек, называется его мнимой осью.
рис.5.2
Если рассмотреть сечения однополостного гиперболоида плоскостью xOy: z = 0 или плоскостями, параллельными ей (z = h3), то в сечении получаются эллипсы. Эллипс называется горловым.
Теперь возьмем сечение однополостного гиперболоида плоскостью xOz: y = 0. Оно задается системой уравнений:
и представляет собой гиперболу с действительной осью Ox:
Рассматривая аналогично сечения гиперболоида плоскостью yOz: x = 0, а также плоскостями, параллельными плоскостям xOz: y = h2 и yOz: x = h1, получаем кривые второго порядка гиперболического типа. Это – либо гипербола (при |h1| ≠ a, | h2| ≠ b), либо пара пересекающихся прямых (при |h1| = a, | h2| = b). Например, сечение однополостного гиперболоида плоскостью x = a задается системой уравнений
и представляет собой пару пересекающихся прямых с каноническим уравнением
5.3
Двуполостный гиперболоид
рис.5.3
Двуполостным гиперболоидом (рис.5.3) называется поверхность второго порядка, которая в канонической системе координат определяется уравнением:
Ось аппликат Oz канонической системы координат является осью симметрии двуполостного гиперболоида, начало координат – его центром симметрии, а координатные плоскости – плоскостями симметрии. Ось аппликат пересекает гиперболоид в точках C1(0; 0; −c), C2(0; 0; c) которые называются его вершинами. Сама ось аппликат называется действительной осью гиперболоида.
Если рассмотреть сечение двуполостного гиперболоида координатными плоскостями xOz: y = 0 и yOz: x = 0, и плоскостями, им параллельными (x = h1, y = h2), то в сечении получаются гиперболы. Рассматривая аналогично сечения гиперболоида плоскостью xOy: z = 0, а также плоскостями, параллельными плоскости xOy: z = h, получаем кривые второго порядка эллиптического типа. Это – либо эллипс (при |h| > c), либо пара мнимых пересекающихся прямых, т.е. точка (при |h = c |), либо мнимый эллипс (при |h| < c). Например, при |h| > c сечение двуполостного гиперболоида плоскостью z = h задается системой уравнений
откуда при подстановке второго уравнения в первое последовательно получаем:
и каноническое уравнение эллипса
5.4
Конус
рис.5.4
Конус второго порядка (рис. 5.4) в канонической системе координат имеет вид
Эта поверхность второго порядка состоит из прямых, пересекающихся в одной точке – вершине конуса. Действительно, если точка с координатами (x0; y0; z0) удовлетворяет уравнению конуса, то ему удовлетворяют также точки с координатами: x = x0t , y = y0t , z = z0tпри любом значении параметра t. Записанные уравнения являются параметрическими уравнениями прямой, проходящей через начало координат и точку (x0; y0; z0). Конус состоит из таких прямых, называемых образующими конуса. Ось аппликат канонической системы координат называется его осью. Оказывается, плоскость, проходящая через вершину конуса, либо не пересекает его в другой точке, либо пересекает по двум образующим, либо касается вдоль образующей. Любая плоскость, параллельная этим плоскостям, в первом случае пересекает конус по эллипсу, во втором случае – пересекает по гиперболе, в третьем случае – по параболе. Поэтому эллипс, гиперболу, параболу часто называют коническими сечениями.
5.5
Эллиптическим параболоидом
рис.5.5
Эллиптическим параболоидом (рис.5.5) называется поверхность второго порядка, которая в канонической системе координат определяется уравнением:
Ось аппликат Oz канонической системы координат является единственной осью симметрии эллиптического параболоида, плоскости xOz и yOz − плоскостями симметрии. Ось аппликат, называемая осью эллиптического параболоида, пересекает его в начале координат, эта точка называется вершиной параболоида. Если рассмотреть сечение эллиптического параболоида координатными плоскостями xOz: y = 0 и yOz: x = 0, и плоскостями, им параллельными (x = h1, y = h2), то в сечении получаются параболы. Например, сечение эллиптического параболоида плоскостью y = h2 задается системой уравнений:
откуда при подстановке второго уравнения в первое последовательно получаем:
и уравнение параболы
.
Получаемые таким образом параболы лежат в параллельных плоскостях, отличаясь лишь положением в пространстве. Рассматривая аналогично сечения эллиптического параболоида плоскостью xOy: z = 0, а также плоскостями, параллельными плоскости xOy: z = h, получаем кривые второго порядка эллиптического типа. Это – либо эллипс (при h > 0), либо пара мнимых пересекающихся прямых, т.е. точка (при h = 0), либо мнимый эллипс (при h < 0).
5.6
Гиперболический параболоид
рис.5.6
Гиперболическим параболоидом (рис.5.6) называется поверхность второго порядка, которая в канонической системе координат определяется уравнением:
Ось аппликат Oz канонической системы координат является единственной осью симметрии гиперболического параболоида, плоскости xOz и yOz − плоскостями симметрии. Ось аппликат, называемая осью гиперболического параболоида, пересекает его в начале координат; эта точка называется вершиной параболоида. Если рассмотреть сечение гиперболического параболоида координатными плоскостями xOz: y = 0 и yOz: x = 0, и плоскостями, им параллельными (x = h1, y = h2), то в сечении получаются параболы. Например, сечение гиперболического параболоида плоскостью x = h1 задается системой уравнений:
откуда при подстановке второго уравнения в первое последовательно получаем:
и уравнение параболы
.
Рассматривая аналогично сечения гиперболического параболоида плоскостью xOy: z = 0, а также плоскостями, параллельными плоскости xOy: z = h, получаем кривые второго порядка гиперболического типа. Это либо гипербола (при |h| > 0), либо пара пересекающихся прямых (при h = 0). Таким образом, по форме гиперболический параболоид напоминает седло, эту поверхность часто называют седловой.
5.7
Остальные поверхности второго порядка
Рис.5.7
Остальные одиннадцать видов поверхностей относятся к классам цилиндрических поверхностей (эллиптический, гиперболический и параболический (рис.5.7) цилиндры); пар плоскостей (пересекающихся, параллельных и совпавших) и мнимых поверхностей (мнимый эллипсоид, мнимый конус, мнимый эллиптический цилиндр, пары мнимых пересекающихся и мнимых параллельных плоскостей).
Виды поверхностей и их уравнения приведены в таблице ниже :
Таблица поверхностей второго порядка
№ п.п | Вид поверхности | Уравнение |
1 | Эллипсоид | |
2 | Мнимый эллипсоид | |
3 | Однополостный гиперболоид | |
4 | Двуполостный гиперболоид | |
5 | Эллиптический параболоид | |
6 | Гиперболический параболоид | |
7 | Конус | |
8 | Мнимый конус | |
9 | Эллиптический цилиндр | |
10 | Гиперболический цилиндр | |
11 | Параболический цилиндр | Y 2 = 2pX |
12 | Мнимый эллиптический цилиндр | |
13 | Пара мнимых пересекающихся плоскостей | |
14 | Пара пересекающихся плоскостей | |
15 | Пара параллельных плоскостей | X 2 − a2 = 0 |
16 | Пара мнимых параллельных плоскостей | X 2 + a2 = 0 |
17 | Пара совпавших плоскостей | X 2 = 0 |
ПРИЛОЖЕНИ
E
№1
Пример 1. Привести к каноническому виду уравнение поверхности второго порядка:
7
x
2
+6
y
2
+5
z
2
-4
xy
-4
yz
-18=0 .
Решение. Составим характеристическое уравнение:
или 3+ 182+99-162=0 или (-3)(-8)(-9)=0. Корни уравнения: 1=3, 2=6, 3=9. Каноническое уравнение равно: 3x'2+6y'2+9z'2-18=0, или
(п.1).
Данная поверхность является эллипсоидом с полуосями а=. b=, c=.
Пример 2. Найти расположение поверхности эллипсоида, каноническое уравнение которого соответствует формуле (п.1).
Решение. Для определения главных направлений поверхности составим систему уравнений:
(п.2)
Для =1=3 система уравнений примет вид:
В качестве ненулевого решения этой системы можно взять: l=1, m=2, n=2. Нормируя это решение, получим единичный вектор первого главного направления:
Точно так же, в системе (п.2) для =2=6 и =3=9 найдем единичные векторы двух других направлений:
Данные векторы показывают положение новых осей относительно старых, поэтому расположение поверхности известно. Формулы преобразования координат найдем согласно (2.5):
Пример 3. Привести к каноническому виду уравнение поверхности второго порядка:
Решение. Составим характеристическое уравнение:
или 3-27+-54=0 или (+3)(+3)(-6)=0. Корни уравнения: 1=-3, 2=-3, 3=6. Каноническое уравнение равно: -3x'2-3y'2+6z'2+6=0, или
Данная поверхность является однополостным гиперболоидом вращения с полуосями а=. b=, c=1.
Пример 4. Привести к простейшему виду уравнение
Решение. Соберем члены уравнения, содержащие одну и ту же переменную величину, и получим :
Из второй скобки вынесем коэффициент при , после чего предыдущее уравнение примет вид:
В каждой из скобок выделим полный квадрат и получим:
или
откуда следует , что
Произведем теперь такую замену: положим, что
Произведенная замена представляет собой не что иное, как преобразование координат всех точек плоскости параллельным переносом координатных осей без изменения их направления. Сравнение последних соотношений с формулами
показывает, что новое начало координат находится в точке а уравнение A принимает вид:
Разделив обе части этого уравнения на , получим канонический (простейший) вид данного уравнения:
Заданное уравнение определяет эллипс с полуосями a=, b= , центр которого находится в первоначальной системе координат в точке . Таким образом, упрощение уравнения этой линии достигнуто параллельным переносом начала координат в ее центр.
Пример 5. Дана поверхность второго порядка
Определить вид этой поверхности ,доказать , что она является поверхностью вращения , написать её каноническое уравнение.
Решение. Имеем
, .
Поверхность невырожденная центральная. Характеристическое уравнение имеет вид :
или . Так как и среди корней характеристического уравнения имеются как положительные, так и отрицательные (согласно правилу Декарта один корень положительный и два отрицательных), то поверхность – однополостный гиперболоид.
Для того чтобы поверхность второго порядка была поверхностью вращения , необходимо и достаточно, что бы её характеристическое уравнение имело кратный корень, для чего в свою очередь необходимо и достаточно, чтобы корень характеристического многочлена был в то же время и корнем его производной. Производная характеристического многочлена:
Корни производной . Подвергаем проверке только один корень -3, т.к у характеристического многочлена только один положительный корень. Действительно ,
,
оказывается корнем характеристического многочлена, поэтому можно положить
;
по теореме Виета найдем, что .
Приведённое уравнение поверхности: .
Каноническое уравнение поверхности :
Пример 6. Нарисуйте поверхность
Решение. Выделим полные квадраты по переменным x
, y и z
:
Отсюда
Разделим обе части на 4:
Введем новую систему координат с началом в точке , получающуюся из старой параллельным переносом. По предложению 13.1 получим, что в новой системе поверхность задается уравнением
Данное уравнение отличается от канонического уравнения однополостного гиперболоида тем, что поменялись ролями оси ординат ( ) и аппликат ( ). Не переобозначая осей, произведем построение поверхности с помощью сечений. В сечении плоскостью получаем эллипс с уравнением
Его полуоси равны 1 и 2 и лежат соответственно на осях и . В сечении плоскостью получаем гиперболу с уравнением
Ее мнимая ось лежит на оси , а действительная ось лежит на оси , полуоси соответственно равны 2 и 1. В сечении плоскостью получаем равностороннюю гиперболу с уравнением
Ее мнимая ось лежит на оси , а действительная ось лежит на оси , обе полуоси равны 2. Для большей наглядности нарисуем еще два сечения плоскостями параллельными плоскости . В сечениях получим эллипсы, подобные эллипсу в плоскости . По рассмотренным сечениям можно представить себе форму гиперболоида и его расположение в пространстве (рис. 5.1). Объемное изображение приведено на рис 5.2
Пример 7. Какую поверхность определяет уравнение ?
Решение : Установим форму поверхности с помощью метода параллельных сечений. Сначала пересечём поверхность с плоскостью y=0: получим =4z. Это уравнение параболы в плоскости Oxz. Пересечём поверхность плоскостью x=0 : получим .Сечением является парабола . В результате пересечения поверхности плоскостью z=0 : получим пару пересекающихся прямых . Сечения поверхности плоскостями x=h дают параболы : при h>0 действительная ось гиперболы параллельна оси Ox , а при h<0 – оси Oy . По виду полученных сечений можно заметить , что исследуемая поверхность – гиперболический параболоид.
Пример 8. Привести уравнение данной поверхности к каноническому виду и определить её тип
Решение. 1) Применяя метод выделения полных квадратов , приведем уравнение к каноническому виду:
2) Выделим полный квадрат в данном уравнении при переменной z: или
Данная поверхность является параболическим цилиндром. При параллельном переносе осей координат по формулам
Получим каноническое уравнение поверхности . Точка
служит началом новой системы координат.
3)Перепишем исходное уравнение в виде :
.
Получим уравнение эллиптического параболоида с вершиной в точке .
ПРИЛОЖЕНИЕ №2
Задание 1
.10 Даны уравнения одной из сторон ромба x
-3
y
+10=0 и одной из его диагоналей x
+4
y
-4=0 , диагонали ромба пересекаются в точке (0;1) . Найти уравнение остальных сторон ромба.
Решение : 1) Найдём координаты вершины А ромба , пересечение стороны x
-3
y
+10=0 и диагонали x
+4
y
-4=0 :
x
-3
y
+10=
x
+4
y
-4
7
y
=14
y
=2 cследовательно x
=-4 –> координаты вершины ромба А(-4;2)
2)Через точку пересечения диагоналей (0;1) , найдём противоположную вершину С(4;0)
3)Найдём уравнение второй диагонали , т.к диагонали в ромбе перпендикулярны следовательно угловые коэффициенты соотносятся как . Преобразованное уравнение первой диагонали имеет вид
. Следовательно уравнение второй диагонали будет иметь вид: y
=4
x
+
p т.к противоположные стороны в ромбе параллельны , подставим координаты точки пересечения и найдём p.
1=0+
p
p
=1 , следовательно уравнение второй диагонали имеет вид y
=4
x
+1.
4)Найдём вершину В , пересечения второй диагонали y
=4
x
+1 и стороны
x
-3
y
+10=0 . Для этого прировняем их :
x
-3
y
+10=4
x
-
y
+1
x
-3
y
+10=12
x
-3
y
+3
, следовательно y = , отсюда получаем координаты вершины В()
5)Определим уравнение ВС по формуле прямой проходящей через две точки
, получим .
6)Определим уравнение DC : x
-3
y
+
b
=0 . Поставим координаты точки С и найдём b : b
=-4 . Следовательно уравнение DC : x
-3
y
-4=0
7)Определим уравнение AD : , подставим координаты точки А. Получим . Следовательно уравнение AD :
Ответ
: AB: x-3y+10=0
DC: x-3y-4=0
AD:
BC:
Задание 2.10 Даны координаты вершин треугольника АВС. Найти длины медианы, высоты , проведённых из вершины А. Вычислить внутренний угол при вершине В.
A(8;0) , B(-4;-5) , C(-8;-2)
Решение : 1)Определим координаты точки М отрезка АМ(медиана) , получаем М и определим длину медианы как длину вектора :
.
2)Что бы найти AH(высота) , определим уравнение прямой CB:
CB: . Теперь определим расстояние от точки А до найденной прямой по формуле : . После вычислений получаем . Следовательно AH=.
3)Определим BH по теореме Пифагора : BH=
Тогда , отсюда следует что угол при вершине B приблизительно равен .
Ответ : Медиана =
Высота =
Угол при вершине B
Задание 4.10 Найти точки пересечения кривой второго порядка с прямой а.
а :
Решение : 1)Составим и решим систему уравнений :
Ответ : точек пересечения кривой второго порядка с прямой а не существует.
Задание 7.10 Для векторов , заданных в ортонормированном базисе найдите :
1) Направляющие косинусы вектора ;
2) Площадь параллелограмма , построенного на векторах и , имеющих общее начало;
3)Объем пирамиды, построенной на векторах , и , имеющих общее начало.
(2;1;0) , (4;3;-3), (-6;5;7)
Решение : 1)
2)
3)
Ответ :
=
=
Задание 12.10 Найти точки пересечения поверхности и прямой
Решение : 1) Найдём точку пересечения двух прямых:
x-z-2=7x+8y-z-2
7x-7z-14=7x+8y-z-2
-6z-12=8y
, отсюда следует x=2+z
2)Подставим полученные значения x и y в уравнение поверхности второго порядка , что бы найти точки их пересечения.
, после решения данного уравнения поулчаем точку пересечения двух прямых и поверхности второго порядка .
x=4 ; y=-3 ; z=2
Ответ : Поверхность пересекается с прямой в точке (4;-3;2)
Литература
1. Александров П.С. Лекции по аналитической геометрии / П.С. Александров. – М.: Наука, 1968.
2. Атанасян Л.С. Геометрия / Л.С. Атанасян. – М.: Просвещение, 1973. Ч.1.
3. Атанасян Л.С. Геометрия / Л.С. Атанасян. – М.: Просвещение, 1987. Ч.2.
4. Базылев В.Т. Геометрия /В.Т. Базылев, К.И. Дуничев, В.П. Иваницкая. – Ь.,1974. Ч.1.
5. Ефимов Н.В. Квадратичные формы и матрицы / Н.В. Ефимов. – М.: Наука, 1967.
6. Парнасский И.В. Многомерные пространства. Квадратичные формы и квадратики / И.В. Парнасский, О.Е. Парнасская. – М.: Просвещение, 1978.
7. Погорелов А.В. Аналитическая геометрия /А.В. Погорелов. – М.: Наука, 1968.