Реферат Составляющие и основные характеристики компьютерных систем
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
2. Составляющие и основные характеристики компьютерных систем
В основе функциональной организации ЭВМ всех поколений лежит общий принцип программного управления (в пятидесятые годы теоретически предлагается принцип микропрограммного управления, практическая реализация которого приходится на следующее десятилетие; обычно этот фундаментальный принцип организации подсистемы управления ЭВМ связывают с работами Уилкса (Wilkes M.V.), выполненными в 1951 году) и двоичного представления информации. Реализация программного управления достигается различными структурными схемами, отличающимися функциональными свойствами и производительностью. Эти принципы, разработанные очень давно, еще до появления, если так можно выразиться, первых достаточно полноценных компьютеров, определили весь последующий облик компьютерных систем. Следование этим принципам позволяет создать универсальные и по возможности более простые аппаратные (как впрочем и программные) средства обеспечения вычислительных машин.
В процессе развития систем определенного класса сохраняется совокупность их основных (базовых) функций. Применительно к компьютерным системам можно утверждать: каждое новое компьютерное поколение сохраняет (воспроизводит) совокупность основных функций, реализуемых компьютерами предшествующего поколения. Какие это функции? PMTC – Processing (обработка), Memory (хранение), Transfer (передача), Control (управление). Все это сохраняется на протяжении всех поколений компьютерных систем. Наиболее интенсивным изменениям подвергаются сервисные функции. Эти изменения направлены на увеличение производительности и совершенствование интерфейса пользователя с системой.
Действительно, ни один из существующих типов КС не выполняет каких-либо функций, кроме вышеуказанных. Единственные изменения, которые происходят с появлением новой КС – это все лучшее выполнение этих функций: новый РС все быстрее производит обработку данных, полученных с устройств ввода, новый сервер имеет все более емкую дисковую систему, больший объем памяти и производительный CPU, новый коммуникационный стандарт обеспечивает большую пропускную способность и надежность.
Эффективными и жизнеспособными являются системы, структура которых максимально соответствует реальным функциям. Два параллельно идущих эволюционных процесса – эволюция функций и эволюция технологий – стимулируют направленное совершенствование функционально-структурной организации КС. Известно следующее утверждение: «В идеальном случае каждому реализуемому алгоритму соответствует определенная структура системы (устройства)». Например, архитектура игрового компьютера должна отличаться от архитектуры сервера: если в первом случае берется не слишком дорогой, но оптимизированный под определенный набор вычислений процессор, оптимальным образом синхронизированные с ним память, графический контроллер и устройства ввода, причем все это, скорее всего, связывается одной-единственной общей шиной, то во втором, очевидно, потребуется многопроцессорная параллельная обработка, ориентированная на многозадачность, более широкий набор шин передачи данных. Однако очевидно, что бесконечное множество алгоритмов практически не может быть отображено на соответствующее множество реальных структур.
Но одни и те же функции могут быть воспроизведены универсальными и специализированными средствами. Таким образом, при формировании структуры КС определенного функционального назначения необходимо разрешать противоречия между «универсальностью» и «специализацией» на всех уровнях организации системы. Применение универсальных элементов позволяет создавать КС с минимальной структурой (то есть с минимальным числом элементов), реализующих заданную совокупность функций (продолжая сравнение, на сервере тоже, в принципе, при желании можно поиграть в Unreal, но вряд ли это будет целесообразно, так как тех же целей можно будет добиться гораздо более простыми средствами).
Основные показатели КС – характеристики производительности, энергетические характеристики, характеристики надежности и эффективности систем, экономические показатели – взаимосвязаны и взаимозависимы. Улучшение одной группы показателей качества, например увеличение производительности, ведет к ухудшению других – усложнению структуры, увеличению стоимости, снижению надежности и т. д.
Приведем примеры взаимосвязи и взаимозависимости показателей. В конце 40-х годов Г. Грош сформулировал эмпирический закон, согласно которому пропорциональность КС пропорциональна квадрату стоимости. Следовательно, для того чтобы выполнить некоторую вычислительную работу в два раза дешевле, ее надо выполнить в четыре раза быстрее (К. Е. Найт экспериментально подтвердил справедливость этого закона для первых трех поколений компьютеров). Другой пример взаимозависимости общей производительности векторной супер-ЭВМ от двух режимов ее работы. Известно, что программы, которые могут быть векторизованы компилятором, выполняются в векторном режиме с высокой скоростью, а программы, не содержащие векторного параллелизма (или которые компилятор не обнаруживает), выполняются с низкой скоростью в скалярном режиме. В
И напоследок еще один более близкий и современный нам пример. Не секрет, что процессоры Intel Pentium-4 первого поколения (под Socket-423) имеют высокое энергопотребление, большую теплоотдачу и довольно-таки внушительные размеры. Недавно в сети даже ходили шуточки насчет того, что если так пойдет и дальше, то в недалеком будущем компьютеры в обязательном порядке будут поставляться с портативной атомной электростанцией и радиатором водяного охлаждения в комплекте, а материнская плата будет свариваться из стального проката (в том смысле, что иначе она рассыплется от тяжести комплектующих). Конечно, не все так плохо, но определенный резон в этих замечаниях действительно присутствует. Поэтому Intel вскоре перевела процессор на более тонкий техпроцесс, в результате чего удалось сделать его очень маленьким (гораздо меньше, чем CPU предыдущих поколений), экономичным в плане потребления энергии и выделяющим мало тепла. Но с другой стороны, примерно до 10% повысилась стоимость изделия (и это несмотря на то, что площадь чипа, напрямую влияющая на стоимость, уменьшилась). И в чисто технологическом плане изменения не дались даром: новый процессор получился более требовательным к устойчивости параметров питания, так что пришлось оснастить его новым (Socket-478) интерфейсом, где дополнительные контакты обеспечивают нужную стабильность напряжения, подаваемого на процессор.
Или, еще, сравним архитектуры все тех же CPU от AMD и от Intel. Про вторую мы только что упоминали, поэтому рассмотрим продукцию первой. Известно, что эту самую продукцию (CPU Athlon различных модификаций) отличает весьма небольшая по сравнению с Pentium стоимость при примерно равной производительности. Чем этого удалось добиться? Ответ: применением менее высоких (и поэтому более дешевых), чем у Intel, технологий изготовления чипов и усовершенствованием внутренней архитектуры процессора: изощренные алгоритмы кэширования, оптимизированный конвейер и проч. Примерно то же можно сказать и о DDR SDRAM. DDR (Double Data Rate) SDRAM по многим параметрам и способам изготовления мало чем отличается от обычной SDRAM: та же синхронизация шины памяти с системной шиной, практически то же производственное оборудование, энергопотребление, почти не отличающееся от SDRAM, площадь чипа больше лишь на несколько процентов. Изменения заключаются только в применении популярной в последнее время в компонентах PC технологии передачи данных одновременно по двум фронтам сигнала, когда за один такт передаются сразу два пакета данных. В случае с используемой 64-битной шиной это дает 16-байтный за такт. Или, в случае со 133 мегагерцами, уже не 1064, а 2128 Mb/s. Это позволило сразу без значительных материальных и временных издержек создать новую быстродействующую память, причем по цене, мало отличающейся от обычной SDRAM (кстати, DDR SDRAM еще иногда именуют SDRAM-II). То есть мы видим, что новая память при ближайшем рассмотрении есть усовершенствованная старая. В результате стоимость готовой системы процессор+память+системная плата от AMD ниже аналогичной от Intel раза чуть ли не в два, но, очевидно, ее структурная сложность существенно выше.